Chapter 4

Directions: For questions 1 - 6, mark each statement True or False. Justify each answer. Unless stated otherwise, B is a basis for a vector space V.

- 1. (True | False) If x is in V and if B contains n vectors, then the B-coordinate vector of x is in \mathbb{R}^n
- 2. (True | False) If P_B is the change-of-coordinates matrix, then $[\mathbf{x}]_B = P_B \mathbf{x}$, for \mathbf{x} in V
- 3. (True | False) The vector spaces in \mathbf{P}_3 and \mathbf{R}^3 are isomorphic
- 4. (True | False) If B is the standard basis for \mathbf{R}^n , then the B-coordinate vector of an \mathbf{x} in \mathbf{R}^n is \mathbf{x} itself
- 5. (**True** | **False**) The correspondence $[\mathbf{x}]_B \mapsto \mathbf{x}$ is called coordinate mapping
- 6. (True | False) In some cases, a plane in \mathbb{R}^3 can be isomorphic to \mathbb{R}^2

Directions: For questions 7 - 15, V is a vector space. Mark each statement True or False. Justify each answer.

- 7. (True | False) The number of pivot columns of a matrix equals the dimension of its column space
- 8. (**True** | **False**) A plane in \mathbb{R}^3 is a two-dimensional subspace of \mathbb{R}^3
- 9. (True | False) If dim V = n and S is a linearly independent set in V, then S is a basis for V
- 10. (**True** | **False**) If a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ spans a finite-dimensional vector space V and if T is a set of more than p vectors in V, then T is linearly dependent
- 11. (**True** | **False**) \mathbf{R}^2 is a two-dimensional subspace of \mathbf{R}^3
- 12. (True | False) The number of variables in the equation $A \mathbf{x} = \mathbf{0}$ equals the dimension of Nul A
- 13. (**True** | **False**) A vector space is infinite-dimensional if it is spanned by an infinite set
- 14. (**True** | **False**) If dim V = n and if S spans V, then S is a basis of V
- 15. (**True** | **False**) The only three-dimensional subspace of \mathbf{R}^3 is \mathbf{R}^3 itself

Directions: For questions 16 - 21, V is a nonzero finite-dimensional vector space, and the vectors listed belong to V. Mark each statement True or False. Justify each answer.

- 16. (**True** | **False**) If there exists a set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ that spans V, then dim $V \leq p$
- 17. (**True** | **False**) If there exists a linearly independent set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in V, then dim $V \ge p$
- 18. (True | False) If dim V = p, then there exists a spanning set of p + 1 vectors in V
- 19. (**True** | **False**) If there exists a linearly dependent set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ in V, then dim $V \leq p$

- 20. (**True** | **False**) If every set of p elements in V fails to span V, then dim V > p
- 21. (True | False) If $p \ge 2$ and dim V = p, then every set of p 1 nonzero vectors is linearly independent

Directions: For questions 22 - 30, A is an $m \times n$ matrix. Mark each statement True or False. Justify each answer.

- 22. (**True** | **False**) The row space of A is the same as the column space of A^T
- 23. (True | False) If B is any echelon form of A, and if B has three nonzero rows, then the first three rows of A form a basis for Row A
- 24. (**True** | **False**) The dimensions of the row space and the column space of A are the same, even if A is not square
- 25. (**True** | **False**) The sum of the dimensions of the row space and the null space of A equals the number of rows in A
- 26. (**True** | **False**) If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A
- 27. (**True** | **False**) Row operations preserve the linear dependence relations among the rows of A
- 28. (**True** | **False**) The dimension of the null space of A is the number of columns of A that are *not* pivot columns
- 29. (**True** | **False**) The row space of A^T is the same as the column space of A
- 30. (**True** | **False**) If A and B are row equivalent, then their row spaces are the same

Directions: For questions 31 - 34, B and C are bases for a vector space V. Mark each statement True or False. Justify your answer.

- 31. (**True** | **False**) The columns of the change-of-coordinates matrix $_{C}P_{B}$ are *B*-coordinate vectors of the vectors in *C*
- 32. (True | False) If $V = \mathbb{R}^n$ and C is the standard basis for V, the $_{C}P_B$ is the same as the change-ofcoordinates matrix I_B
- 33. (**True** | **False**) The columns of $_{C}P_{B}$ are linearly independent
- 34. (True | False) If $V = \mathbf{R}^2$, $B = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $C = \{\mathbf{c}_1, \mathbf{c}_2\}$, then row reduction of $\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$ to $\begin{bmatrix} I & P \end{bmatrix}$ produces a matrix P that satisfies $[\mathbf{x}]_B = P[\mathbf{x}]_C$ for all \mathbf{x} in V

Directions: For questions 35 - 38, mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.)

- 35. (True | False) If A is $m \times n$ and rank A = m, then the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
- 36. (True | False) If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto, then rank A = m.
- 37. (True | False) A change-of-coordinates matrix is always invertible.
- 38. (True | False) If $X = {\mathbf{x}_1, \ldots, \mathbf{x}_n}$ and $Y = {\mathbf{y}_1, \ldots, \mathbf{y}_n}$ are bases for a vector space V, then the *j*th column of the change-of-coordinates matrix $_Y I_X$ is the coordinate vector $K_X(\mathbf{y}_j)$.

For questions XX - XX, mark each statement True or False. Justify each answer.

- 39. (True | False) The function h(t) = 4 + 3t is a linear combination of the functions $f(t) = (1 + t)^2$ and $g(t) = 2 t 2t^2$
- 40. (**True** | **False**) The function $h(t) = \sin(t+2)$ is a linear combination of the functions $f(t) = \sin t$ and $g(t) = \cos t$.
- 41. (True | False) $h(t) = t^2$ is a linear combination of $f(t) = (1-t)^2$ and $g(t) = (1+t)^2$