Math 304, Section 5 — Quiz 13 – April 1

Name:_____

1. A basis of a vector space V is a subset of V with two properties. What are the two properties?

2. If the columns of A are not linearly independent, how many solutions are there to the system $A\mathbf{x} = \mathbf{0}$?

(a) 0

(b) 1

- (c) Infinitely many
- (d) Not enough information given
 - 3. Which of the following sets of vectors spans \mathbb{R}^3 ?

i.)
$$\begin{bmatrix} -2\\1\\3 \end{bmatrix}, \begin{bmatrix} 3\\5\\-1 \end{bmatrix}$$

iii.)
$$\begin{bmatrix} 2\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\0\\-2 \end{bmatrix}, \begin{bmatrix} 6\\2\\-2 \end{bmatrix}$$

- (a) i, ii, iii, and iv
- (b) ii, iii, and iv only
- (c) ii and iii only
- (d) i, ii and iii only
- (e) iii and iv only
- (f) ii only

4. Which of the following sets is/are linearly independent?

(a)
$$\left\{ \begin{bmatrix} 1\\-1\\4 \end{bmatrix}, \begin{bmatrix} 2\\-2\\0 \end{bmatrix} \right\}$$

(b) $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$

ii.)	$\begin{bmatrix} -2\\ 0 \end{bmatrix}$		$\begin{bmatrix} 0\\1 \end{bmatrix}$		$\begin{bmatrix} 1\\ 2 \end{bmatrix}$		
iv.) $\begin{bmatrix} 4\\6\\2 \end{bmatrix}$, 3 2 1	,	1 8 12 4	, [$\begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}$	

(c)
$$\left\{ \begin{bmatrix} -1\\4 \end{bmatrix}, \begin{bmatrix} 3\\-12 \end{bmatrix} \right\}$$

(d) $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$
(e) $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$
5. Let $\mathbf{v} = \begin{bmatrix} 2\\0\\3 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, and $\sim 0 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$ Which of the following are *linearly dependent*? Select all that pply
(a) $\{\mathbf{0}\}$

- a
 - (a) $\{\mathbf{U}\}$
 - (b) {**v**}
 - (c) $\{w, 0\}$
 - (d) $\{v, 0\}$
 - (e) $\{\mathbf{v}, \mathbf{w}\}$
 - (f) $\{v, w, 0\}$

6. Which of the following subsets $U \subset \mathbb{R}^n$ is a subspace?

- (a) $U = \{x \in \mathbb{R}^n \mid x_1 = \dots = x_n\}$
- (b) $U = \{x \in \mathbb{R}^n \mid x_1^2 = x_2^2\}$
- (c) $U = \{x \in \mathbb{R}^n \mid x_1 = 1\}$

7. Which of the following statements are true?

I. A set $\{u, v, w\}$ of vectors is linearly independent if only if for scalars $a, b, c \in \mathbb{R}$, au + bv + cw = 0 implies a = b = c = 0

II. A set $\{u, v, w\}$ of vectors is linearly independent if and only if for scalars $a, b, c \in \mathbb{R}$, au + bv + cw = 0when a = b = c = 0

III. A set $\{u, v, w\}$ of vectors is linearly independent if and only if u is not a linear combination of v and w

IV. $\{(1, -1), (1, 1)\}$ spans \mathbb{R}^2

V. $\{(1,0,1), (1,1,1), (2,1,2)\}$ spans \mathbb{R}^3

- (a) I & IV
- (b) II & IV
- (c) I & II
- (d) III & V
- (e) III & II
- (f) I & V