
Measuring the Polygons

Alexander Borisov

Binghamton University

Harrington STEM Lecture Series

SUNY New Paltz

September 19, 2023



Classical Euclidean Geometry
Any triangle is completely determined (up to con-

gruency) by three measurements:
1) three sides
2) side-angle-side
3) angle-side-angle (also angle-angle-side)
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What about quadrilaterals?
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One can also do 4 distances and 1 angle, 2 distances
and 3 angles, or 1 distance and 4 angles, for the total
of 5 measurements.



Question. How many measurements are needed
to completely determine n-gons, for n ≥ 4?

Caution! Need to specify what measurements
are allowed. Otherwise, any triangle4A1A1A3 with
sides a, b, and c is uniquely determined by the “mea-
surement”

(|A1A2| − a)2 + (|A1A3| − b)2 + (|A2A3| − c)2

being equal to 0.

Simple Measurements:
1) distance between two vertices: |AiAj|
2) angle involving three vertices: ∠AiAjAk

Answer. One can determine any n-gon by
(2n-3) simple measurements. Moreover,
(2n-3) distance measurements suffice.
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It is relatively easy to show that for a generic n-
gon fewer then (2n-3) measurements won’t be enough.

Idea of the proof
Suppose A1A2...An is a generic n-gon, and suppose

it is completely determined by some collection of at
most (2n-4) distance and angle measurements. We
need at least one distance measurement, otherwise
we can scale. We can assume that it is |A1A2|. We
can assume that the points A1 and A2 are fixed on
the plane, at the correct distance, and the remain-
ing (n-2) points are arbitrary. Since each of these
points has 2 coordinates, this gives us 2(n-2)=(2n-4)
independent variables. But, since we have already
used one measurement, we have at most (2n-5) sim-
ple measurements to determine these (2n-4) coordi-
nates, and it is impossible.

Question. Can any specific n-gon be described
by fewer than (2n− 3) measurements?

Evidence for a Positive Answer
Fig. 4
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12 = |A1A5|≤|A1A2|+|A2A3|+|A3A4|+|A4A5| =
2 + 1 + 4 + 5 = 12

So the orange inequality is equality, which forces
the points to be on one line, and in the correct order!



Definition. We will call the n-gons that can be
described by fewer than (2n − 3) simple measure-
ments special.

Theorem. All squares are special!
Suppose |AB| = |AD| = s, |AC| = s

√
2, and

∠BCD = 90◦. Then ABCD is a square of side s.

Proof.

Fig. 5
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Fix A and C on the plane. Then B and D lie
on the orange circle. The 90◦ angle is the largest
possible angle between C and any two points on
the orange circle. This forces the lines CB and CD
to be tangent to orange circle, forcing ABCD to be
a square.



This can be generalized to all quadrilateralsABCD
with ∠ABC = ∠ADC = 90◦.

Fig. 6
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Like in the example for the square, the angle ∠BCD
is the largest possible, for any given |AB|, |AC|, and
|AD|.

Remark. This family of quadrilaterals includes
all rectangles.



Another Construction

All quadrilateralsABCD with acute angles ∠BAD
and ∠BCD with AC being a perpendicular bisector
of BD are special.

Fig. 7
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If B and D are fixed, then A and C must lie on the
corresponding orange circles, by the Inscribed An-
gle Theorem. And then |AC| is the largest possible
when A and C are like in the above picture.

Remark. Such quadrilaterals are known as kites.
This family includes all rhombi.



Question. What about n-gons? Specifically, for
every given n, what is the smallest number of simple
measurements that can completely describe some
n-gon?

Answer. 1) There exist “superspecial” n-gons
that can be described by just n measurements.

2) No n-gon can be described by less than n mea-
surements.

Superspecial Polygons

Fig. 8
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From the Law of Sines for 4AnA1A2,
|AnA2| = |AnA1| · sinα1

sin∠A1A2An
≥ |AnA1| · sinα1

Likewise,
|AnA3| ≥ |AnA2| · sinα2 ≥ |AnA1| · sinα1 sinα2

· · ·
|An−1An| ≥ |AnA1| · sinα1 sinα2... sinαn−2

If the above inequality is actually an equality, so
are all the intermediate inequalities. So all orange
angles are 90◦, which determines the polygon!



Lower Bound on the Number of Measurements

Main Idea: Linear Algebra

In dimension 3, two intersecting planes must in-
tersect by a line, while two spheres (or a sphere and
a plane) may intersect by a single point.

Fig. 9

In general, in any dimension m, any k < m lin-
ear equations that have a common solution must
have infinitely many common solutions. Each of the
simple measurements gives a non-linear equation on
the set of all configurations, but inside of it lies a sub-
set that is determined by two linear equations. The
total number of dimensions for the possible configu-
rations is about 2n, and less than n measurements
will leave some “wiggle room”.

Linear Algebra is the most applicable
branch of Mathematics, fully worth

learning for any STEM major.

Most problems in modern world involve many vari-
ables and equations, and the only systems of equa-
tions that we can deal with comfortably are systems
of linear equations.



Dimension 3

“Tent”

Fig. 10
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Claim. ABCDE is completely determined by
the five blue measurements.

Proof.
1) Since |AD| = 1 and ∠AED = π

6 , |AE| ≤ 2,
with the equality if and only if ∠ADE = π

2 .
2) Since |AE| ≤ 2 and ∠ABE = π

4 , |AB| ≤
2
√

2, with the equality if and only if |AE| = 2 and
∠AEB = π

2 .
3) Since |AD| = 1 and |AC| = 3, ∠ACD ≤

arcsin 1
3, with the equality if and only if ∠ADC = π

2 .

4) Since |AB| ≤ 2
√

2 and |AC| = 3, ∠ACD ≤
arcsin 2

√
2

3 , with the equality if and only if |AB| =

2
√

2 and ∠ABC = π
2 .

5) Since ∠ACD ≤ arcsin 1
3 and ∠ACB ≤ arcsin 2

√
2

3 ,

∠BCD ≤ arcsin 1
3 + arcsin 2

√
2

3 = π
2 , with the equal-

ity if and only if ∠ACD = arcsin 1
3, ∠ACB =

arcsin 2
√
2

3 , and the ray [CA) lies in the plane of
BCD, between the rays [CB) and [CD).

The claim follows from the above considerations.



This is more than just a curiosity.
These “extremal” configurations share two remark-

able properties:

1) Some of the equalities can be replaced by in-
equalities;

2) A small change of some parameters of the sys-
tem results in a relatively large change of some other
parameters.
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For example, if ε = 0.01,
√

2e ≈ 0.14, which is 14
times larger!

At a very basic level, this is what allows a bow to
transfer the large tension force of the bowstring to
the high speed of an arrow.



Distance-special Polygons
Our first example of a special configuration of points

was points one one line, with only distance measure-
ments. One might think that angle measurements
are needed to construct special polygons. But this is
only partially true. In fact, the regular octagon can
be described by 12 distance measurements, instead
of the expected 2 · 8 − 3 = 13. The picture below
shows one such way. Another way can be described
as “8 sides plus 4 main diagonals”.

Fig. 12
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This is the smallest such example, if we only con-
sider configurations of points on the plane with no
three points on the same line. For n ≤ 7 such con-
figurations cannot be distance-special. For n ≥ 8,
the smallest number of distance-only measurements
is d3n2 e, that is 3n

2 for even n and 3n+1
2 for odd n.
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If you are interested in learning more, feel free to
email me at

borisov@math.binghamton.edu

Thank you!


