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1) Some History

Bernhard Riemann:

1857: Riemann’s Inequality (strengthened by Gus-

tav Roch to become Riemann-Roch Theorem)

1959: Functional Equation for ζ .

Did Riemann and/or Roch see a connection?

1882: Julius Wilhelm Richard Dedekind,

Heinrich Martin Weber

1920s: Emil Artin, Erich Hecke,...

1931: Friedrich Karl Schmidt

1950: John Tate, Kenkichi Iwasawa

2) 2000: Gerard van der Geer, René Schoof

F is a number field,D is an Arakelov divisor on Spec(OF )

D  (ID, | · |D) (fractional ideal, quadratic function)

h0(D) = log(
∑
x∈ID

e−π|x|D)

h0(D)− h0(K −D) = degD − 1
2 log |∆F |

h1(D) := h0(K −D)

2003: A.B. (adelic version: Ichiro Miyada)

H0(D) generalization of loc. comp. abelian group,

elements “partially exist” using convolution of measures

structures. H1(D) elements “not precisely positioned”;

determined by C̆ech cohomology-like construction.

H1(D) = ̂H0(K −D) (Pontryagin duality)

h0(D)− h1(D) = degD − 1
2 log |∆F |



The following picture represents the ghost-space R
e−πx2

.

One should think of it as being embedded into the usual

real line.

0

The quotient R/R
e−πx2

is the space Rµ, where µ is the

probability measure e−πx
2
dx.

The short exact sequence of ghost spaces

0 −→ R
e−πx2

−→ R −→ Re−πx
2
dx −→ 0

is the R analog of the short exact sequence

0 −→ Zp −→ Qp −→ Qp/Zp −→ 0

In particular, it is Pontryagin self-dual.

3) 2017 Thomas McMurray Price;

Oded Regev, Noah Stephens-Davidowitz

M , N are sublattices in Zn, with a positive quadratic

function Q. Define dim(M) = log(
∑
x∈M

e−πQ(x)). Then

dim(M + N) + dim(M ∩N) ≥ dim(M) + dim(N)

Proof is short, but not obvious. It is false for general

positive positive-definite functions instead of e−πQ(x).

Euclidean lattices = “ loc. free sheaves on Spec(Z)”

Morphisms: maps of lattices s.t. the corresponding

linear maps (tensored by R) are non-expanding.



4) A.B. - Jaiung Jun, work in progress

For now, all spaces are finite-dimensional...

Def. A generalized real Euclidean space is a vector

space over R with a non-negative quadratic function.

Ex. (R, x2) ⊆ (R, 0). Here (R, 0) = R; we denote

(R, x2) by OR. We call it a hoop (Russian: îáðó÷).

Euclidean spaces are free modules over OR.

Notation. V = (V , | · |V ), where |x|V = Q(x) is

quadratic, and V is the underlining vector space,

viewed as V = V ⊗OR R.

Two ways to visualize them.

Particle: V=(V , | · |V )↔ BV = {x ∈ V | |x|V ≤ 1}
Wave: V is V , but with elements existing with prob-

ablility e−πQ(x).

Def. A morphism f : V1 → V2 is an R-linear map

f : V1 → V2 s.t. ∀x ∈ V1 |f (x)|V2 ≤ |x|V1.
This category contains vector spaces as a full subcate-

gory: V = (V , 0).

Def. Im(f ) = (Im(f ), Q), where Q(y) = inf
f(x)=y

|x|V1
Def. Ker(f ) = (Ker(f ), | · |V1) (its restriction)

0→ Ker(f )→ V1 → Im(f )→ 0

Moreover, the sequence splits: V1 ∼= Ker(f ) ⊕ U ,

where U is the orthogonal complement of Ker(f ) in V,

which is isomorphic fo Im(f ).



5) Main challenge: quotients.

V1 ⊆ V2. What is V2/V1? These will be fibers at in-

finity of coherent sheaves on Spec(Z). Quotient of an

ellipsoid by a smaller ellipsoid. Insanity? Yes and no.

Def. W ⊂ V (strict inclusion) means that ∀x 6= 0

|x|W > |x|V . Much stronger than W ( V . The Zp
analog of this is W ⊆ pV .

Def. Bi-Euclidean space is a pair of Euclidean spaces

(V,W ) with W ⊂ V . We think of it as V/W .

Generalization: Suppose W ⊆ V . Then the set

{x ∈ W | |x|W = |x|V } is an R-vector space, and its

orthogonal complement in W is contained in its orthog-

onal complement in V . We define V/W as the quotient

of these orthogonal complements:

V/W = (V ′ ⊕ U)/(W ′ ⊕ U) = V ′/W ′ = (V ′,W ′)

Def. A morphism f̄ : (V1,W1) → (V2,W2) is such

f : V1 → V2 that its restriction to W1 is a map from W1

to W2. An isomorphism is an invertible morphism: both

f and its restriction to W1 are isometries.

Def. (V1,W1)⊕ (V2,W2) = (V1 ⊕ V2,W1 ⊕W2)

Ex. V = (V, {0}), in particular OR = OR/{0}
Ex. (OR, aOR), for 0 < a < 1, is a “cyclic OR-module

of finite length”; length(OR/aOR) = − log a.

Thm. Every (V,W ) is isomorphic to
n⊕
i=1

(OR/aiOR),

with the unique multiset {ai}, ai ≥ 0.

Appeared in 2018 PhD thesis of Patrick Milano as

“Gaussian mixed ghost-spaces”



Considering separately the ai = 0, it is a direct sum of

the free part and the torsion.

V/W ∼= Ok
R ⊕

m⊕
i=1

(OR/aiOR)

Moreover, the torsion is (W, | · |V )/W , and the free

part is the orthogonal complement of W in V.

Every morphism of bi-Euclidean spaces induces a mor-

phism of their torsion submodules.

So far, so good. But we want Im(f̄ ), Ker(f̄ ), tensor

products, etc. For this we need to go back to Euclidean

spaces and define their intersection and sum.

Def. Suppose U and V are Euclidean subspaces of

W . We define U ∩ V and U + V as follows. Consider a

“common orthogonal basis” of U and V : {x1, ..., xn} s.t.

1) {x1, ..., xn} is a basis of U + V ;

2) some subcollection of {x1, ..., xn} forms an orthog-

onal basis of U ;

3) some subcollection of {x1, ..., xn} forms an orthog-

onal basis of V .

Suppose |xi|U = ai, |xi|V = bi, +∞ when unde-

fined. Then U ∩ V is given by orthogonal basis of xi
with |xi|U∩V = max(|xi|U , |xi|V ) and U + V is given by

orthogonal basis of xi with |xi|U+V = min(|xi|U , |xi|V ).



Alternatively, |x|U+V = inf (|u|U + |v|V ) over pairs

(u, v) ∈ (U, V ) s.t. u+v = x and orthogonal projections

of u and v to U ∩V are both U - and V -orthogonal. And

then |x|U∩V = |x|U + |x|V − |x|U+V .

Geometrically: for Euclidean spaces BU∩V is the

elipsoid of the largest volume in BU ∩ BV ; BU+V is the

ellipsoid of the smallest volume that containsBU andBV .

Good News: 1) U ∩ V ⊆ U ⊆ U + V

2) U ⊆ V ⇔ U ∩ V = U ⇔ U + V = V

Bad News:

1)

{
W ⊆ U

W ⊆ V
6⇒ W ⊆ U∩V ;

{
W ⊇ U

W ⊇ V
6⇒ W ⊇ U+V

2) The operations are not associative.

Many things still work, but the intuition needs to stretch.

Lemma. Suppose W,V ′ ⊆ V . Then V ′/(V ′∩W ) =

(V ′ +W )/W . Note that if W ⊆ V ′ ⊆ V , this is V ′/W .

Even though in general V ′ +W 6⊆ V , we consider the

above space a subspace of V/W . Specifically:

Def. SupposeW ⊂ V . A bi-Euclidean space (V ′,W ′)

is a subspace of (V,W ) if there exists a (usual) subspace

U of V such that W ′ = W ∩ U and W ′ ⊂ V ′ ⊆ V ∩ U .

In this case, we write (V ′,W ′) ⊆ (V,W ).

This notion is transitive: if (V ′,W ′) ⊆ (V,W ) and

(V ′′,W ′′) ⊆ (V ′,W ′), then (V ′′,W ′′) ⊆ (V,W ). There

are also natural inequalities for the ai in the cyclic de-

composition of bi-Euclidean spaces and their subspaces.



Image and Kernel

0→ W1 → V1 → V1/W1 → 0

↓ ↓ f ↓ f̄
0→ W2 → V2 → V2/W2 → 0

Im(f̄ ) = f (V1)/(f (V1) ∩W2), where f (V1) = Im(f )

Ker(f̄ ) = f−1(W2)/(f−1(W2) ∩W1), where

f−1(W2) = (f )−1(W2) ∩ V1, |x|(f)−1(W2)
= |f (x)|W2

Good News: 1) Image and Kernel are subspaces;

2) For the Euclidean spaces, we recover old definitions;

3) Natural notions of injective and surjective.

Bad News: 1) There is no decomposition of a map

into surjective, followed by injective: need some equiva-

lence relation on maps.

2) Not all subgroups have natural quotients, even if

they are kernels of maps.

3) In general, no First Isomorphism Theorem.

Need more sophisticated notions of morphisms. One

idea: objects are equivalence classes of pairs (V,W ) with

W ⊆ V . Morphisms are equivalence classes of mor-

phisms of resolutions...

6) We do have tensor products and more.

Def. V1 ⊗OR V2 = (V1 ⊗ V2, Q), where

Q(v1 ⊗ v2) = |v1|V1 · |v2|V2
V1/W1⊗ORV2/W2 = V1⊗ORV2/(V1⊗ORW2+W1⊗ORV2)



Theorem. (
n⊕
i=1

OR/aiOR)⊗OR (
m⊕
j=1

OR/bjOR) is nat-

urally isomorphic to
n,m⊕

i=1,j=1

OR/max(ai, bj)OR

Crazier idea. For modules over a ring, Hom is itself

a module over that ring, not just a set. Something like

that works for the hoops too.

Def. For a Euclidean space V, the dual module

V ∗=(HomOR(V ,R), ||f ||2); HomOR(V1, V2)=V
∗
1 ⊗ORV2

Interestingly, BHomOR(V1,V2)
⊆ Hom(V1, V2), because

the usual norm of a matrix is less than or equal to its

Hilbert-Schmidt norm. But in general they are not equal.

One can also define HomOR for bi-Euclidean spaces as

a bi-Euclidean space.

7) What’s next?

1) Coherent sheaves: lattices in bi-Euclidean spaces.

Likely, all needed inequalities to define h0 and h1 are

already in RS-D paper.

2) Extend Arakelov geometry to bi-Hermitian sheaves

at infinity. Note: in classical Arakelov geometry for a

horizontal curve P and an Arakelov divisor D no map

of invertible Hermitian sheaves OX(D − P ) → OX(D),

ultimately because the Green function is normalized to

integrate to 0 (which also causes some negative inter-

sections of horizontal divisors). IMHO, this is just an

unfortunate convention, that is easy to fix.

3) For f : X→Spec(Z), are f∗, R
if∗ coherent sheaves?
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