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One of the most influential observations in math-
ematics is the analogy between algebraic geometry
and number theory. It was discovered more than 100
years ago, yet we still don’t really know how far it
goes. The following ”dictionary” is for the most part
classical.

Basic Dictionary

Algebraic Geometry Number Theory

Polynomials over a field, Integers
for example C[x]

Rational functions, Rational numbers
for example C(x)

Finite extensions of C(x), Finite extensions of Q,
i.e. C(C) [K : Q] < ∞

Smooth complete The set of all valuations,
algebraic curve C, of K, including finite
a.k.a. compact (non-Archimedean) and
Riemann surface infinite (Archimedean)

Projective line P1(C) Spec(Z) = {2, 3, 5, ...;∞}

Affine line A1(C) Spec(Z) = {2, 3, 5, ...}



Theory of Divisors

Algebraic Geometry Number Theory

Divisor D on a curve C Arakelov divisor D on SpecK
is a formal finite sum is a formal finite sum

∑
av[v],∑

aP [P ], where P are points where av ∈ Z for finite [v],
on C, aP ∈ Z av ∈ R for infinite [v]

Degree of a divisor, Degree of a divisor, deg(D) =
deg(D) =

∑
aP =

∑
v=vP

ln |OK/P|av +
∑

v inf.

evav

Divisor of a rational function Divisor of an algebraic number
(principal divisor) (principal Arakelov divisor)
(f ) =

∑
P∈C

ordP (f )·[P ] (a)=
∑
v=vP

ordP(a)[vP ]−
∑
v inf .

ln|a|v[v]

Rational Equivalence Rational Equivalence
D1 ∼ D2 ⇐⇒D1 −D2 = (f ) D1 ∼ D2 ⇐⇒D1 −D2 = (a)

# of zeroes=# of poles Thm Product Formula (log version)
deg(f ) = 0 deg(a) = 0

Picard Group Pic(C): Arakelov class group of K:
all divisors/principal divisors Arakelov divisors/principal ones
Pic0(C) = Jac(C) : Pic0(K): degree zero classes
degree zero classes of Arakelov divisors

Theorem: Dirichlet Unit Theorem and
Pic0(C) is compact Finiteness of Ideal Class Group:
(abelian variety of dim g) Pic0(K) is compact



Global Sections and Riemann-Roch Theorem

Algebraic Geometry Number Theory

Space of Global Sections Set of Global Sections
of D =

∑
P aP [P ] : of D =

∑
v av[v] :

H0(D) = {f |(f ) +D ≥ 0} H0(D) = {a|(a) +D ≥ 0}

Dimension:h0(D)=dimH0(D) Dimension:h0(D)=ln(|H0(D)|)
Theorem. h0(D) < ∞ Theorem. h0(D) < ∞

Example. Example.
C = P1, D = [π] + 2[∞] K = Q, D = [3] + 2[∞]

H0(D) = {h(x)
x−π | deg

h(x)
x−π ≤ 2} H0(D)={n

3 |n ∈ Z, ln |n3 | ≤ 2}

= {c3x
3+c2x

2+c1x+c0
x−π } = {−22,−21, ..., 21, 22}

h0(D) = 4 = degD + 1 h0(D) = ln 45 ≈ degD + ln 2

Canonical Class KC : Relative Canonical Class:
divisors of differential forms δ−1

K , where δK is the Different

Riemann-Roch Theorem Lattice Points Estimate
h0(D)−h0(K−D)=degD+1−g h0(D)−h0(K−D)≈degD+1−g
Corollary. For degD>2g − 2 Corollary. For degD → +∞
h0(D) = degD+1− g h0(D) = degD+1− g+ o(1)

“Modern” Riemann-Roch Arithmetic Riemann-Roch
H1(D); h1(D) = dimH1(D) ???
χ(D) = h0(D)− h1(D) χ(D) = − ln(covolume(I))
χ(D) = degD + χ(0) χ(D) = degD + χ(0)
Serre’s Duality Theorem: Too much to hope for:
H1(D) is dual to H0(K−D) Z is too discrete!



Tate’s Riemann Roch Formula

(van der Geer - Schoof version, 1999)

Idea: Instead of counting elements of H0(D) in
the usual manner (1 if they are small, 0 is they are
big), count them with weight e−πQ(x), where Q is a
positive quadratic function on I . Here I is a frac-
tional ideal generated by the restrictions from the
finite places, and Q depends on the coefficients for
the infinite places.

Example. K = Q, D = [3] + 2[∞].
Then the fractional ideal I = 1

3Z. According to van
der Geer and Schoof’s convention, the function Q is
given by Q(x) = e−2a∞ · x2 = e−4x2. For x = n

3 this
gives

Q(x) = e−4(
n

3
)2 = e−4−2 ln 3 · n2

So the dimension of D is

h0(D) = ln

(∑

x∈I

e−πe−4x2

)
= ln

(∑

n∈Z

e−πe−4−2 ln 3·n2

)

Theorem. (Tate’s Riemann-Roch Formula).

h0(D)− h0(K −D) = degD −
1

2
ln |∆|,

where ∆ is the discriminant of K.
Proof: Poisson Summation Formula:∑

n∈Z

f (n) =
∑

k∈Z

f̂ (k)



For example, when K = Q, every Arakelov divisor
is rationally equivalent to a[∞]. Then

h0(a[∞]) = ln

(∑

n∈Z

e−π·e−2a·n2

)

The Riemann-Roch Theorem says

h0(a[∞])− h0(−a[∞]) = a

Remark. As a→−∞, h0(−a[∞]) decreases very
rapidly.
Remark. This equation is directly related to the

functional equation for Riemann Zeta function.
Remark. This work resulted in interesting fur-

ther development, in particular by Lagarias and Rains,
2003.

Question. We have correct h0(D). We can define
h1(D) = h0(K −D). What about H0(D), H1(D)?

Idea: We have to consider objects that are more
general than usual abelian groups.



G is a locally compact abelian group, H is a sub-
group of G, iH is its characteristic function.

(1) iH(0) = 1
(2) iH is even (i.e. iH(−x) = iH(x) for all x ∈ G)
(3) iH is positive-definite
(4) (iH)

2 = iH
The other way: for any such iH , iH = 1 is a sub-

group of G.

To get H0 to match van der Geer-Schoof’s h0, we
must let go of (4).

Convolution of measures structures

G is a locally compact abelian group, two algebras:
(Functions, ·); (Measures, ∗)
Also, a pairing (f, µ) =

∫
x∈G

f (x)dµ(x)

A convolution of measures structure: a pair of alge-
bras together with a pairing as above, not necessarily
coming from a locally compact abelian group.

Note: analytical details vary; can be non-commutative

Pontryagin duality: Functions ↔ Measures



Ghost-spaces

Formally: a triple (G, u, µ). Notation: Gµ
u

G : locally compact abelian group
u : positive, positive-definite function, u(0) = 1
µ : positive positive-definite probability measure

on G
Intuitively: Gµ

u is the group G with “elements”
that “partially exist” with probability u and/or are
“imprecisely positioned”, with error µ.

The convolution of measures structure:

δx ∗ δy =
u(x)u(y)

u(x + y)
Tx+yµ

Tx+yµ is the translation of µ by the element (x+ y)

Note: Gδ0
1 = G.

We omit the point measure δ0 and the identity
function 1 from the notation when possible:
Gu ≡ Gδ0

u , G
µ ≡ Gµ

1 , G ≡ Gδ0
1 .

The following picture represents the ghost-space
R

e−x
2 . One should think of it as being embedded

into the usual real line.

0

The quotient R/R
e−x

2 is the space Rµ, where µ is

the probability measure proportional to e−x2dx.



Arithmetic Cohomology Theory

Only ghost-spaces of 1st kind, Gu and ghost-spaces
of 2nd kind, Gµ were used.

Main Features

1) Some short exact sequences of ghost-spaces were
introduced, with appropriate dimension function be-
ing additive.

2) H1(D): compact ghost-space of 2nd kind, def-
inition resembles Čech cohomology. Then h1(D) is
its (absolute) dimension.

3) The Tate’s Riemann-Roch theorem was sepa-
rated into the “modern” Riemann-Roch theorem

h0(D)− h1(D) = degD −
1

2
degK

and Serre’s duality Ĥ1(D) = H0(K −D).
(Thus h1(D) = h0(K −D)).

4) Serre’s duality = Pontryagin duality of convolu-
tion structures.
Closely related to the Pontryagin duality theory of

M. Rösler (1995)

Explicitly: Ĝµ
u = Ĝû

µ̌

An adèlic version: Ichiro Miyada (unpublished).



What’s Next?

One basically gets the perfect theory in this one-
dimensional case. Dimension two case is the famous
Arakelov theory. Its basic setup is the following.

X → Spec(OK), a complete curve over a ring of
integers of some number field K

Each embedding of σ : K → C gives a complex
curve Xσ (curves at infinity).

An Arakelov divisor: formal finite linear combina-
tion of the following:
1) Vertical divisors: irreducible components of the

fibers above prime ideals P ∈ Spec(OK)
2) Curves at infinity (with real coefficients)
3) Horizontal curves: L-rational points on X for a

finite extension L of K.

The main innovation of Arakelov (early 1970’s, in-
spired by previous work of Parshin): define the in-
tersection of two horizontal divisors at infinity using
the heat kernel on Xσ.

Further devlopments: Gerd Faltings, Shou-Wu Zhang,
Henri Gillet, Christophe Soulé...
Arbitrary dimension. Grothendieck Riemann-Roch

Theorem.
Euler characteristic only, suitably defined. No no-

tion of H1(D) of H2(D).



Theories Relevant for Further Development

Parshin-Beilinson higher-dimensional adèles?

Sobolev spaces?

Brownian motion on manifolds?

. . .



THANK YOU!


