Math 304 Section 5 Quiz 9—March 6

- 1. Let $B = (v_1, v_2)$ be an ordered basis for \mathbb{R}^2 . Which sentence below gives the meaning of the notation $\begin{pmatrix} a \\ b \end{pmatrix}_{R}$?
 - (a) It is the selection of points based on the lengths of vectors in a matrix.
 - (b) It gives the scalar values for the horizontal and vertical axes.
 - (c) It means that a and b exist in the axis of B.
 - (d) In the basis B, the numbers a and b lie in \mathbb{R}^2 .
 - (e) None of the above interpretations of this notation is correct.
- 2. Let A be a 2×2 matrix and consider the following properties that A might possess:
 - I Tr $A^T A \neq 0$
 - II A^{-1} exists.

Which of the following statements about property I and property II is most accurate?

- (a) I and II are equivalent.
- (b) I and II are both true for all 2×2 matrices.
- (c) I is true for all 2×2 matrices, but II is not.
- (d) I implies II, but not the other way around.
- (e) II implies I, but not the other way around.
- 3. Let $B = (v_1, \ldots, v_n)$ and $C = (w_1, \ldots, w_m)$ be ordered bases for \mathbb{R}^n and \mathbb{R}^m respectively and let T be a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Then ${}_CT_B$, the matrix of T with respect to the input basis B and the output basis C, is best described as:
 - (a) The matrix whose *i*-th column is the coordinates of v_i with respect to the basis C.
 - (b) The matrix whose *i*-th row is the coordinates of v_i with respect to the basis C.
 - (c) The matrix whose *i*-th row is the coordinates of $T(w_i)$ with respect to the basis B.
 - (d) The matrix whose *i*-th column is the coordinates of w_i with respect to the basis B.
 - (e) The matrix whose *i*-th column is the coordinates of $T(v_i)$ with respect to the basis C.

4. What are all the solutions to the system x + 2y = 3 and 2x + 4y = 5?

- (a) x = 0 and y = 1
- (b) 0 = -1
- (c) x can be arbitrary, and $y = \frac{5-2x}{4}$
- (d) x can be arbitrary, and $y = \frac{3-x}{2}$
- (e) There are no solutions.

- 5. Which of the following operations on an augmented matrix could change the solution set of a system?
 - (a) Interchanging two rows
 - (b) Multiplying one row by any constant
 - (c) Adding one row to an other
 - (d) Adding a multiple of one row to an other
 - (e) None of the above
- 6. Complete the following phrase to make a true statement: "A homogeneous linear system of 2019 linear equations in 1776 unknowns..."
 - (a) is always consistent
 - (b) always has a unique solution
 - (c) may be inconsistent
 - (d) which is consistent always has a unique solution
 - (e) which is consistent never has a unique solution
- 7. Consider a homogeneous linear system with n unknowns. Suppose the reduced row echelon form of its augmented matrix has $r \leq n$ nonzero rows. We can conclude that:
 - (a) $x_1 = 0, x_2 = 0, \dots, x_n = 0$ is a solution to the system
 - (b) The system has n r free variables (parameters)
 - (c) The system has infinitely many solutions
 - (d) None of the above
 - (e) More than one of the above
- 8. A vector subspace does *not* have to satisfy which of the following properties?
 - (a) Associativity under vector addition
 - (b) Existence of an additive identity
 - (c) Commutativity under vector addition
 - (d) A vector subspace must satisfy all of the above properties
 - (e) A vector subspace need not satisfy any of the above properties