Einstein Workshop Talk, Berlin, December 2019

Lattice simplices with few points inside: the birational geometry connection

Alexander Borisov (Binghamton)

Algebraic Geometry's goal: classification of all algebraic varieties... say, over \mathbb{C} , irreducible

<u>Dimension 1</u>: (curves)

Normal (=smooth), 1-to-1 field extensions of \mathbb{C} Complete (=projective) of tr.deg 1

curves

Genus g = "number of handles"

Canonical class *K* = "divisor of differential form"

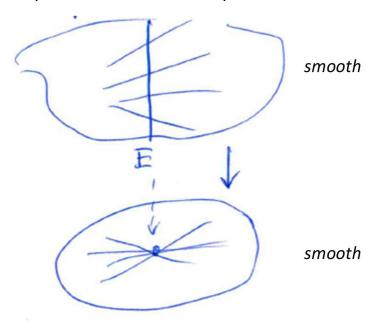
deg K = 2g-2

Depending on genus:

Genus	Name	Canonical class	Universal cover
g = 0	\mathbb{P}^1	-K ample	\mathbb{CP}^1
g = 1	elliptic curves	K=O	\mathbb{C}
$g \ge 2$	general type	<i>K</i> ample	H (upper half plane)

<u>Dimension 2</u>: (surfaces)

New phenomenon: blow-up, blow-down



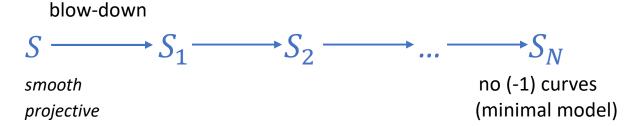
E is (-1)-curve

$$E^{2} = -1, \quad K \cdot E = -1, \quad E \cong \mathbb{P}^{1}$$

$$2 g_{\tilde{E}} - 2 \leq E^{2} + K \cdot E$$

$$= \text{iff} \quad E \text{ is smooth}$$

Classical Minimal Model Theory of surfaces



Classification of surfaces: Zoo!

Barth – Hulek – Peters – van de Ven Compact complex surfaces Kodaira dimension: rate of growth of $h^0(nk)$

$$-\infty$$
 \mathbb{P}^2 , F_n $E^2=-n$, $n=0,2,3,\cdots$; ruled (Hirzebruch surfaces)

O Abelian, $K3$, Enriques, bi-elliptic

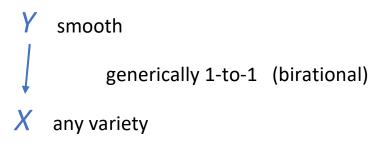
1 elliptic

2 general type

What about non-smooth surfaces? Normalization has isolated singularities. Then there is "minimal resolution"

Higher dimensions

Hironaka, 1964: Resolution of singularities always exists (char 0):

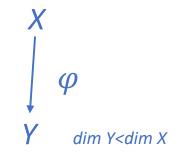


Minimal Model Program, $dim \geq 3$

If $\exists C \text{ s.t. } C \cdot K < 0, \exists \text{ a contraction } \varphi: X \longrightarrow X_1$ curve

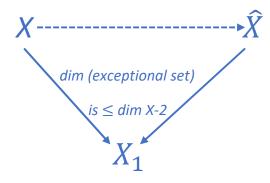
Three Types

Fibration



STOP!

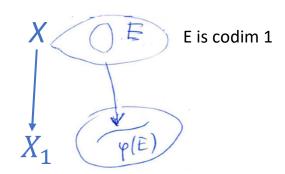
Small contraction



Make a flip,

KEEP GOING!

Divisorial contraction



 $\dim \varphi(E) < \dim E$

X₁ may have singularities

(fairly mild)

KEEP GOING!

Main problems:

- 1) Existence of flips
- 2) Termination of flips

Singularities in MMP

smooth, exceptional divisors in simple normal crossings $\pi \ \ \ \ \ \ \ \ \, \mathbb{Q}\text{-Gorenstein} \ \ \ \, \text{discrepancies}$ $K_Y = \pi^* K_X + \Sigma \ \alpha_i \ E_i \qquad \text{(1+} \ a_i \ \text{is log-discrepancy)}$

			dim 2	dim 3	dim 4, higher
	$\forall a_i > 0$	terminal	=smooth	cyclic quotients of smooth or CDV singularities Reid, 83; Mori, 85	? Mori, Morrison Morrison,88
	$\forall a_i \geq 0$	canonical	= Du Val (A,C,E); A is cyclic quotient $\frac{1}{n}(1,-1)$	⊇ some toric	⊇ some toric
	$\forall a_i > -1$	log-terminal	=quotient Iliev, 86 (A,C,E);	⊇ quotient⊇ toric Q-Gorenstein	<pre>⊇ quotient</pre> ⊇ toric Q-Gorenstein
\	$\forall a_i \geq -1$	log-canonical	classified, Alexeev,92		

rational; Kawamata-Vieweg Vanishing Theorem applies (1982).

Proof of the existence of terminal flips in dim 3 by Mori (1988) relied on the classification of 3-dimensional terminal singularities. For this and other work on MMP he was awarded the Fields Medal in 1990.

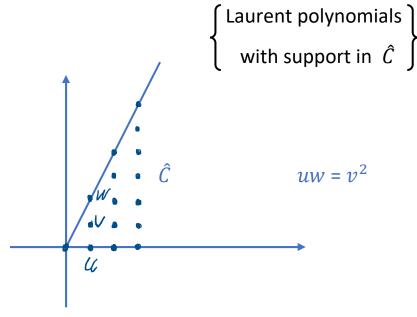
Toric Varieties, Toric Singularities

1) Affine Toric Variety

M = "Lattice of monomials" $\cong \mathbb{Z}^d$

$$\underline{\mathsf{Ex}}.\ d=2 \qquad \begin{pmatrix} 3 \\ -2 \end{pmatrix} \longleftrightarrow x_1^3 \ x_2^{-2}$$

Given a closed rational polyhedral cone $\hat{C}\subseteq M\otimes\mathbb{R}$, affine toric variety $X_{\hat{C}}$ = Spec (\mathbb{C} [$\hat{C}\cap M$])



 $X_{\hat{C}}$ = Spec ($\mathbb{C}[u,v,w]/(uw-v^2)$) ordinary double point Du Val singularity A_1

"Real" picture: cone

2) General Toric Varieties

To properly glue together affine toric varieties, it is best to look at the dual lattice

N= Hom (M,\mathbb{Z}) $(\cong \mathbb{Z}^d$, "lattice of 1-dim. subgroups of $(\mathbb{C}^*)^d$ ")

Dual Cone $C = \{ y \in N \mid \forall x \in \hat{C} \mid y(x) \ge 0 \}$

Singularities

O - Gorenstein

same hyperplane

Convex polytope P

In particular, for a simplicial C the singularity is \mathbb{Q} - Gorenstein (in fact, \mathbb{Q} - factorial)

Terminal: P is lattice-free

Canonical: points are allowed on the hyperplane only

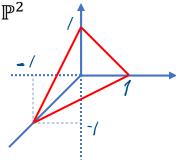
Log-terminal: all of them

 ε -log-terminal ($\forall a_i > -1 + \varepsilon$): $\varepsilon P \cap N = \{0\}$

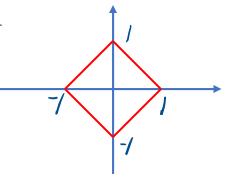
(for $0 < \varepsilon < 1$)

Complete (compact) toric variety ↔ complete fan

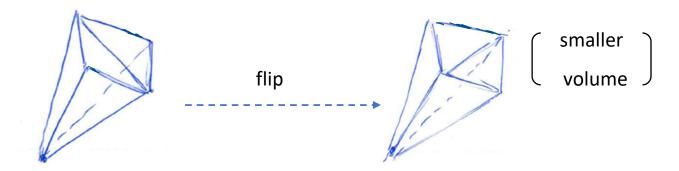
Ex. \mathbb{P}^2



 $\mathbb{P}^1 \times \mathbb{P}^1$



Toric MMP in dimension 3



divisorial contraction \leftrightarrow "removing a vertex"

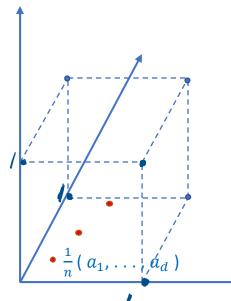
Cyclic Quotient Singularities

$$\mu_n = \{ z \in \mathbb{C} \mid z^n = 1 \}$$

 $\mu_n:\mathbb{C}^d\, \mathfrak{I}$ locally can assume linear action, basis of eigenvectors

$$\mu$$
 (x_1, \ldots, x_d) = ($\mu^{a_1} x_1, \ldots, \mu^{a_d} x_d$) $\forall \mu \in \mu_n$

type
$$\frac{1}{n}$$
 (a_1,\ldots,a_d) all a_i are modulo n



"standard" cone C

$$N\supset\mathbb{Z}^d, \quad |N/\mathbb{Z}^d|=n,$$

generated by $\left[\frac{1}{n}(a_1,\ldots,a_d)\right]$

Terminal abelian quotients ← → lattice-free simpices <u>Classification Results</u>

<u>Dim 3</u>. Lattice-free simplices correspond to type $\frac{1}{n}$ (1, a, -a)

Dim 4. Mori, Morrison, Morrison, 1988

Purely experimental paper: cyclic quotients of prime order, for p<10,000. Observed and conjectured some patterns, in particular 29 1-parameter "families" of "stable quintuples".

Ex.
$$\frac{1}{p}$$
 (1,9,-2,-3,-5)

(remove one to get a 4-dim terminal cyclic quotient, for all $p \ge 11$)

Also, a long list of "exceptional quintuples", for p < 421

Sankaran, 1989: the list of stable quintuples is complete

A.B, 2000: All but finitely many cyclic quotients of prime order are in MMM list.

Bober, 2009: more conceptual proof of Sankaran's result and more; (Connections to algebraic hypergeometric functions) Dynkin diagrams! A.B., 2008 Connection to Riemann Hypothesis (Nyman-Beurling-Báez-Duarte Criterion)

"Final Answer"! Valiño-Santos, 2019

The answer is complete; some redundancy (some families may have common members). The approach is based on looking into projections to lower dimensions.

Birational geometry consequences of MMM paper: too many examples. So the theory went a different route: maximalist's approach instead of a minimalist's approach. (We work with the worst possible singularities that we can, barely, handle instead of the smallest class of singularities that we have to allow).

Good news: many new results.

Dimension 3 log-terminal MMP: Shokurov; Kollár et al (1992).

Higher dimensions: Hacon-McKernan-Xu, 2014 (almost everything)

Most recent: Birkar proved BAB Conjecture (2019): boundedness of Fano varieties of dimension d with ε -log-terminal singularities. For this and his other MMP work he got Fields Medal in 2018.

Some background on the conjecture. Fano varieties are those where (-K) is ample. The conjecture was proposed around 1993 (Alexeev, A.B., independently). Main evidence: smooth, dimension *d* (Kollár-Miyaoka-Mori, 1992); surfaces (Nikulin, 1989, Alexeev, 1994); toric varieties (A.B.-L.B., 1992)

<u>Toric case</u>: There are only finitely many convex lattice polytopes P such that $\varepsilon P \cap \mathbb{Z}^d = \{0\}$. First proved by Hensley, 1983; explicit bounds by Lagarias-Ziegler, 1991. There are certainly many people here who know more about these than I do.

Polytopes with 1 point inside have been studied a lot, in particular by Kasprzyk. These are "easier" than the lattice-free case: a finite list is always easier to get than a finite list of infinite families.

Not that it is actually easy. Great example:

Skarke, Kreuzer, 2000 Classification of 4-dim reflexive (Gorenstein) polytopes. There are 473,800,776 of them.

THANK YOU!