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The main purpose of this paper is to prove that minimal dis-

crepancies of n-dimensional toric singularities can accumulate only

from above and only to minimal discrepancies of toric singularities

of dimension less than n. I also prove that some lower-dimensional

minimal discrepancies do appear as such limit.

1. Introduction

First of all let me recall some basic de�nitions.

De�nition 1.1. A normal algebraic variety X is called Q-Gor-
enstein if some multiple of the canonical Weil divisor is a Cartier
divisor. All varieties in this paper are Q-Gorenstein unless oth-
erwise speci�ed.
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De�nition 1.2. The minimal discrepancy of a variety X is the
minimum of the discrepancies of all exceptional divisors of all
resolutions of singularities of X:

Remark 1.1. The minimal discrepancy only exists when X has
log-canonical singularities (see, e.g. [5] for the nice introduc-
tion). Whenever it exists it is at least �1: One can also talk
about log-discrepancies. They are especially useful when the va-
riety has "boundary" (see [7]). When there is no boundary they
are just the usual discrepancies plus one. Naturally, the log-
discrepancies are non-negative for the log-canonical singularities
and the minimal log-discrepancy is non-negative if exists. When
it is strictly positive, X is said to have only log-terminal singu-
larities. And when the ordinary minimal discrepancy is positive
(non-negative) X is said to have terminal (canonical) singulari-
ties.

Remark 1.2. Of course, the minimal discrepancy of X is a
minimum of minimal discrepancies of any a�ne covering of X:
So it should be considered as an invariant of the worst (in certain
sense) singularity of X: It's especially interesting because of its
role in several "global" conjectures (see [1], [2]).

The basic "local" conjecture on minimal discrepancies is the
following one proposed by V. Shokurov.([10])

Conjecture 1.1. For every natural n minimal discrepancies of
n-dimensional log-terminal singularities can accumulate only
from above.

This conjecture in dimension 2 follows rather easily from the
classi�cation of 2-dimensional log-terminal singularities. In di-
mension 3 there is the result of Kawamata ([6]) that the mini-
mal discrepancies of any 3�dimensional terminal singularity is
1
i
; where i is a positive natural number (in fact, the index of the
singularity).
In particular, Shokurov's conjecture implies that for every n

there exists a positive constant "(n); such that if all discrepancies
of n-dimensional variety X are greater than �"(n) then they are
in fact nonnegative, that is X has at most canonical singularities.
In this paper we will prove the Shokurov's conjecture for a

particular case of toric singularities. In fact, our results are
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much more precise. They are in some sense best possible for
nonterminal toric singularities and also very informative for the
terminal case. What to do in case of more general singularities
is discussed in section 3: The main result of the paper is the
following. (Corollary 2.1)
Main Result. For every natural n minimal discrepan-

cies of n-dimensional toric singularities can accumulate
only from above and only to minimal discrepancies of
toric singularities of dimension less than n:

Remark 1.3. It can happen that in�nitely many di�erent toric
singularities have the same minimal discrepancy. I do not con-
sider this as an accumulation of minimal discrepancies. In this
case the minimal discrepancy in question does not necessarily
come from lower dimension. It may be of the form 1+(minimal
discrepancy of lower-dimensional toric singularity). However the
only example of that kind I know is the rather trivial case of min-
imal discrepancy n� 1 for 2n�dimensional singularities.

There is also the result in the opposite direction (see Theorem
2:2) which implies in particular that every minimal discrepancy
of a toric singularity of dimension k is a limit of minimal dis-
crepancies of n�dimensional toric singularities for n big enough.
And it also implies that if this discrepancy is non-positive then
the only restriction on n is that n > k:
I am glad to thank here V. Shokurov for his constant interest

in this study and helpful remarks about it.

2. Proofs

First of all, let me recall some basic facts about toric vari-
eties. (See, for example, [3], [4], [9].) Every n-dimensional a�ne
toric variety X is just a Spec(R); where R is a ring generated
by monomials x�11 x�22 :::x�n

n ; where f�1; �2; :::; �ng is an integral
point of some �nitely generated convex cone of full dimension
C(X) in Rn: For several reasons it is more useful to consider the
dual cone C�(X) in the dual space V = Rn: It does not neces-
sarily have dimension n; but we will always assume that it will.
Otherwise X would be isomorphic (not canonically) to a prod-
uct of another toric variety and an algebraic torus of positive
dimension.
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Now various conditions on singularities of X have simple com-
binatorial formulation in terms of C�(X): Namely, let us consider
one-dimensional extremal rays l1; l2; :::; lk that generate this cone.
They are rational therefore we can pick on every li an integral
point Pi which is the closest one to zero. Then all Pi lie in
one hyperplane if and only if X is Q-Gorensteinian. X is Q-
factorial if and only if k = n; that is C� (or C) is simplicial. X
is regular if and only if C�(X) is regular which means that it
is simplicial and Pi form a basis for the lattice. Moreover, the
Gorenstein index and minimal discrepancy of X also have sim-
ple description. Namely, let us consider the linear function F on
V; such that F (Pi) = 1: (This is possible exactly when X is Q-
Gorensteinian.) Then the least common denominator of values
of F on non-zero points of C� is the index. The minimal log-
discrepancy which is by de�nition (1+(minimal discrepancy)) is
the minimum of the above values among points in the interior
of non-regular sub-cones of C�(X): (If all sub-cones including
C�(X) itself are regular then X is regular and its minimal dis-
crepancy is unde�ned.) We will pass freely from discrepancies
to log-discrepancies mostly using the latter in proofs and the
former in statements.
There is one type of toric singularities which is particularly

interesting for our purposes. Namely, quotients of an a�ne plane
An by cyclic groups. This corresponds to the case when C� is
simplicial and the latticeN of all integral points in V is generated
by Pi and only one extra element x: We can always assume that
x lies in the interior of C� otherwise the singularity splits into
the lower-dimensional singularity and torus. I want to mention
that the cyclic group in question is just a factor (N= < Pi >)
and its action can be reconstructed from the coordinates of x in
the basis fPig: The following lemma reduces everything to this
special case.

Lemma 2.1. The set of minimal discrepancies of toric singu-
larities of dimension n coincides with that of cyclic quotients of
dimension no greater than n:

Proof. Let X, C� � V , Pi, F be as above. Let " be
the minimal log-discrepancy of X: By the above combinatorial
description there exists an integral point x 2 C�; such that
F (x) = ": Consider the ray generated by x: It intersects the
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polygon P1P2:::Pk in some point P: Standard combinatorial argu-
ments show that there exists a simplex Pi1Pi2 :::Pir � P1P2:::Pk;
such that P lies in its interior. Of course, this simplex has di-
mension no greater than n � 1 and its interior means interior
with respect to its own geometry.
Now let us stick to the subspace W of V generated by Pij :

Evidently, C�
T
W will be a convex cone corresponding to some

new toric variety X 0 with the same minimal log-discrepancy ":
This X 0 is already Q-factorial but it is not a cyclic quotient yet.
To produce out of it a cyclic quotient let me do the following.
Consider lattice N 0 � N generated by x; change coordinates in
such a way that N 0 become a lattice of integral points and forget
about N:What we have now is a cyclic quotientX 00; which again
has the same minimal log-discrepancy "; so the lemma is proven.
Remark. As one can easily see from the proof of the above

lemma we can assume that factor-group (N= < Pi >) is not only
cyclic but also generated by the element x; which has "minimal
log-discrepancy" (that is F (x) = ":) In the rest of the paper this
element will be often called generating element. The fact that it
is not uniquely determined for a given singularity does not cause
any di�culties.
From now on we stick to this particular case of quotient singu-

larities and whenever we have a toric variety it is a cyclic quotient
singularity. The above lemma allows us to do it. Now let me
notice that the results we are going to prove are of two types.
Most of them are negative in a sense that they restrict where and
how minimal discrepancies can accumulate. And there are some
positive results based on procedures that allow us to construct
cyclic quotients with prescribed minimal discrepancies starting
with the given one. We begin with negative results which all
deal with the following situation.
Suppose we have a sequence of cyclic quotient singularities

fX�g; � = 1; 2; :::; such that their log-discrepancies "� are getting
closer and closer to some real number ": Consider the standard
simplex � in Rn de�ned by the inequalities �i � 0,

P
�i � 1

inside a standard hypercube H, de�ned by the inequalities 0 �
�i � 1: By identifying simplexes P �

1 P
�
2 :::P

�
k with this standard

one we obtain a sequence of points �� 2 H that correspond to
x�: By the compactness of H there exists a subsequence with a
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limit point �: We replace our sequence by this subsequence. By
the above remark "� =

P
��i : Therefore " =

P
�i: Now all our

negative results can be formulated as the sequence of statements
which will be proven in a row. Let me state this as a theorem.

Theorem 2.1. In the above notations the following is true.
1) If "� are not the same for big � then � is on the boundary

of H:
2) If "� are the same for big � then one can choose � on the

boundary of H which has the same " and is also a limit of some
sequence of the same type.
3) " is rational.
4) If "� are not the same for big � they accumulate to " only

from above.
5) We can choose � as in 2) on some face of H to be a gener-

ating point of a cyclic quotient singularity if considered on this
face. As a corollary, " is a minimal log-discrepancy for some
lower-dimensional toric singularity plus some nonnegative inte-
ger.
6) Every face of H is characterized by restricting some coor-

dinates to be 0 and some coordinates to be 1: Under this remark
statement 5 can be strengthen by the restriction that for the face
of � the number of 1�s is not greater than the number of 0�s.
Moreover if "� are not the same for big � then the number of
1�s is strictly less than the number of 0�s

In order to prove this theorem let me introduce the notion of
multiple of the point in H: It will be used a lot in the rest of the
paper so it deserves to be stated formally.

De�nition 2.1. For every point � = (�i) 2 H and integer m
let m�th multiple of � be the point �(m) whose i� th coordinate
is 1 if �i = 1 and fm�ig otherwise. Note that for positive m this
construction is continuous at the neighborhood of the boundary
of H:

Now we begin the proof.
Statement 1). Suppose � is in the interior of H: Consider

�(m) for all integer m: Then the compactness of H tells us that
there are two numbers m1 < m2; such that �(mi) are very close,
for example closer than 1

100� (distance from � to the boundary

of H). They may also coincide, we don't care. Then �(m1�m2+1)
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and �(m2�m1+1) are evidently very close to �(1) = �: We have
several cases.
First of all suppose that sum of coordinates of one of the above

two points is less than " (that means that sums of coordinates of
�(m1�m2+1) and �(m2�m1+1) are di�erent.) Let it be �(m1�m2+1):
Then for � big enough �� is close enough to � and ��;(m1�m2+1) is
close enough to �(m1�m2+1) and therefore the sum of coordinates
of ��;(m1�m2+1) is less than "� ; which is impossible.
Now suppose that sums of coordinates are the same. Then

if there is a subsequence of �� for which "� accumulate to "
from above consider (m1 � m2 + 1)�th multiples. Then for
� big enough from this subsequence sum of the coordinates of
��;(m1�m2+1) is less then sum of the coordinates of �(m1�m2+1); be-
cause (m1�m2+1) < 0: Therefore it is less then "�; which is im-
possible. Similar arguments work for the case when "� accumu-
late to " from below. We should just consider (m2�m1+1)�th
multiples instead of (m1 � m2 + 1)�th ones and notice that
(m2 �m1 + 1) � 2:

Remark 2.1. We did not prove that point inside H cannot be
a limit of generating points of cyclic quotients with the same
discrepancy. And this indeed can happen. The easiest example
is given by two-dimensional canonical toric singularities.

Statement 2). Suppose we have a sequence of points �� with
the same sum of coordinates ": Consider those multiples of all
these points that have the same sum of coordinates ": We will
see very soon that there are plenty of them. We have two cases.
First of all, suppose � has �nite order in H that is �(k) =

0 for some k: Then for �� that are close enough to � (mk +
1)�multiples have sum of the coordinates ". Moreover when we
makem run from zero to some number depending on � they run
following some straight line with small intervals until they hit the
boundary of H: The length of these intervals goes to zero when
�� go to �: Therefore we have in�nitely many points in every
neighborhood of the boundary of H; intersected with a hyper-
plane

P
xi = ": Therefore there exists a point on this boundary

which is a limit of some sequence of these points. To complete
the argument it is enough to mention that each one of these
points is also a generating point for some quotient singularity
with the same discrepancy ":
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Now suppose � has in�nite order in H: Nevertheless " is ra-
tional because " = "�: So we have in�nitely many multiples of �
with the same sum of coordinates ": Then arguments similar to
that of the above case show that whenever two of such multiples
are close to each other there is some other multiple that is close
to the boundary of H: Again as before, there is a point on the
boundary which is a limit of a sequence of these multiples. Now
we can just notice that every multiple of � is a limit of multiples
of �� and the rest is the same as above.
Statement 3). Suppose " is irrational. By previous state-

ments we can assume that � is on some face of H: Then all its
multiples are by the de�nition on the same face. Now we want
to prove that for some m > 0 �(m) is close enough to � and sum
of the coordinates of �(m) is less than ": This is not completely
trivial, because we require m to be positive. Here is the proof.
First of all, we can stick to the face of H � belongs to. Then
we notice that all sums of coordinates of �(m) are di�erent be-
cause " is irrational. By the compactness argument there exist
some positive integers m1 < m2 such that �(m1) and �(m2) are
close enough. If the sum of coordinates of �(m1) is greater than
the sum of coordinates of �(m2) it is enough to choose m to be
equal to 1+m2�m1: Otherwise we need one more step. Denote
m3 = 1 +m1 �m2: Then everything would have been OK, but
m3 is not positive. But we can �nd m4 < m5 of form l(m3 + 1);
such that �(m4) and �(m5) are so close that �(m3+m5�m4) is still
close enough to � and the sum of its coordinates is still less than
the sum of coordinates of �:
Now for m as above and � big enough �� is close enough to

� therefore ��;(m) is close enough to �(m): (Here we really need
that m is positive because � lies on the boundary of H:) But this
means that for � big enough sum of the coordinates of ��;(m) is
less than sum of the coordinates of �� ; which is impossible.
Statement 4). Now " is rational. The arguments similar to

the above allow us to �nd an integerm > 1 such that �(m) is close
to � and has the same sum of coordinates. Namely, the compact-
ness argument tells that there are m1;m2 such that ��;(m1) and
��;(m2) are arbitrary close. (They may even coincide, we don't
care.) Then m = 1 +m2 �m1 will satisfy all requirements.



A.BORISOV, MINIMAL DISCREPANCIES 9

Now if discrepancies "� accumulate to " from below then for
su�ciently large � the sum of coordinates of ��;(m) is less than
the sum of coordinates of �� : (By de�nition m is greater than 1
and (��;(m) � �(m)) = m(�� � �):) This completes the proof of
the statement.
Statement 5). We have � on some face of H: Let us consider

this face and multiples of � on it. If there are in�nitely many
of them that are in fact di�erent then there are in�nitely many
of them with the same sum of the coordinates "; because " is
rational. Then arguments of the proof of statement 2 allow us to
replace � so that it lies on a face of lower dimension. We can do
this until we come to � that has �nite order in the appropriate
face. Now on this face � is a generating point for a quotient
singularity, because if some multiple of it has smaller sum of
coordinates in the face it has smaller sum of all coordinates and
usual arguments show that it is impossible.
Statement 6). Suppose � has order N in its face. Suppose

this face is determined by k equalities of type xi = 0 and l
equalities of type xi = 1 Consider (1 � N)�th multiples of �� :
Then the corresponding "�s go to " + k � l when �� go to �:
Therefore k � l:Moreover, if "� accumulate to " from above then
"�s for (1�N) � th multiples accumulate from below. So case
k = l is also impossible.
This completes the proof of the theorem. The following corol-

lary is formally also restrictive but in fact as you can see from
its proof it is a positive result (or, more precisely, simple obser-
vation.)

Corollary 2.1. Under the notations of the above theorem if "�

are not the same for big � then " is not just sum of lower-
dimensional log-discrepancy and integer but is a lower-dimension-
al log-discrepancy itself. If "� are the same for big � then " is
either a lower-dimensional log-discrepancy or (1+(minimal log-
discrepancy of dimension � (n� 2))).

Proof. This is a straightforward consequence of statement 6
and the following fact.
Fact. For arbitrary m�dimensional cyclic quotient one can

construct (m + 2)�dimensional cyclic quotient whose minimal
log-discrepancy is greater than given exactly by 1:
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Construction that proves the above fact is as follows. Suppose
the generating point � has order N: Then we construct new
(m+2)�dimensional singularity de�ned by the generating point
(�; 1

N
; 1 � 1

N
) which means that �rst m coordinates remain the

same and last two are as speci�ed.

Remark 2.2. The main idea of the proof of the above theorem
(namely use of multiples, compactness and some sort of continu-
ity) is very similar to that of the boundedness theorem for toric
Fano varieties with bounded discrepancies. ([3]) However there
everything is written using less geometrical language that maybe
hide this idea in formulas.

Now let me state the most general positive result I know about
what lower-dimensional discrepancies can indeed appear as a
limit. But before doing this I would like to notice that by the evi-
dent reason of symmetry every minimal log-discrepancy of cyclic
quotient of dimension n is not greater than n

2 :

Theorem 2.2. Suppose we have an m�dimensional cyclic quo-
tient generated by � with minimal log-discrepancy ": Denote r =
�[�"] so that r is the smallest integer which is greater or equal
than ": Then for all nonnegative integers l, (" + l) is a limit of
n�dimensional log-discrepancies for all n � m+ r + 2l:

Proof. There are in fact several ways of doing this for nonzero
l: The freedom we have is basically due to the Fact in the proof
of the above corollary. I will show you just one way.
First of all let me consider the standard n�dimensional hy-

percube H and divide the set of coordinates fx1; x2:::xng into
three parts as follows. First m of them will correspond to the
coordinates of our given m�dimensional singularity and will be
still called xi. Those with indexes from m + 1 to m + l will
be called yi; i = 1; :::; l: And those with indexes from m + 1 + l
to n will be called zi; i = 1; :::; n � m � l: Now we place our
m�dimensional singularity on the face of H de�ned by equalities
yi = 1; zi = 0: Let us denote by T the point (�; 1; :::; 1; 0; :::; 0)
that corresponds to the generating point �: Suppose its order
is q that is its q�th multiple is a vertex of H: Consider vertex
P = (0; :::; 0; 0; :::; 0; 1; ::;1): (Here ";" divides xi, yi and zi:) Now
the generating points of n�dimensional singularities we are look-
ing for lie on the segment PT close to T:More precisely, they are
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given by formula ( 1
N
P + (1� 1

N
)T ) where qj(N � 1): In order to

complete the proof it is enough to show that for all such points
every multiple is either trivial or has sum of coordinates greater
or equal than that of the point itself.
So, consider the point A = AN de�ned as above. It is a

straightforward observation that it has order N: Now arguments
similar to those from the proof of the statement 2 of Theorem
2:1 show that for every positive integer k < N k-th multiple of
A lies in the set Sk de�ned by the following procedure.
Procedure. Suppose Tk is a k� th multiple of T: Draw a ray

starting from Tk and parallel to the ray [TP ): When it hits the
boundary of H change the corresponding 1�s to 0�s and 0�s to
1�s. Do it until the sum of lengths of all segments drawn equals
the length of PT:
So it is enough to prove that no point from this set can have

sum of coordinates greater than that of A: In order to do it let
me make several simple observations. First of all let me notice
that in fact when we draw our segments we never change 1 to 0,
we only change 0�s to 1�s. The reason is that in all xi we draw
in the negative direction and we cannot hit the boundary on y or
z for k < N: Another observation is that "locally", that is when
we don't hit boundary, the sum of coordinates does not decrease
because sum of coordinates of P is greater or equal than that
of T by the condition n � m+ r + 2l: Combined together these
two observations evidently take care of k which are not divisible
by q: For k divisible by q we only need to notice that we begin
our procedure from the point (0; :::; 0; 0; :::; 0; 0; :::; 0) but the �rst
nontrivial segment starts from the point (1; :::; 1; 0; :::; 0; 0; :::;0)
whose sum of coordinates is greater than that of A:

3. Some open questions

There are several natural questions concerning the obtained
results.
Question 1. Is it true that EVERY minimal log-discrepancy

of n�dimensional cyclic quotient is a limit of minimal log-discre-
pancies of (n + 1)�dimensional cyclic quotients? The theorem
above together with the classi�cation of 3�dimensional terminal
toric singularities implies that this is true for n � 3: It is natural
to try, maybe with computer, the case n = 4: As far as I know
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the classi�cation of 4�dimensional toric terminal singularities is
not yet completed but there are some conjectures and a lot of
work is already done. See [8] for details.
Other questions naturally arose when I tried to extend these

results to more general singularities.
Question 2. Is it true that the set of minimal discrepancies of

quotient singularities with respect to arbitrary groups coincides
with that of cyclic quotients of the same dimension?
Question 3. Is there an example of log-terminal singularity

whose minimal discrepancy is not a minimal discrepancy for any
cyclic quotient of the same dimension?
Question 4. Is it true for arbitrary log-terminal singularities

which are not terminal that every (or at least one) divisorial val-
uation that corresponds to the minimal discrepancy is given by a
divisor on the Q-factorial terminal modi�cation in sense of Miles
Reid? (Of course it is not true for all valuations with negative
discrepancy, but the question is about minimal discrepancy.) It
is true for toric singularities and in dimension 2 and I have no
counterexamples in the general case.
While stating these questions it would be unfair not to express

my opinion about them. I suspect that the answer to the Ques-
tion 1 is "Yes" for many singularities but not for all of them. The
answer to the Question 2 is most probably "Yes". Example to
the Question 3 probably also exists, maybe even 3�dimensional.
And I have been unable so far to �nd any serious evidence pro
or against for the Question 4:
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