Math 304 Quiz 8 — Section 5 — March 1, 2019

- 1. Which of the following transformations cannot be made via a sequence of elementary row operations?
 - (a) $\begin{bmatrix} 2 & 7 \\ 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 7 \\ 3 & 8 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 \\ 2 & 7 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 \\ 7 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} -11 & 2 \\ 1 & 1 \end{bmatrix}$
 - (d) All of the above transformations can be made via a sequence of elementary row operations.
- 2. If one abbreviates a system of m linear equations in n unknowns as $A\mathbf{x} = \mathbf{b}$, then
 - (a) A is an $m \times n$ matrix and $b \in \mathbf{R}^n$
 - (b) A is an $m \times n$ matrix and $b \in \mathbf{R}^m$
 - (c) A is an $m \times n$ matrix and $b \in \mathbf{R}^n$ or $b \in \mathbf{R}^m$
 - (d) A is an $n \times m$ matrix and $b \in \mathbf{R}^n$
- 3. Let $R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$. If R is the reduced row echelon form of the augmented matrix for the system $A\mathbf{x} = \mathbf{b}$, what are the solutions to that system?
 - (a) $x_1 = 1, x_2 = 1$, and $x_3 = 2$
 - (b) $x_1 = 1, x_2 = 1, x_3 = 2$, and $x_4 = 0$
 - (c) $x_1 = -t, x_2 = -t, x_3 = -2t$, and $x_4 = t$
 - (d) There are no solutions to this system
- 4. Let $R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$. If R is the reduced row echelon form of the coefficient matrix for the system $A\mathbf{x} = \mathbf{0}$, what are the solutions to that system?
 - .
 - (a) $x_1 = 1, x_2 = 1$, and $x_3 = 2$
 - (b) $x_1 = 1, x_2 = 1, x_3 = 2$, and $x_4 = 0$
 - (c) $x_1 = -t, x_2 = -t, x_3 = -2t$, and $x_4 = t$
 - (d) There are no solutions to this system
- 5. Let A, B, C be 3 matrices such that the product ABC is defined. What is $(ABC)^T$?
 - (a) $(ABC)^T = A^T B^T C^T$
 - (b) $(ABC)^T = B^T C^T A^T$

- (c) $(ABC)^T = C^T A^T B^T$
- (d) $(ABC)^T = C^T B^T A^T$
- 6. Which of the following matrices does not have an inverse?
 - (a) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix}$
 - (c) $\begin{bmatrix} 0 & 4 \\ 2 & 0 \end{bmatrix}$
 - (d) More than one of the above do not have inverses
 - (e) All have inverses
- 7. We find that for a square coefficient matrix A, the homogenous matrix equation $AX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, has only the

trivial solution
$$X = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
. This means that

- (a) The matrix A has no inverse.
- (b) The matrix A has an inverse.
- (c) This tells us nothing about whether A has an inverse.

8. We know that
$$(5A)^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. What is the matrix A?

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

(c)
$$\begin{bmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{5} \end{bmatrix}$$

(d)
$$\begin{bmatrix} -5 & 0 \\ 0 & -5 \end{bmatrix}$$

- (e) There is no matrix A which solves this equation.
- 9. If A is an invertible matrix, what else must be true?
 - (a) If AB = C then $B = A^{-1}C$
 - (b) A^2 is invertible

- (c) A^T is invertible
- (d) The reduced row echelon form of A is I
- (e) All of the above must be true

10. The reduced row-echelon form of the matrix

$$A = \begin{bmatrix} -2 & 2 & 3 & 1 & -3 & -2 \\ 0 & 2 & 0 & 0 & 1 & -1 \\ -1 & 0 & 1 & -3 & -2 & 2 \end{bmatrix}$$

is given by

$$R = \begin{bmatrix} 1 & 0 & 0 & 10 & 2 & -7 \\ 0 & 1 & 0 & 0 & 1/2 & -1/2 \\ 0 & 0 & 1 & 7 & 0 & -5 \end{bmatrix}$$

Let F be the linear transformation $F: \mathbf{R}^6 \to \mathbf{R}^d$ given by F(x) = Ax. The number d is

- (a) 6
- (b) 2
- (c) 5
- (d) 4
- (e) 3

11. Consider the system of linear equations:

$$2x_1 + 3x_2 + 4x_3 = 5$$

$$3x_1 + 2x_2 + x_3 = 0$$

$$x_1 + 2x_2 + 2x_3 = 2$$

Another way to express this system is:

(a)
$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 2 \end{bmatrix}$$

(b) $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} x_2 + \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} x_3 = \begin{bmatrix} 5 \\ 0 \\ 2 \end{bmatrix}$
(c) $\begin{bmatrix} 2 & 3 & 4 \end{bmatrix} x_1 + \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} x_2 + \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} x_3 = \begin{bmatrix} 5 & 0 & 2 \end{bmatrix}$
(d) $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \\ 3 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 2 \end{bmatrix}$

- 12. Suppose that A is 3×4 . Then the number of solutions to the system $A\mathbf{x} = 0$ is
 - (a) infinite
 - (b) one
 - (c) zero
 - (d) indeterminable without more information
- 13. If one multiplies a row vector of length 5 by a column vector of length 5, in that order (row times column), one gets
 - (a) A number
 - (b) A row vector
 - (c) A column vector
 - (d) A matrix
 - (e) Nothing; this operation cannot be defined in general
- 14. If one multiplies a column vector of length 5 by a row vector of length 5, in that order (column times row), one gets
 - (a) A number
 - (b) A row vector
 - (c) A column vector
 - (d) A matrix
 - (e) Nothing; this operation cannot be defined in general