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One of the most influential observations in math-
ematics is the analogy between algebraic geometry
and number theory. It was discovered more than 100
years ago, yet we still don’t really know how far it
goes. The following " dictionary” is for the most part

classical.

Basic Dictionary

Algebraic Geometry

Polynomials over a field,
for example Clz]

Rational functions,
for example C(x)

Finite extensions of C(x),

ie. C(O)

Smooth complete
algebraic curve C,
a.k.a. compact
Riemann surface

Projective line P*(C)
Affine line AY(C)

Number Theory

Integers

Rational numbers

Finite extensions of Q,

(K : Q] < o0

The set of all valuations,
of K, including finite
(non-Archimedean) and
infinite (Archimedean)

Spec(Z) ={2,3,5,...;00}

Spec(Z) = {2,3,5, ...}




Theory of Divisors

Algebraic Geometry

Divisor D on a curve C'

1s a formal finite sum

> ap|P], where P are points
onC,ap € Z

Degree of a divisor,
deg(D) = > ap

Divisor of a rational function
(principal divisor)

(f) = 2. ordp(f):[P]

PeC

Rational Equivalence
D1 ND2<:,>D1—D2=<f)

# of zeroes =# of poles Thm
deg(f) =0

Picard Group Pic(C):
all divisors/principal divisors
Pic’(C) = Jac(C) :

degree zero classes

Theorem:
Pic’(C) is compact
(abelian variety of dim g)

Number Theory

Arakelov divisor D on Spec K
is a formal finite sum > a,[v],
where a, € Z for finite [v],

a, € R for infinite [v]

Degree of a divisor, deg(D) =
— Z In ‘OK/,PMU + Zevav

v=vp v inf.

Divisor of an algebraic number
(principal Arakelov divisor)

a)=)_ordp(a)[vp]—_Infal,[v]

v=Up vinf.

Rational Equivalence
DlND2<:>D1—D2=(CL)

Product Formula (log version)

deg(a) =0

Arakelov class group of K:
Arakelov divisors/principal ones
Pic’(K): degree zero classes
of Arakelov divisors

Dirichlet Unit Theorem and
Finiteness of Ideal Class Group:
Pic’(K) is compact




Global Sections and Riemann-Roch Theorem

Algebraic Geometry

Space of Global Sections
of D=> ,ap[P]:
H(D) ={f|(f)+ D =0}

Dimension:h°(D)=dim H’(D)
Theorem. hY(D) < oo

Example.

C =P, D = [n] + 2]
H(D) = {22 deg 22 < 2}
_ {03x3+02x2+01x+00}

T—T

h'(D)=4=degD + 1

Canonical Class K¢
divisors of differential forms

Riemann-Roch Theorem
hY(D)—h’( K—D)=deg D+1—g
Corollary. For degD >2¢g — 2
hY(D)=degD+1—g

“Modern” Riemann-Roch
HYD); hY(D) = dim H(D)
X(D) = (D) — h'(D)
X(D) = deg D + x(0)

Serre’s Duality Theorem:
HY(D) is dual to H(K — D)

Number Theory

Set of Global Sections

of D=> ayv]:
H'(D) = {al(a) + D > 0}

Dimension:h%(D)=In(|H°(D)|)
Theorem. h’(D) < oo

Example.

K =Q, D = [3] + 2[o0]
HO(D)z{%\n € Z,In|3| <2}
={-22,-21,...,21,22}
hY(D) = In45 ~ deg D + In2

Relative Canonical Class:
5[_(1, where 0 is the Different

Lattice Points Estimate
hY(D)—h°( K—D)~deg D+1—g
Corollary. For degD — 400
h'(D) =degD+1—g+o(1)

Arithmetic Riemann-Roch
777

x(D) = — In(covolume(I))

X(D) = deg D + x(0)

Too much to hope for:

7, 1s too discrete!




Tate’s Riemann Roch Formula
(van der Geer - Schoof version, 1999)

Idea: Instead of counting elements of H(D) in
the usual manner (1 if they are small, 0 is they are
big), count them with weight e ™) where Q is a
positive quadratic function on I. Here I is a frac-
tional ideal generated by the restrictions from the
finite places, and () depends on the coefficients for
the infinite places.

Example. K = Q, D = [3] + 2[o0].

Then the fractional ideal I = %Z. According to van
der Geer and Schootf’s convention, the function ) is
given by Q(x) = e” 2" . z? = e~ "2?. For x = % this
gives .

Qx) = 6—4(5)2 _ o—4—2m3 2

So the dimension of D is

h’(D) = In (Z em4x2> = In (Z 6”6421n3'"2>

rel ne

Theorem. (Tate’s Riemann-Roch Formula).
1
(D) — h°(K — D) = deg D — 5 1A

where A is the discriminant of K.
Proof: Poisson Summation Formula:

> fn) =) fk)

nez keZ



For example, when K = Q, every Arakelov divisor
is rationally equivalent to afoo]. Then

h%(a[oc]) = In (Z e”'eh'”2>

nez
The Riemann-Roch Theorem says

h'(a[oo]) — h'(—a[oc]) = a

Remark. As a——o0, h’(—alco]) decreases very
rapidly.

Remark. This equation is directly related to the
functional equation for Riemann Zeta function.

Remark. This work resulted in interesting fur-
ther development, in particular by Lagarias and Rains,
2003.

Question. We have correct h’(D). We can define
h'Y(D) = h°(K — D). What about H(D), H'(D)?

Idea: We have to consider objects that are more
general than usual abelian groups.



GG is a locally compact abelian group, H is a sub-
group of G, iy is its characteristic function.

(1) ir(0) =1

(2) iy is even (ie. ig(—x) =ig(zx) for all x € G)

(3) i is positive-definite

(4) (in)? = in

The other way: for any such ¢y, iy = 1 is a sub-
group of G.

To get H" to match van der Geer-Schoof’s h°, we
must let go of (4).

Convolution of measures structures
(G is a locally compact abelian group, two algebras:
(Functions, -); (Measures, *)

Also, a pairing (f,n) = [ f(x)du()

el
A convolution of measures structure: a pair of alge-

bras together with a pairing as above, not necessarily
coming from a locally compact abelian group.

Note: analytical details vary; can be non-commutative

Pontryagin duality: Functions <+ Measures



Ghost-spaces

Formally: a triple (G, u, p). Notation: G*

G : locally compact abelian group

u : positive, positive-definite function, u(0) = 1

(4 : positive positive-definite probability measure
on G

Intuitively: G* is the group G with “elements”
that “partially exist” with probability u and/or are
“imprecisely positioned”, with error pu.

The convolution of measures structure:

_ u()u(y)
Op * 0y = (@ + ) Tyt

Tyt is the translation of p by the element (z + y)

Note: G = G.
We omit the point measure oy and the identity
function 1 from the notation when possible:

G,=Gh Gr=G' G=GY.

The following picture represents the ghost-space
R __,2. One should think of it as being embedded

X

into the usual real line.

e —

0
The quotient R/ R _,2 is the space R”, where (1 is

the probability measure proportional to e~ dr.



Arithmetic Cohomology Theory

Only ghost-spaces of 1st kind, G, and ghost-spaces
of 2nd kind, G* were used.

Main Features

1) Some short exact sequences of ghost-spaces were
introduced, with appropriate dimension function be-
ing additive.

2) HY(D): compact ghost-space of 2nd kind, def-
inition resembles Cech cohomology. Then h'(D) is
its (absolute) dimension.

3) The Tate’s Riemann-Roch theorem was sepa-
rated into the “modern” Riemann-Roch theorem

1
h(D) — h'(D) = deg D — 5 deg K
and Serre’s duality @) = H'(K — D).
(Thus RY(D) = h%(K — D)).
4) Serre’s duality = Pontryagin duality of convolu-
tion structures.

Closely related to the Pontryagin duality theory of
M. Rosler (1995)

Explicitly: Gt = Gz

An adelic version: Ichiro Miyada (unpublished).



What’s Next?

One basically gets the perfect theory in this one-
dimensional case. Dimension two case is the famous
Arakelov theory. Its basic setup is the following.

X — Spec(Ok), a complete curve over a ring of
integers of some number field K

Each embedding of o0 : K — C gives a complex
curve X, (curves at infinity).

An Arakelov divisor: formal finite linear combina-
tion of the following:

1) Vertical divisors: irreducible components of the
fibers above prime ideals P € Spec(Oy)

2) Curves at infinity (with real coefficients)

3) Horizontal curves: L-rational points on X for a
finite extension L of K.

The main innovation of Arakelov (early 1970’s, in-
spired by previous work of Parshin): define the in-
tersection of two horizontal divisors at infinity using
the heat kernel on X,.

Further devlopments: Gerd Faltings, Shou-Wu Zhang,
Henri Gillet, Christophe Soulé...

Arbitrary dimension. Grothendieck Riemann-Roch
Theorem.

Euler characteristic only, suitably defined. No no-
tion of HY(D) of H?*(D).



Theories Relevant for Further Development

Parshin-Beilinson higher-dimensional adeles?

Sobolev spaces?

Brownian motion on manifolds?



THANK YOU!



