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Suppose n ∈ N. Suppose

F1(x1, x2, ..., xn), F2(x1, x2, ..., xn), ..., Fn(x1, x2, ..., xn)

are n polynomials in n variables with complex coef-

ficients. Together they define a polynomial self-map

F of the n-dimensional affine space Cn.

The Jacobian of F is the determinant of the matrix(
∂Fi
∂xj

)
i,j=1...n

Implicit Function Theorem: F is locally invertible

at (x1, ...xn) iff J(F )(x1, ..., xn) 6= 0.

J(F ) is a polynomial in x1, x2, ...xn. Every non-

constant complex polynomial has complex roots. There-

fore the map F is everywhere locally one-to-one if

and only if J(F ) is a non-zero constant.
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Jacobian Conjecture (O. Keller, 1939)

J(F ) is a non-zero constant if and only if F is

invertible.

Remarks

1) The “if” part of the Conjecture follows from the

discussion above.

2) Keller’s original question was about polynomials

with integer coefficients.

3) The name “Jacobian Conjecture” was coined by

S. Abhyankar in the 1970s.

3



Simple Observations

n = 1 : f ′(x) is a nonzero constant ⇔ f is linear.

J(F ) 6≡ 0 ⇒ F (Cn) is dense in Cn. The field

C(x1, ..., xn) is a finite extension of C(F1, ..., Fn).

Its degree is the number of preimages of a generic

point.

Theorem(Keller, 1939)

If C(x1, ..., xn) = C(F1, ..., Fn), then

C[x1, ..., xn] = C[F1, ..., Fn]

In particular, if F is injective, then it is surjective

and the inverse map is also polynomial.

The First “Proof” of the JC

The map F is a finite unramified covering ofAn(C).

Because An(C) is simply connected, its degree must

be 1.
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Mistake: The map is quasi-finite, but not neces-

sarily finite. In other words, some points in Cn may

have fewer preimages than their neighbors.

Example. F (x, y) = (x(xy − 1), y(xy + 1)).

For generic (a, b), F (x, y) = (a, b) has three so-

lutions. But for (a, b) = (0, 0), there is only one

solution: (x, y) = (0, 0). This is not a local issue:

J(F )(0, 0) = −1. Also, points with a = 0, b 6= 0 or

a 6= 0, b = 0 have two preimages. When approaching

such points by a curve, some preimages go to infinity.
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Main Approaches and Results

K-theoretic approach. Starting from a counter-

example, new counter-examples are created, with smaller

degree polynomials in more variables.

Theorem(H. Bass, E. Connell, D. Wright, 1982;

Yagzhev, 1980) The Jacobian Conjecture is true for

all n if it is true for polynomials of degree at most

three.

Remarks

1) In 1983 Druzkowski improved on this result by

restricting to Fi = xi + H3
i , where Hi are linear

functionals on Cn.

2) The Jacobian Conjecture is true for polynomials

of degree at most two (Wang, 1980).
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Dimension 2 Results

The two-dimensional Jacobian Conjecture received

a lot of extra attention for three reasons:

1) It is a deceivingly simple question about two

polynomials in two variables.

2) It is much more likely to be true than the full

Jacobian Conjecture.

3) Geometry of complex surfaces is much easier

than the geometry of higher-dimensional complex va-

rieties. In particular, polynomial automorphisms of

surfaces are well understood (they are all “tame”). In

higher dimensions there are “wild” automorphisms.
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Magnus, 1955. JC is true for polynomials of co-

prime degrees. Improved by Nagata to gcd at most

8 (in 1989).

Abhyankar, Tata Lecture Notes, 1977. The JC is

reduced to the polynomials with very restricted New-

ton polygons.

Abhyankar also proved the JC in the case when the

field extension is Galois.

Related result:

Abhyankar-Moh-Suzuki Theorem.

(Abhyankar-Moh, 1973; Suzuki, 1974) Any alge-

braic embedding of A1(C) into A2(C) is equivalent

to the embedding of a coordinate line.

Moh, 1983. JC is true for polynomials of degree

less than or equal to 100.
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Miyanishi, 2005. There exist unramified self-maps

of algebraic surfaces that are quasi-finite but not fi-

nite.

Vitushkin, 1975. Constructed 3-sheeted non-algebraic

counterexample.

Yu. Orevkov, 1986. The JC is true for maps of

degree at most three (topological degree, not degrees

of polynomials).

Improved by Domrina-Orevkov (1998) and Dom-

rina (2000) to maps of degree up to four; Żoladek

(2008) to degree five.
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My Approach to the Two-dimensional JC

Suppose a counter-example exists. It gives a ratio-

nal map from P 2 to P 2. After a sequence of blow-ups

of points, we can get a surface X with two maps:

π : X → P 2 and φ : X → P 2:

X
π ↙ ↘φ

P 2−−−>P 2

Note that X contains a Zariski open subset isomor-

phic to A2 and its complement, π∗((∞)), is a tree of

smooth rational curves. We will call these curves ex-

ceptional, or curves at infinity. The structure of this

tree is easy to understand inductively, as it is built

from a single curve (∞) on P 2 by a sequence of two

operations: blowing up a point on one of the curves

or blowing up a point of intersection of two curves.

One can keep track of the intersection pairing.
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The Difficulties:

1) A non-inductive description does not exist.

2) The exceptional curves on X may behave very

differently with respect to the map φ.

There are four types of curves E.

type 1) φ(E) = (∞)

type 2) φ(E) is a point on (∞)

type 3) φ(E) is a curve primarily on A2.

type 4) φ(E) is a point on A2.

3) The self-intersections of curves change under

subsequent blow-ups.

What a mess!
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First Idea: New labels

If X\A2 = ∪Ei, then Ei form a basis of the Picard

group.

K̄X =
∑
aiEi, where K̄X = KX +

∑
Ei

These ai will be called K̄-labels. They do not

change under blow-ups, are invariants of divisiorial

valuations valEi
.

Building Rules:

1. When a point on one curve is blown up, the new

curve’s label is its parent’s label plus 1.

2. When a point of intersection is blown up, the

new curve’s label is the sum of its parents’ labels.

We will be blowing up points on both copies of P 2.
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Properties:

1) The labels of neighbors are coprime.

2) If any of the parents has a postive label, then

the label of the curve is positive.

3) The subgraph of vertices with negative labels is

connected. It is separated from the “positive” ver-

tices by the “zero” vertices. Moreover, the “zero”

vertices are only connected to vertices with labels

(−1) (exactly one such curve) or 1 (zero or more

curves).
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Adjunction Formula

Suppose φ : X → Y is a resolution of a Keller map,

τ : X → W, ρ : W → Y is its Stein factorization.

Then

K̄W = ρ∗(K̄Y ) + R̄,

where R̄ =
∑
riRi is the di-critical ramification di-

visor: Ri are curves mapped to A2, with ramification

ri.

Corollary. For every non-di-critical curve E, its

label is the label of φ(E) times ramification index. In

particular K̄ − 0 valuations go to K̄ − 0 valuations.

Question. What are the K̄ − 0 valuations (alge-

braically, non-inductively)?
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Structure of W for Y = P 2

P = τ (π−1∗ (∞))

Theorem. R̄ is ample.

Other properties: W is smooth outside of P

and possible cyclic quotient singularities on the di-

critical curves (up to one per curve). Type 1 curves

are smooth outside P .
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Determinant Labels

Definition. Suppose Ei is a curve at infinity.

Then the determinant label of the divisorial valu-

ation corresponding to Ei is the determinant of the

Gram matrix of minus-intersection form on all curves

at infinity of X , except Ei. That is,

dEi
= det (−Ej · Ek)j,k 6=i

Property. It is an invariant of a valuation (i.e.

stable under blow-ups).

Building Rules:

1. When a point on one curve is blown up, the new

curve’s label is its parent’s label minus 1.

2. When a point of intersection is blown up... ???
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Answer. Label the edges as well: dPQ is the de-

terminant of the graph with edge PQ removed.

Building Rules:

(Γ is a cycle-free weighted graph, V (Γ) and E(Γ)

are sets of vertices and edges, d = det(Γ)).

1. P ∈ V (Γ) is blown up, new vertex is R. Then

dR = dP + d, dPR = dP + d

2. PQ ∈ E(Γ) is blown up, new vertex is R. Then

dR = 2dPQ + dP + dQ − d,

dPR = dP + dPQ, dQR = dQ + dPQ.
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Importance of the Determinant Labels:

Any Keller map must send a valuation with positive

det. label to a valuation with positive det. label.

Determinant labels of curves sent to the line at

infinity are negative (moreover, ”common determi-

nant” is negative)

Any curve with negative K̄ and determinant labels

has a K̄ − 0 ”switchback” ancestor.

Theorem. For any fixed values of the K̄ and

determinant labels, there is N , such that any curve

with these labels is obtained from P 2 by ≤ N blow-

ups (boundedness upto automorphisms).

Theorem. If K̄ label is−2 and determinant label

is 1, it is a line at infinity for some P 2.
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Local Structure of W, for any Y

Suppose ρ : W → Y is finite, ρ(A2) ⊆ A2, Y is a

smooth toroidal compactification of A2, i.e. Y \ A2

has (simple) normal crossings.

Theorem. If E is a curve of type 1 on W, not

intersecting any di-critical curves, then W and ρ are

toroidal in the neighborhood of E. If images of all

di-critical curves intersect the component at infinity

transversally, then W and ρ are toroidal.
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What is Next?

1) K̄ − 0 curves hold a key. What are they? How

are they mapped by Keller maps?

2) Database of toroidal compactifications (their graphs)?

3) Higher dimension?

4) Collaborators?

Thank You for Your Attention!
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