
STATEMENT ON RESEARCH

ALEXANDER BORISOV

October 2018

1. Introduction

When it comes to mathematics, I consider myself a geometer, in a
broad sense of the word. Essentially, this means that I prefer problems
that can be in some sense visualized.

I consider myself a generalist, and strive to discover and explore con-
nections between different branches of mathematics. It is no secret that
the majority of serious current research in pure mathematics is highly
specialized. As a result, many meaningful and beautiful connections
between different areas of mathematics go undiscovered. Whenever one
can bridge two different mathematical theories in a meaningful way,
exciting things happen. Methods from one area lead to strong and
surprising results in the other one, and both areas gain in significance.
Sometimes, a totally new research area is created, at the crossroads of
two or more formerly independent subjects. I have been very successful
in discovering and developing these connections. I am also proud of my
more specialized research, especially in birational algebraic geometry.

In this research statement I will first describe my older research, and
then the research I have done in the last decade or so, while at the
University of Pittsburgh and at Binghamton University. The chart on
the next page is intended to show the different areas of mathematics I
have worked on, indicating some of the connections. The numbers in
each box refer to the relevant papers and to the pages of this research
statement, where they are discussed. Generally, the algebraic geome-
try research is on the left, and the number theory research is on the
right. The triple connection between toric geometry aspects of bira-
tional geometry and discrete convex geometry indicates that these are,
essentially, the same subject. The dotted line connecting the elemen-
tary geometry to the convex discrete geometry indicates a very weak
connection.
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2. Older Research

I started my research career as a birational algebraic geometer. My
birational geometry research started with my thesis, which was con-
cerned with Fano varieties with log-terminal singularities.

Definition. A Fano variety is a projective variety with ample anti-
canonical class. That is, some tensor power of the top exterior power of
the tangent bundle has enough sections to embed X into a projective
space. Note that for singular varieties the anti-canonical class is only
defined as a Weil divisor. Being ample implies that some multiple of it
is a Cartier divisor. The smallest natural m, such that mKX is Cartier,
is called the index of X.

Definition. A variety X has log-terminal singularities if for any
resolution of singularities π : Y → X all coefficients ai in the adjunction
formula KY = π∗KX +

∑
aiEi are greater than −1. Here Ei are the

exceptional divisors of π; the numbers ai+1 are called log-discrepancies.
In my thesis ([17]) I proved boundedness of Fano varieties of dimen-

sion three of given index, subject to two technical simplifying assump-
tions: they are Q-factorial, with Picard number one (in other words,
unipolar). I was later able to remove these technical restrictions ([18]).
This means that these Fano varieties belong to a finite number of fami-
lies. This result is the three-dimensional case of a conjecture of Batyrev,
which in turn is a small part of the following very strong boundedness
conjecture for Fano varieties.

Borisov-Alexeev-Borisov Conjecture. For any fixed n and posi-
tive ε, Fano varieties with log-terminal singularities with log-discrepancy
greater than (or equal to) ε belong to finitely many families.

This conjecture was proposed independently by me and by Valery
Alexeev, and received considerable attention. (The second Borisov in
its name is my brother Lev; our joint paper [33] settled this conjecture
in the toric case). It has several implications in higher-dimensional
algebraic geometry. Many renowned algebraic geometers worked on it,
including Alexeev, Batyrev, Clemens, Kawamata, Kollár, McKernan,
Miyaoka, Mori, Nikulin, Takagi and Ran (cf. [3], [51], [57], [79]). Still,
my 2001 result stayed as one of the strongest for a long time. It was
only relatively recently surpassed by Hacon, McKernan and Xu who,
in a very important paper, proved, among other results, the Batyrev
Conjecture in any dimension (cf. [46])). Before that, my result was an
ingredient in the proof by Kollár, Miyaoka, Mori and Takagi of bound-
edness of three-dimensional Fano varieties with canonical singularities
([57]).
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In a surprising recent development, the full Borisov-Alexeev-Borisov
conjecture has been proved by Caucher Birkar ([14]). This summer, he
was awarded the Fields medal for this and related work.

The general idea of my approach was to use the rational curve tech-
niques of Kollár-Miyaoka-Mori ([55], [56]) to obtain a curve with small
intersection with the anticanonical class, and then use the general
boundedness result of Kollár. The work was done primarily on the
terminal modification of the Fano variety, which is a partial resolution
of singularities, with relatively numerically effective canonical class and
terminal singularities. Serious difficulties occur when one tries to glue
the free family of curves with the curves on some exceptional divisor
on the terminal modification, in the case when these curves on the
divisor pass through the terminal singularities of the ambient variety.
In this case one needs to resolve these singularities, while still keeping
under control the degrees of the curves involved. This was done by an
application of a variation of the Minimal Model Program due to Alex-
eev ([2]). The proof is rather delicate, and the main ideas are quite
technical.

The one class of varieties for which BAB Conjecture was originally
proven is toric Fano varieties. Toric Fano varieties correspond to convex
lattice polytopes P that contain the origin. The log-discrepancy is
greater than ε if and only if (ε·P )∩Zn = {0}. Together with my brother
Lev we proved that in any fixed dimension there are only finitely many
such polytopes, up to lattice isomorphisms ([33]). This was our first
paper, we did this research while still being undergraduates at Moscow
State University. Unfortunately, the main part of our proof was not as
new as we thought at the time. As I learned later from Jeff Lagarias,
this discrete geometry statement was first proven by Hensley ([47]), and
improved upon by Lagarias and Ziegler ([59]). However, this research
led me to a long-term interest in discrete convex geometry, specifically
the problem of classification of convex lattice polytopes and cones with
few or no lattice points inside. My strongest result in this direction is
that in any fixed dimension the lattice simplices with no lattice points
inside form finitely many “families”1 ([26]). This means that at least
theoretically all toric terminal singularities of fixed dimension can be
classified, which is a qualitative generalization to arbitrary dimension
of the Terminal Lemma of Morrison-Stevens ([69], also cf. White, [86])
and the conjectural classification of four-dimensional prime quotients
of Mori-Morrison-Morrison ([67]). Together with the result of Sankaran

1These are not the families in the algebraic geometry sense, as toric singularities
are rigid. One example of such “family” is the DuVal singularities An.
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this implies that the classification of cyclic quotient singularities prime
index of [67] is complete, up to possibly a finite number of exceptions.
Unfortunately, the theorem is not effective, so it is not possible at this
time to claim that the classification of [67] is actually complete.

In fact, the ultimate result of [26] is even stronger, with the termi-
nality condition being replaced by log-discrepancy being greater than
any fixed positive ε. I also proved the toric case of a conjecture of
Shokurov on accumulation of minimal log-discrepancies ([25]). This
discrete convex geometry research of mine led to a joint paper with
Shokurov (cf. [38]).

Together with Lev we also obtained, back in 1989-90, an explicit
classification of three-dimensional convex lattice polytopes containing
the origin, with no other lattice points in the interior or on the faces
and edges. We also found all lattice simplices containing the origin and
having no other lattice points in the interior (but possibly points on the
boundary). These unpublished results later became the starting point
for Al Kasprzyk’s thesis work ([52], [53]). In 1999, I put together a little
survey of the results in the area (cf. [19]). Despite all of the successes,
I was not particularly fond of this part of my research, considering it
relatively easy and inconsequential, until I discovered that it is deeply
connected to the Nyman-Beurling-Báez-Duarte reformulation of the
Riemann Hypothesis, to be described in the next section.

My number theory research started with two papers on irreducibility
of polynomials. The original motivation came from trying to mimic the
Oesterlé’s proof of the ABC theorem of Stothers in the case of integers,
using the so-called quantum deformation of integers ([n]x = xn−1+ ...+
x + 1). This naturally lead to the following integer polynomials, for
any coprime triple of natural numbers (a, b, c) with a = b+ c:

fabc(x) =
bxa − axb + c

(x− 1)2
.

The corresponding splitting field is unramified over Q outside of the
support of abc. While there is no reason to expect that any of these
polynomials are reducible, their irreducibility is very hard to prove. I
had to combine information about the distribution of their roots in
complex numbers and all p−adic complex numbers for p|abc to show
that most of them, in the density sense, are irreducible ([28]). This
research led me to Michael Filaseta, probably the world’s best spe-
cialist on irreducibility of rational polynomials. It turned out that he
has considered before, with T.-Y. Lam, some related polynomials, the
higher order derivatives of xn−1 + ...+x+1. We ended up proving some
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strong irreducibility results for them. The method was similar to that
of [28], but the final proof was very subtle and complicated ([35]). I
still don’t know much about my polynomials fabc and whether or not
they are indeed related to the abc conjecture of Masser-Oesterlé. They
did reappear several years later, related to some harder than intended
problem posed by Joe Harris in his Harvard algebraic geometry course.
I don’t think this led to any publications, but several people worked
on that problem for a couple of months, including Izzet Coskun and
Jason Starr, with the most beautiful final proof obtained by Noam
Elkies. A version of this problem was included in the 2014 Putnam
Examination as the problem A5. It is fair to say that the Putnam
contestants confirmed the difficulty of this problem, see the statistics
here: http://kskedlaya.org/putnam-archive/putnam2014stats.html.

Later, I published another paper on quantum integers, joint with
Nathanson and Wang ([39]). Unfortunately, that paper contained a
mistake, corrected in [21]. In yet another paper on rational polynomi-
als, somewhat related in spirit to the others, I proved that a polynomial
with rational coefficients divides the derivative of a polynomial with
only rational roots if and only if all of its irrational roots are real and
simple ([27]). The argument is a modification of a celebrated theorem
of Belyi, the main idea is the similarity between the formula for the
derivative of (x− a1)m1 · ... · (x− ak)mk and the Lagrange interpolation
formula.

My first “interdisciplinary” research was my paper on arithmetic
cohomology ([20]). This is my contribution to the fundamental problem
of understanding the similarity between the rings of polynomials and
integers, and thus between objects of algebraic geometry and number
theory.

One of the most famous theories in arithmetic geometry is Arakelov
geometry, which provides concrete meaning to the statement “Number
Theory at infinity is Analysis.” Many of the constructions of classi-
cal algebraic geometry can be extended to the Arakelov geometry set-
ting. In particular, an analog L of a divisor on a complete curve is
a fractional ideal in some number field together with a choice of real
constants for all Archimedean valuations that correspond to the or-
ders of zeroes/poles “at infinity”. Naively, the space H0(L) of global
sections of a line bundle is the (finite) set of elements in the correspond-
ing fractional ideal with Archimedean valuations bounded depending
on the given corresponding constants. One then defines the “dimen-
sion” of this space by taking logarithm of the number of elements.



STATEMENT ON RESEARCH 7

With this naive definition, one gets classical Riemann-Roch formula,
h0(L) − h0(K − L) = degL − 1

2
degK, but only approximately (Here

K is the relative canonical class, with 0 constants at infinity). A much
better approach, stemming from Tate’s thesis and finalized by van der
Geer and Schoof ([44]) is to count all elements in the corresponding frac-
tional ideal, but with the contribution decaying as a normal distribu-
tion, with parameters depending on the constants at the Archimedean
valuations. This way one gets the exact Riemann-Roch formula, using
Poisson summation formula.

There was no doubt that van der Geer and Schoof got the dimension
of the space of global sections of the Arakelov line bundle right, and
it resulted in interesting further development, in particular the paper
of Lagarias and Rains ([58]). However, the space of the global sections
itself was not really defined. And there was no definition whatsoever
of H1, the first cohomology space. Instead, they just defined h1(L) as
h0(K−L). In my paper I managed to remedy this and develop a theory
totally analogous to the theory of algebraic curves, including defining
H1(L) by a procedure similar to the Čech cohomology. The Tate’s
Riemann-Roch theorem was separated into the “modern” Riemann-
Roch theorem

h0(L)− h1(L) = degL− 1

2
degK

and Serre’s duality Ĥ1(L) = H0(K − L). (Thus h1(L) = h0(K − L)).
Of course, there was a price to pay for this. In order to develop this

kind of theory one has to abandon the category of the abelian groups.
This was done in [20] by considering a new kind of objects that truly

belong to harmonic analysis, namely locally compact abelian groups
with convolution of measures structures of a particular kind. In [20]
these objects were named the ghost-spaces. Formally, a ghost-space is
a triple (G, u, µ) where G is a locally compact abelian group, u and
µ are a function and a measure on G that satisfy certain properties.
Intuitively, to construct the ghost-space Gµ

u one starts with the group
G and then makes its elements “partially existent” and/or “imprecisely
positioned”. The corresponding convolution of measures structure on
a group G is such that for all x, y ∈ G

δx ∗ δy =
u(x)u(y)

u(x+ y)
Tx+yµ

Here u is the “effectivity function” that measures the extent to which
the elements exist, and µ is a probability measure which is responsible
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for the ambiguity of the position of the elements. The Tx+yµ is the
translation of µ by the element (x+ y).

The corresponding ghost-space is denoted by Gµ
u. When u ≡ 1 and

µ = δ0 then the corresponding convolution structure is just the stan-
dard convolution structure on G. Therefore it makes sense to omit the
point measure δ0 and/or the identity function 1 from the notation of
ghost-spaces when possible. That is, Gu ≡ Gδ0

u , G
µ ≡ Gµ

1 , G ≡ Gδ0
1 .

The following picture represents the ghost-space Re−πx2 . One should
think of it as being embedded into the usual real line:

Ghost-space Re−πx2

0

The quotient R/Re−πx2 is the space Rµ, where µ is the probability

measure e−πx
2
dx. In fact, the short exact sequence of ghost-spaces

0→ Re−πx2 → R→ Re−πx
2
dx → 0

is the R-analog of the short exact sequence of locally compact groups

0→ Zp → Qp → Qp/Zp → 0

where Zp and Qp are the groups of the p-adic integers and the p-adic
numbers respectively.

Perhaps the most remarkable aspect of this theory is that the arith-
metic analog of Serre’s duality turned out to be the Pontryagin duality
of the convolution of measures structures. It is closely related to the
Pontryagin duality theory of M. Rösler (cf. [80], [81]). One basically
gets the perfect theory in this one-dimensional case. There is also an
adelic version of this theory, due to Ichiro Miyada (unpublished). I
tried to develop the theory further, and was able to settle some har-
monic analysis issues, that naturally appeared (cf. [31]). However, my
attempts to extend the theory to arithmetic surfaces have been unsuc-
cessful. For a long time I was convinced that the correct framework for
this generalization would be some similar kind of spaces with the un-
derlining space being the Parshin-Beilinson’s higher-dimensional adeles
(cf. [8], [9], [73], [74]), but there are some obstacles that at this time
I cannot resolve. Most recently, I came back to this topic and have
been pushing it further, with my graduate students, Patrick Milano
(graduated this May, [64]) and Changwei Zhou (expected to graduate
in 2019). I should also mention the recent paper of Thomas McMurray
Price ([63]).
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Another instance of this “interdisciplinary” work is my collaboration
with Mark Sapir, in which we developed an unexpected, yet natural,
connection between algebraic geometry and group theory ([36], [37]).
To describe this research, let me first recall some definitions and fix the
notation.

Let G be a group given by generators x1, ..., xk and a set of defining
relations R, and let φ : xi 7→ wi, 1 ≤ i ≤ k, extend to an injective
endomorphism of G. Then the group

HNNφ(G) =< x1, ..., xk, t | R, txt−1 = wi, i = 1, ..., k >

is called the mapping torus of φ (or ascending HNN extension of G
corresponding to φ). This group has an easy geometric interpretation as
the fundamental group of the mapping torus of the standard 2-complex
of G with bounding maps the identity and φ. The simplest and one of
the most important cases is when G is the free group Fk of rank k, i.e.
when R is empty.

A group is called residually finite if the intersection of its normal
subgroups of finite index is trivial. It is a natural question to ask
whether all mapping tori of free group endomorphisms are residually
finite (see, e.g. [66]). In particular, many of the groups of the form
HNNφ(Fk) are hyperbolic (see [11] and [50]). One of the outstanding
open problems about the hyperbolic groups is to determine whether or
not they are all residually finite (see, e.g. [88]).

Residual finiteness of the mapping tori of free group endomorphisms
is exactly what we proved in [36]. The first idea is to associate to φ a
family of self-maps of some affine algebraic varieties over finite fields.
Specifically, let H be any group or a group scheme. Then one can
define a map φH : Hk → Hk that takes every k-tuple (h1, ..., hk) to the
k-tuple

(w1(h1, ..., hk), w2(h1, ..., hk), . . . , wk(h1, ..., hk)).

Notice that this map is not a homomorphism. Nevertheless, it defines
a dynamical system on Hk. A particularly interesting case of this
general construction is when H = SLr(Fq) for some finite field Fq.
Using adjunction instead of inversion, this map can be extended to a
self-map Φ of (Mr)

k, where Mr is the variety of all r × r matrices.
It turned out that periodic orbits of this map Φ for different Fq are
directly related to the residual finiteness of T = HNNφ(G).

In general, periodic orbits of algebraic maps are very hard to study.
In characteristic 0 there are usually very few of them (cf. [42]). How-
ever, over the finite fields one can expect to have many periodic orbits.
It is still very hard to deal with them in general, but there are some
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orbits that are easier to study. These are the orbits which consist of
points conjugate over the base field. In the language of schemes these
orbits correspond to the closed scheme points that are fixed by Φ.

Following [36], one can make the following definition.
Definition. Suppose Φ: X → X is a self-map of a variety over a

finite field Fq. A geometric point x of X over some finite extension of
Fq is called quasi-fixed with respect to Φ iff Φ(x) = Frm(x). Here Frm

is the m-th composition power of the geometric Frobenius morphism.
Quasi-fixed points appeared in the Deligne Conjecture on Lefschetz

Trace Formula and its generalizations, that wer studied before by Fu-
jiwara and Pink and others (see, e.g., [43], [78]). However these inves-
tigations were mostly limited to the quasi-finite maps and most of the
maps Φ are not quasi-finite.

If X is the affine space, the above definition becomes the following.
Let Φ: An(Fq)→ An(Fq) be a polynomial map, defined over the finite
field Fq. It is given in coordinates by the polynomials φ1, ..., φn from
Fq[x1, ..., xn]. Suppose a point a = (a1, a2, ..., an) ∈ An is defined over
the algebraic closure F̄q of Fq. It is a quasi-fixed point of Φ if and only
if for some Q = qm for all i

φi(a1, a2, ..., an) = aQi .

Here is the main theorem regarding such maps (see [36]).
Theorem. Let Φn : An(Fq) → An(Fq) be the n-th iteration of Φ.

Let V be the Zariski closure of Φn(An). Then the following holds.

(1) All quasi-fixed points of Φ belong to V .
(2) Quasi-fixed points of Φ are Zariski dense in V . In other words,

suppose W ⊂ V is a proper Zariski closed subvariety of V .
Then for some Q = qm there is a point (a1, ..., an) ∈ U \W such

that for all i fi(a1, ...an) = aQi .

The first statement is rather easy. The proof of the second statement
in [36] is much trickier, but it is essentially elementary.

A stronger result was independently and virtually simultaneously
obtained by E. Hrushovski .

Theorem. (Hrushovski, [48]) Let Φ: X → X be a dominant self-
map of an absolutely irreducible variety over a finite field. Then the
set of the quasi-fixed points of Φ is Zariski dense in X.

The second part of our theorem follows from Hrushovski’s theorem
applied to V = Φn(An). Hrushovski’s proof is very complicated. Be-
sides the standard algebraic geometry techniques like étale cohomology
and intersection theory, he also uses some mathematical logic, in par-
ticular his theory of difference schemes. As Hrushovski notes, it would
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be nice to prove his results entirely by the algebraic geometry methods.
There are many indications that this is possible. In particular, much
of the proof of our theorem works for arbitrary varieties. Also, more
recent results on the Deligne Conjecture may be helpful (cf. e.g. [85])

Hrushovski’s theorem allowed us to generalize our result as follows
(cf. [36]).

Theorem. The mapping torus of any injective endomorphism of a
finitely generated linear group is residually finite.

Later, Mark Sapir and I returned to this research and strengthened
our result. This will be discussed in the next section.

3. More recent Work and Future Plans

Right before I came to the University of Pittsburgh, I discovered
an amazing connection between toric singularities and the Nyman-
Beurling approach to the celebrated Riemann Hypothesis (cf. [32]). I
stumbled upon it somewhat by accident, by noticing that some results
of Vasyunin on the Báez-Duarte’s version of the Nyman-Beurling crite-
rion bear striking similarity to the results of Mori-Morrison-Morrison
and Sankaran on four-dimensional cyclic quotient singularities. This
similarity runs very deep, at the heart of both investigations lie the
same inequalities involving the integer part function. The same in-
equalities also appear in the discrete geometry of the lattice-free sim-
plices (this was already well known to birational geometers) and integer
ratios of factorials, a classical area, with intermittent research going
back more than a hundred years ([60], [75], [76], [77]).

First, let me describe the Nyman-Beurling -Báez-Duarte’s reformu-
lation of the Riemann Hypothesis.

Theorem (Báez-Duarte, [5])
Consider the space V of sequences {f : N → R} with the norm

defined by the formula

||f ||2 =
∞∑
n=1

|f(n)|2

n(n+ 1)

For each integer k ≥ 2 consider the sequence fk(n) = k{n
k
}, the

remainder of n, when divided by k. Denote by W the closure of the
span of fk, k = 2, 3, .... Then the RH is equivalent to W = V, which is
in turn equivalent to W containing the constant sequence 1.

Note that traditionally instead of sequences one considers step-functions
from [1,∞) to R, that is functions which are constant on all intervals
[n, n+ 1). When one tries to improve on a known approximation of 1,
one is interested in finite linear combinations of fk that have bounded



12 ALEXANDER BORISOV

values everywhere, so that correcting at one place does not cause too
much trouble elsewhere. This led Vasyunin to look for linear combina-
tions of fk that only take values 0 and 1.

The main object of the Mori-Morrison-Morrison’s paper [67] is the
4-dimensional cyclic quotient singularities of prime order. Specifically,
if p is a prime number, and a1, a2, a3, a4 are integers, then the cyclic
quotient singularity of type 1

p
(a1, a2, a3, a4) is the quotient of the affine

space A4 by the action γ of the group µp of p−th roots of unity, defined
as follows: for every z ∈ µp and a point x = (x1, x2, x3, x4) ∈ A4,
γ(z)(x) = (za1x1, z

a2x2, z
a3x3, z

a4x4). Among these singularities Mori,
Morrison and Morrison were looking for so-called terminal singularities.

Definition. An algebraic variety X has terminal singularities if and
only if for one (or any) resolution of its singularities π : Y → X all
coefficients ai in the adjunction formula KY = π∗(KX) +

∑
aiEi are

positive.
In the case of cyclic quotient singularities 1

p
(a1, a2, a3, a4) this condi-

tion can be described as follows. Consider the simplex ∆ ⊂ R4, defined
by inequalities xi ≥ 0, i = 1, 2, 3, 4;x1 + x2 + x3 + x4 ≤ 1. Enlarge the
standard lattice Z4 by adjoining the point 1

p
(a1, a2, a3, a4). The singu-

larity is terminal if and only if the only points in this new lattice in ∆
are still the vertices of ∆.

The following example illustrates the connection that I discovered.
Example. For every n and k,

(2n)!(2k)!

n!k!(n+ k)!
∈ Z

These numbers go back to Catalan, but their combinatorial inter-
pretation is still unclear, except for small k (cf. [45]). One way to
prove that they are integers is to calculate the power of an arbitrary
prime p in them. By a well known formula for the powers of primes in
factorials, this amounts to proving that

∞∑
i=1

([
2n

pi
] + [

2k

pi
]− [

n

pi
]− [

k

pi
]− [

n+ k

pi
]) ≥ 0.

This follows from the following inequality for the integer part (floor)
function:

[2α] + [2β]− [α]− [β]− [α + β] ≥ 0

In fact, the above number is an integer, and is either 0 or 1. The same
inequality allowed Mori, Morrison and Morrison to prove, in particular,
that the cyclic quotient singularities 1

p
(2a, 2b,−a,−b) are terminal. On
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the Nyman-Beurling side, this corresponds to some five-term linear
combinations of step-functions that only take values 0 and 1, discovered
by Vasyunin.

When my paper [32], revealing the connection between these for-
merly unrelated subjects, first appeared as a preprint, it led to a flurry
of activity. First, Jonathan Bober proved a conjectural classification of
Vasyunin, which generalized a conjecture of Mori-Morrison-Morrison,
proven by Sankaran (cf. [15]). This was achieved by relating the corre-
sponding integer ratios of factorials to algebraic hypergeometric func-
tions, following the idea of Fernando Rodriguez Villegas. For instance,
one of the 29 “stable quintuples” of Mori-Morrison-Morrison (one of the
29 five-term step functions of Vasyunin) corresponds to the integer ra-

tios of factorials (9n)!n!
(5n)!(3n)!(2n)!

. The generating function
∞∑
n=0

(9n)!n!
(5n)!(3n)!(2n)!

xn

is an algebraic hypergeometric function. These functions were previ-
ously classified by Beukers and Heckmann ([12]).

Then independently and virtually simultaneously Bell and Bober,
and Bombieri and Bourgain (two Fields medalists!), proved a vast qual-
itative generalization of the Vasyunin’s conjecture, proposed by me (cf.
[10], [16]). As a result, a new area of research has been created, related
to algebraic and convex geometry, analysis and analytic number theory.

Many open questions and challenges remain, of which possibly the
most exciting is to understand the algebraic structure behind the Nyman-
Beurling-Báez-Duarte reformulation of the Riemann Hypothesis. Some
glimpses of this structure include the dilation operators and a convolu-
tion structure on the space of the step-functions (closely related to the
Dirichlet convolution, and ultimately to the multiplication of Dirichlet
series). Because the Nyman-Beurlling approach has been pursued al-
most exclusively by analysts and analytic number theorists, I feel that
there is a lot more algebra behind it than what has been discovered
so far. Of course, there is no doubt that if the Riemann Hypothesis is
ever proved or disproved using this approach, the analysis will play the
pivotal role. I have been also playing with the idea that the integer part
function should be replaced by a theta function, in the same way as the
naive count of global sections of an Arakelov line bundle is just a crude
approximation to the correct count that uses the normal distribution
to count all elements of the fractional ideal with different weights. If
successful, this may lead to a criterion for the Riemann Hypothesis in
terms of linear combinations of modular functions (of different level).
While these are much more complicated objects than sequences, they
have been extensively studied, and this approach would have an ad-
vantage of openly addressing the zeta-function’s symmetry about the
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critical line, an important piece of the puzzle that gets totally hidden
in the Nyman-Beurling approach. Also, the results of [10] and [16]
imply a higher-dimensional Terminal Lemma for 1-parameter families
of cyclic quotients, but they do not apply to the “exceptional” ones.
A stronger conjecture of mine, which is a proper higher-dimensional
generalization of the Terminal Lemma of [69], is still open but seems
to be within reach.

Most recently, together with Barile, Bernardi, and Kantor, we proved
that all four-dimensional toric singularities are cyclic quotients ([6]).
This brings further significance to the classification of [67]. Together
with main results of [26] and [15] this almost proves the completeness of
the classification of four-dimensional lattice-free simplices. To complete
the proof of the classification, more work needs to be done. Ideally, one
should make effective the argument of Jim Lawrence ([61]).

Following up on our Inventiones paper, Mark Sapir and I proved the
following theorem.

Theorem.([37]) All mapping tori of free group endomorphisms are
virtually residually (finite p-groups), for all large enough p. (This
means that for every mapping torus for every large enough prime p
there is a subgroup of finite index such that the intersection of all its
subgroups p−power index is trivial).

This is a much stronger result than the residual finiteness theorem
of [36]. Basically, we had to construct more finite quotients with a
much better control of their structure. The idea of the proof is to
lift the quasi-fixed points over the finite fields to the recurrent points
over local fields (in the p−adic topology). The proof is quite technical,
and took long time to carefully write up, because some results related
to the algebraic maps over local fields have not been written up, to
our knowledge, in the generality that we needed. With more technical
work, the proof can most probably be extended to arbitrary finitely
generated linear groups using the theorem of Hrushovski.

Perhaps my most elementary paper up to date is the joint work with
Stuart Hastings and Mark Dickinson that was published in Monthly
([34]). This paper was selected by MAA to receive the Ford Award
for mathematical exposition. The highlight of this research for me
was the discovery that one can define a square by just four distance
and angle measurements, instead of five that are needed for a generic
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quadrilateral.2 This sort of questions is directly related to the second
order stability of tensegrity networks. Even though it can hardly be
classified as serious mathematics, it appeals to the geometer in me,
and I take it as evidence that many beautiful mathematical truths are
hiding in plain view.

My latest big research project is a geometric approach to the famous
Jacobian Conjecture of Keller, in dimension two ([22]). This 80-year
old conjecture states that any polynomial map of (two-dimensional)
complex affine space which is locally 1-to-1 is globally invertible. This
conjecture has got a well-deserved reputation of being much trickier
than one might expect. Indeed, many “proofs” of it were claimed
and then rescinded, by respectable mathematicians. This situation
is in sharp contrast with the recent advances in birational geometry.
During the past thirty years our understanding of the structure of
the higher-dimensional algebraic varieties has grown dramatically, and
many seemingly harder questions have been answered. Moreover, much
research has been done on rationally connected varieties and rational
curves on them, including the work of Keel and McKernan on rational
curves on quasi-projective surfaces ([54]). Many deep results related
to the Jacobian Conjecture have been obtained by the specialists in
polynomial automorphisms, including the celebrated Abhyankar-Moh
theorem ([1]) and the theorem of Shestakov and Umirbaev that the Na-
gata automorphism is not tame ([83]). While many researchers tried to
approach this conjecture geometrically, including, in particular, Miyan-
ishi (cf., e.g. [49]), Domrina and Orevkov ([41], [40]), Le Dung Tráng
([62]), most approaches have been algebraic in nature.

My approach can be described as a birational geometer’s approach.
Suppose a counterexample to the Jacobian Conjecture exists. It gives
a rational map from P 2 to P 2. After a sequence of blowups of points,
we can get a surface X with two maps: π : X → P 2 (projection onto
the origin P 2) and φ : X → P 2 (the lift of the original rational map).

Note that X contains a Zariski open subset isomorphic to A2 and
its complement, π∗((∞)), is a tree of smooth rational curves. We will
call these curves exceptional, or curves at infinity. The common way
to deal with them is by means of a (dual) graph Γ. Its set of vertices
is the set of the exceptional curves, with two vertices connected by an
edge whenever the curves intersect. The vertices are usually labeled
by the self-intersections of the corresponding curves. The structure of

2The square ABCD of side 1 is the only quadrilateral with |AB| = |AD| = 1,

|AC| =
√

2 and ∠BCD = π
2
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this graph is easy to understand inductively, as it is built from a single
curve (∞) on P 2 by a sequence of two operations: blowing up a point
on one of the curves or blowing up a point of intersection of two curves.
However, a non-inductive description is probably impossible, which is
the first difficulty in this approach. Another difficulty comes from the
fact that the exceptional curves on X may behave very differently with
respect to the map φ. More precisely, there are four types of curves E.

type 1) φ(E) = (∞)
type 2) φ(E) is a point on (∞)
type 3) φ(E) is a curve, different from (∞)
type 4) φ(E) is a point not on (∞)
From a first glance, the situation appears almost hopelessly compli-

cated. However I managed to show ([22]) that it is a lot more orderly
than one may expect. In particular, for a given graph of curves, one
can essentially always tell which curves are of which type, and there
is a fairly restrictive family of graphs that can potentially appear in a
counterexample to the JC.

The first idea is to introduce a new labeling on the graph Γ of excep-
tional curves as follows. By induction, the classes of the exceptional
curves Ei form an integer basis in the Picard group of X. Define the
augmented canonical class of X, K̄X = KX +

∑
Ei, a very natural

object from the viewpoint of the Minimal Model Program. It is equal
to
∑
aiEi, where ai are integers. We label Ei by these coefficients

ai. The main advantage of this labeling is that, unlike the traditional
self-intersection labels, these labels do not change under additional
blow-ups. The label only depends on the divisorial valuation that the
exceptional curve defines.

One can easily see that when a point of intersection of two curves
is blown up, the new curve is labeled by the sum of the labels of its
two “parent” curves. When a new point is blown up on a curve, the
label of the exceptional curve is one plus the label of its “parent”. At
the beginning of the blowup process we have a single curve with label
(−2). By induction, one can easily see the following.

1) The labels of any two adjacent vertices in Γ (i.e. intersecting
exceptional curves on X) are coprime.

2) The set of vertices with negative labels form a connected subgraph
of Γ.

3) This subgraph is separated from the “positive” part of Γ by ver-
tices with label 0. Each if these 0-vertices can only have (−1)-vertices
or 1-vertices as neighbors.

The defining property of any counterexample to the Jacobian Conjec-
ture is that all ramification of the map φ : X → P 2 is in the exceptional
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curves. Because of this, any curve of type 1 must have a negative even
label, while every curve of type 3 must have a positive label. The sub-
graph of all curves of type 1 and 2 is connected, and every curve of type
3 is adjacent to it, while any curve of type 4 is not. We can assume
that the last curves blown up, when creating X from P 2, are of type
1 or 3, and this allows us to determine for a given graph the curves of
type 3.

One can see easily that some curves of type 3 must be present in any
counterexample to JC. One can prove that π−1∗ (∞) is curve of type
2. A more in-depth investigation, using some inequalities reminiscent
of those that I used in [17], allows to show that the subgraph of the
curves of type 2 must be connected. This implies in particular that
they are all mapped to the same point by φ. As a result, the graph
Γ has the following structure. It has a connected subgraph of type 2
curves, which includes π−1∗ (∞). Adjacent to it are curves of type 1 and
type 3, and “behind” them are curves of types 2 and 4 respectively.
One can go even further and prove that there are no curves of type 2
“behind” the curves of type 1. The main ingredient in the proof is an
observation that the “di-critical log ramification divisor” on the Stein
factorization of φ, which is the sum of curves of type 3 with ramification
indices, must be ample ([29]).

One more interesting labeling can be defined on Γ. For a curve Ei,
consider the determinant of the graph matrix (= minus-intersection
matrix) on all other curves. Like the canonical labeling, this determi-
nant label only depends on Ei, and not on any additional blowups. It
is positive if and only if all the other curves are simultaneously con-
tractible in the analytic category. One can prove that any curve of
type 1 must have a negative determinant label, which provides further
restrictions on the graph Γ.

These two labelings of curves, being invariant under subsequent
blowups, are invariants of the corresponding divisorial valuations. They
are also invariant under the polynomial automorphisms of the plane.
I was recently able to show that whenever these two invariants are
fixed, the corresponding divisorial valuations form a finite number of
families up to the polynomial automorphisms. The main idea is that
the determinant labels can be tracked during the blowups if one also
keeps track of the “determinant labels of edges”, i.e. the determinants
of the graph obtained by removing the corresponding edge. The proof
of the main theorem is purely combinatorial and rather complicated.
Perhaps a more conceptual proof exists. I was also able to show using
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these invariants that all curves of type 1 lie in the same connected com-
ponent of the graph obtained from the full graph of exceptional curves
by removing the strict pullback of the line at infinity (cf. [30]).

Absence of ramification in the plane also gives very strong restric-
tions on the singularities of the middle surface in the Stein factorization
of φ, especially after a suitable sequence of blowups at the target re-
sults in the images curves of type 3 intersecting the curves at infinity
transversally. In particular, all these singularities are cyclic quotients.
This suggests that one may want to look for the counterexamples to
the Jacobian Conjecture by going through singular surfaces obtained
by a sequence of weighted blowups. The advantage of this approach
is that one can potentially look much further, and the only maps one
needs to consider are finite, as opposed to generically finite maps.

Last January, I managed to construct two families of compactifica-
tions of the affine plane that seem to support a counterexample to the
Jacobian conjecture: they satisfy all restrictions coming from the Pi-
card group. If true, the counterexample would have topological degree
16 and would be given by polynomials of degree 99 and 66. This pair
of degrees was actually the last tricky case considered and discounted
by Moh ([65]). However, Moh’s proof in this case is sketchy. In a still
unpublished 2016 preprint Moh’s former student Yansong Xu alleged
a gap in Moh’s work, and a fix for it ([87]). Both arguments are too
complicated for me to verify. My own extensive computer calculations
(using Maple, involving several hundreds of variables) also seem to im-
ply that no such Keller map can exist. But at this time I do not have
a simple reason for that. To give you an idea of the complexity of
this, here is the schematic picture of the associated graphs, with some
explanations.

The figure below shows the graphs of the curves at infinity on X and
Y . The vertices are labeled by their K̄ labels, and whenever the K̄
label is 0, the number in parentheses below it is the self-intersection.
(Note that for all other curves the self-intersection can be recovered
from the K̄ labels by the adjunction formula). To keep from over-
crowding, is is not indicated where some of the curves go, but this can
be mostly guessed from the picture. For instance, the curves with K̄
labels −47,−42,−37,−32,−27,−22 all go to the intersection of the
curves with K̄ labels −4 and −3. The curves with the K̄ labels 1 and
3 go to a point on the curve with K̄ label 0 and self-intersection (−1).
This is the point of intersection of this curve on Y with the image of
the curve with K̄ label 5 (it is a curve of type 3). The curve with K̄
label 2 goes to some point in A2.
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Framework Example

The notation e ·f = 13 indicates that the product of the ramification
index e and the degree of the restriction to the curve f equals 13; note

that this local degree is constant along the branches. The notation©
x5 indicates that there are five branches like that; in the case of©
x3 the entire branch with the fork is produced three times (and each
branch is mapped to the branch with the fork downstairs one-to-one).
For the curves of type 1 the K̄ label on X equals the product of the K̄
label on Y and the ramification index e. The surface Y is constructed
from P2 and the surface X is constructed from P1×P1, as indicated on
the picture. Importantly, I calculated exactly the push-forwards and
pull-backs of all these curves, and these operations satisfy all required
properties, including the projection formula.

One can recognize in the above figure two rational Belyi maps: above
the curve with K̄ label −5 and the curve with the K̄ label −2. These
maps can be explicitly found using computer. For instance, the first
one can be given, up to a change of variables, by the rational map

w 7→ p2(w)
w·r3(w) , where the polynomials p(w) and r(w) are the following:
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p(w) = w8+(2+8
√
−3)w7+

−233 + 50
√
−3

3
w6+

−4600− 376
√
−3

3
w5+

835− 890
√
−3

3
w4 +

2420 + 22
√
−3

3
w3 + (

1043

3
+ 336

√
−3)w2+

(−118 + 158
√
−3)w + (−28 + 41

√
−3),

r(w) = w5+
4 + 16

√
−3

3
w4+

−278 + 68
√
−3

9
w3+(−140

3
−24
√
−3)w2+

35− 112
√
−3

3
w +

68− 20
√
−3

3
.

Note that deg(P 2 − w · r3) = 3.
A lot more can be done. For each edge of the graph on Y and X

one can explicitly write down some rational functions that give a pair
of local coordinates on that “cross”. Then one can figure out various
degrees, in particular the degrees of the two-variable polynomials that
would give a Keller map that would match the above framework. This
is how we get the degree 99 and 66 (more specifically, 72+27 and 54+18
if we count separately the degrees for the input variables). There are
some fairly strong restrictions on what coefficients can appear and also
many linear relations among these coefficients. Note that by virtue of
these relations we go much further than just the investigation of the
Newton Polygons.

Overall, I am very optimistic about my approach. I feel that it is
very natural and may eventually help solve the Jacobian conjecture in
dimension two. I have been at it for more than a decade, but, while
the progress is not fast, I have never had a feeling of hitting a wall.
Interestingly, I still do not really “know” whether the conjecture is true
or false, but whatever the answer is, I am getting closer and closer to
it.

Working on the Jacobian Conjecture also made me come back to my
birational geometry roots. In particular, together with Valery Alexeev
we proved a toric case of the following conjecture of McKernan (which
is a part of a more general conjecture of Shokurov): for every Mori
contraction f : X → Y with ε-log terminal X, the resulting Y is δ-log
terminal, with δ depending only on ε and the dimensions of X and Y .
This conjecture is related to the Borisov-Alexeev-Borisov conjecture,
and several interesting new questions naturally arise, both in the toric
and in the general case (cf. [4]).
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I also recently wrote a couple of papers on the dynamics of polyno-
mial maps over finite fields (cf. [24], [23]). There I build on some ideas
that came up in the joint work with Sapir to construct examples of
polynomial maps with some unusual properties.

Example ([24]) Define an integer polynomial map F (x, y) by the
formula

F (x, y) = (x2y, x2y + xy2)

Then F and all of its reduction modulo primes p are dominant. How-
ever all points over Z/(pZ) are sent to (0, 0) by some iteration of Fat.

Example ([23]) Suppose F is a finite field, and a ∈ F . Define the
map T from the X = A3(F ) to itself as follows:

T (x, y, z)=
(
(x2 + az2)(x− y)z3, ((y2 + az2)2 + az4)(x− y)z, (x− y)z5

)
Define Y ⊂ X by the equation x2+az2 = yz. Then Y is “geometrically
nilpotent, but not nilpotent” with respect to T : every geometric point
of Y over any finite field is mapped to the fixed point (0, 0, 0) by some
iteration of T , but no single iteration works for all points.

These and similar examples lead to several interesting open ques-
tions, some of them possibly very deep.

One advantage of having broad research interests is that I have come
across, and developed some intuition about, a substantial number of
open questions and projects of different levels of difficulty and tech-
nical sophistication. Obviously, I have had other interests besides the
topics on which I published, for example the Lehmer Conjecture on
the Mahler measure. The breadth of my interests makes it easy to
include graduate students in research, and I found this to be benefi-
cial for everybody involved. In particular, I have been directing two
of my Ph.D. students, Patrick Milano (graduated this May, [64]) and
Changwei Zhou to expand on my work on Arithmetic Cohomology
([20], [31]). I feel that Arakelov Geometry is due for a new conceptual
breakthrough, that may lead to exciting developments.
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