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Jacobian Conjecture. Every locally invertible

polynomial self-map F : Cn → Cn is globally invert-

ible.

Some History. The conjecture goes back to a

1939 paper by Ott-Heinrich Keller. The name “Ja-

cobian Conjecture” was coined by in the 1970s (Ab-

hyankar, Moh?). The conjecture attracted a lot of

attention, but is still wide open. It is quite infa-

mous for a large number of proposed solutions by

respectable mathematicians. There are many partial

results.

Elementary Remarks.

1) Locally invertible ⇐⇒ Jacobian not equal to 0,

where the Jacobian for a self-map given by the poly-

nomails f1(x1, ..., xn), ..., fn(x1, ..., xn) is det( ∂fi∂xj
).

2) Because the Jacobian of f is in C[x1, ..., xn] it

is only invertible if it is a non-zero constant.

(∅ in Abhyankar’s notation).

3) Dimension 1 case is obvious.
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Basic Results

1) (F is injective) =⇒ (F is sujective)

(Ax-Grothendieck Theorem)

2) (F is invertible) =⇒ (F−1 is a polynomial map)

Some Further Results

1) Bass, Connell, Wright (1982): JC is true iff it is

true for polynomials of degree at most 3.

(Drużkowski, (1983): polynomials of the form

fi = xi + H3
i , where Hi are linear.)

2) Wang, 1980: JC is true for polynomials of degree

at most 2.

. . .

Literally, there have been hundreds of papers on

JC, with various algebraic, geometric, topological ap-

proaches. Just listing them would take a whole hour,

and a different speaker.
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Some Dimension 2 Results

Abhyankar (1970s) JC is true if the field extension

is Galois, in particular, degree 2

Orevkov (1996) degree 3

Domrina, Orevkov (1998) degree 4

Żoladek (2008) degree 5; also degree 2p, prime p

Moh (1983) JC is true for pairs (f1, f2) of degrees

up to 100*.

Many other restrictions on the possible counter-

examples to JC (Keller maps) have been proven.

Again, I am not the right person to give a survey talk

on these results.

*A complicated paper, with some proofs only sketched
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Weak Jacobian Conjecture

(Surjectivity Conjecture)

Jac(F ) = ∅ =⇒ F is surjective

This makes sense even in char p. Particular case:

conjecture of Vasiu (≈ 2010)

Conjecture.

Suppose F = (fi), where fi = xi + g(x1, ..., xn)p.

Then F is surjective.

This conjecture is open even for n = 2, over F alg
p .

My personal guess: JC is false in higher di-

mensions, possibly even in dimension 2. Surjectivity

Conjecture may be true in general; likely true in di-

mension 2.

Rationale:

1) Luroth Problem

Cubic hypersurfaces are quite different from qua-

dratic hypersurfaces

2) Shestakov, Umirbaev (2002): Nagata automor-

phism is not tame.
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Main (Obvious) Difficulty

F is not proper. It is only quasi-finite, not finite.

(Otherwise, we would have a covering of Cn, thus

a bijection).

Nice Example

F (x, y) = (x2y + x + y, xy)

F is quasi-finite of degree 2, ramified at a smooth

rational curve of degree 3. Im(F ) = C2\{(0,−1)}.
Natural Approach: compactify, resolve

Z
π φ↙ ↘

P2 = X −−−− → Y = P2

Here π is birational, a sequence of blowups “at in-

finity”, i.e. outside of A2. And φ is generically finite.

τ
Z −→ W

π φ ρ↙ ↘ ↓
P2 = X −−−− → Y = P2

Here τ is birational, ρ is finite, W is normal, alge-

braic (Stein factorization).
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τ
Z −→ W

π φ ρ↙ ↘ ↓
P2 = X −−−− → Y = P2

Structure of Z

Z = A2 t (∪Ei), where Ei are “curves at infinity”

Among Ei we have π−1∗ (∞). P ic(Z) is freely gen-

erated by the classes of Ei.

With respect to φ, there are 4 types of Ei:

type 1) φ(E) is a curve, φ(E) ∩ A2 = ∅

(i.e., φ(E) = (∞))

type 2) φ(E) is a point outside of A2

type 3) φ(E) is a curve, φ(E) ∩ A2 6= ∅

(i.e., φ(E) 6= (∞))

type 4) φ(E) is a point in A2

Following Orevkov, we call curves of type 3 di-

critical divisors.

Note: τ contracts all curves of type 2 and 4, so on

W we only have curves of type 1 and 3.
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τ
Z −→ W

π φ ρ↙ ↘ ↓
P2 = X −−−− → Y = P2

Augmented Canonical Class

K̄Z = KZ +
∑
Ei, K̄W = KW +

∑
type 1,3

Ei

K̄X = −2LX , K̄Y = −2LY

Adjunction Formula

K̄W = ρ∗K̄Y + R̄, where R̄ =
∑
type 3

riRi is the “di-

critical log-ramification divisor”: Ri = τ (Ei) and ri

is the ramification index of ρ at Ri.

Note: Adjunction Formula encodes both funda-

mental properties of the Keller map: A2 goes to A2

and all ramification is outside of A2.

The structure of Z is largely determined by the

weighted graph (tree) of the curves at infinity. One

problem: self-intersections are not invariants of the

divisorial valuations.

Definition. For a curve Ei its K̄ label is the

coefficient ai in K̄ =
∑
aiEi
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τ
Z −→ W

π φ ρ↙ ↘ ↓
P2 = X −−−− → Y = P2

Adjunction Formula implies that all curves Ei of

type 1 have negative K̄ labels and all curves of type

3 have positive K̄ labels: ri.

Rules: 1) (∞) ⊂ P2 has K̄ label −2.

2) When a point on Ei is blown up, the new curve

gets K̄ label ai + 1.

3) When Ei ∩ Ej is blown up, the new curve gets

K̄ label ai + aj.

Example

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
-1 -3 -5 -4 -3 -2 -1 -2 -1 0

(-2)

2 3 4 5 6 7 8 11 10 9

A
A
AA◦
-2

1

�
�
��
◦ ◦12 13

-1 0
(-1)

The numbers below are K̄ labels; above indicate

order of creation. In parentheses: self-intersections.
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τ
Z −→ W

π φ ρ↙ ↘ ↓
P2 = X −−−− → Y = P2

Structure of W (A.B., 2015) R̄ is ample, more-

over:

P = τ (π−1∗ (∞))

Idea of the Proof. K̄W = ρ∗K̄Y + R̄

−2 < Ri ·K̄W = ρ∗(Ri) ·K̄Y +Ri ·R̄ ≤ −2+Ri ·R̄
So Ri · R̄ > 0. Thus R̄2 > 0. So (τ ∗R̄)2 > 0, thus

Supp(τ ∗R̄) 3 π−1∗ (∞). So π−1∗ (∞) is of type 2.
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τ
Z −→ W

π φ ρ↙ ↘ ↓
P2 = X −−−− → Y → P2

What’s next?

Modify Y by blowing up φ(π−1∗ (∞)) until it be-

comes a curve.

For any Y the 4 types of curves at infinity on Z

still make sense and the only type change that may

occur is 2→ 1.

Properties of the process

1) The tree of curves on Y only gets vertices of

valency 1, 2, or 3.

2) All curves on Y have non-positive K̄ labels; K̄−
0 curves have valency 1.

3) While φ(π−1∗ (∞)) is a point, all φ(Ri) must con-

tain it or intersect only a K̄ − 0 curve.

. . . ◦
-1

↓
φ(π−1∗ (∞))

-1

φ(type 3)

φ(type 3)

•

. . . ◦ ◦
-1 0

↓
φ(π−1∗ (∞))

-1

0

φ(type 3)

φ(type 3)•

. . . ◦ ◦ ◦
-1 -1 0

↙↓↘
φ(π−1∗ (∞))

↘↘ ↘↘
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τ
Z −→ W

π φ ρ↙ ↘ ↓
P2 = X −−−− → Y → P2

4) All curves on Y have non-negative determinant

labels

Definition. The determinant label of a curve Fi

in Y \A2 is the corresponding principal minor of the

Gram matrix of minus-self-intersection form.

Theorem. (A.B., 2014) Divisorial valuations at

infinity with given K̄ and determinant labels are

bounded up to polynomial automorphisms.

5) Mori Cone on Y is spanned by curves at infinity.

6) Above curves with valency 1 the map φ is 1-to-1.

Above curves with valency 2, it is x 7→ xn. Above

curves with valency 3, we get rational Belyi maps.

Informally, the boundary of a Keller map is a

tree of rational Belyi maps.

Question. Can one construct “a map between

trees of curves at infinity” of compactifications of A2

that satisfies all the conditions of a Keller map?
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Answer. Yes! (A.B., 2020)

First Framework

◦ ◦ ◦ ◦ ◦ ◦.........
-1 -3 -5 -2 -1 0

(-1)
����
×8

@
@◦ ◦
-1 0

(-2)

B
B
B
B
B◦ ◦ ◦
-3 -1 0

(-1)
����
×4

�
�
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
-5 -3 -1 0 1 3 5 2

(-1)

type 3
↙

�
�
�
�
�
◦ ◦ ◦ ◦ ◦ ◦ ◦
-4 -3 -2 -1 -2 -1 0

(-2)

�
�
��
◦ ◦
-1 0

(-1)����
×3

A
A
AA◦
-4����

×8

@
@

@
@

@
@

◦
◦

◦

-9

-4

-3����
×5

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
-1 -3 -5 -4 -3 -2 -1 -2 -1 0

(-2)
A
A
AA◦
-2

�
�
��
◦ ◦
-1 0

(-1)
/O / 4

O

O 4O4

4O4

/

deg 3

deg 16

deg 2 deg 13

deg 13

deg 3

deg 5

Close-up of the (-5)...(-2) map

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
-5 -52 -47 -42 -37 -32 -27 -22 -39 -17 -12 -19 -26 -7 -9 -11 -13 -2

◦ ◦◦ ◦ ◦ ◦
-5 -4 -3 -2 -1 -2

4 4 O O 4 .

Fig. 10

This actually comes with φ∗ and φ∗ that satisfy the

projection formula. This framework corresponds to a

hypothetical Keller map with polynomials of degrees

99 and 66, and degree of field extension 16.
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Each framework leads to a system of polynomial

equations on the coefficients of the two coordinate

functions and the structural parameters of the sur-

faces Z and Y . My calculations show that in the

above framework there is no actual map, but I can

not completely trust my bookkeeping.

This (99,66) is the last case in Moh’s “<100” paper,

but the proof there is only sketched. And there is

some controversy about it. It would be nice to have a

simple geometric reason for why there is no Keller

map like this.

What’s next?

In my calculations there were “no miracles”. So the

next step is to learn to exactly calculate the number

of variables and the number of “independent” equa-

tions for any framework. Then try to construct a

framework with more variables than equations. If

successful, look for a Keller map. If unsuccessful, try

to figure out why. As you see, I still do not know if

JC in dimension 2 is true.

Collaborators Wanted!
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