- 1. Consider the implication $P \Rightarrow Q$ and answer the following questions.
 - (a) (1 point) What is the converse of $P \Rightarrow Q$?

Solution: $Q \Rightarrow P$

(b) (1 point) What is the contrapositive of $P \Rightarrow Q$?

Solution: $\neg Q \Rightarrow \neg P$

(c) (4 points) Write down a truth table for $P \Rightarrow Q$.

	Р	Q	$(P \Rightarrow Q)$
Solution:	T	T	Т
	T	F	F
	F	T	Т
	F	F	Т

(d) (6 points) The original statement $P \Rightarrow Q$, its converse, and its contrapositive, give rise to 3 pairs of statements: (original, converse), (original, contrapositive), and (converse, contrapositive). Which, if any, of these 3 pairs of statements are logically equivalent statements?

Solution: The original and contrapositive are logically equivalent statements. The converse is *not* logically equivalent to the original nor is it logically equivalent to the contrapositive.

(e) (3 points) Is the statement $\neg P \land Q$ logically equivalent to any of the statements considered in the previous parts? If so, which ones? (No explanation is necessary to get credit for this question.)

Solution: No. Consider the following assignment of truth values: P = Q = T. Then we see that $\neg P \land Q$ is false, because $\neg P$ is false. But the original, converse, and contrapositive are all true.

2. Find a "useful denial" of the following statements. Reminder: a useful denial is a statement logically equivalent to the denial of the original statement. Be sure to handle

quantifiers appropriately. Write your useful denial in mathematically precise English, not in logical notation. *Hint: you need not think about whether these statements are true.*

(a) (5 points) For all functions f such that f has a maximum at x_0 and f is differentiable at x_0 , $f'(x_0) = 0$.

Solution: There exists a function f such that f has a maximum at x_0 and f is differentiable at x_0 , for which $f'(x_0) \neq 0$.

(b) (5 points) For all integers j and k, if n = jk, then j = 1 or k = 1.

Solution: There exist integers j and k and an integer n such that n = jk, but $j \neq 1$ and $k \neq 1$.

- 3. A sequence $(b_n)_{n=0}^{\infty}$ satisfies $b_0 = 1, b_1 = -2$, and $b_{n+1} = -3b_n 2b_{n-1}$.
 - (a) (1 point) Find b_2 .

Solution:

$$b_2 = -3b_1 - 2b_0 = -3 \cdot (-2) - 2 \cdot 1 = 6 - 2 = 4$$

(b) (1 point) Find b_3 .

Solution:

$$b_3 = -3b_2 - 2b_1 = -3 \cdot (4) - 2 \cdot (-2) = -12 + 4 = -8$$

(c) (1 point) Find b_4 .

Solution:

$$b_4 = -3b_3 - 2b_2 = -3 \cdot (-8) - 2 \cdot (4) = 24 - 8 = 16$$

(d) (8 points) Conjecture a "closed-form" formula for b_n .

Solution: $b_n = (-1)^n 2^n$ (e) (2 points) Find b_5 , and check that your formula gives the correct value for b_5 .

Solution:

 $b_5 = -3b_4 - 2b_3 = -3 \cdot (16) - 2 \cdot (-8) = -48 + 16 = -32 = (-1)^5 2^5$

(f) (2 points) Find b_6 , and check that your formula gives the correct value for b_6 .

Solution: $b_6 = -3b_5 - 2b_4 = -3 \cdot (-32) - 2 \cdot (16) = 96 - 32 = 64 = (-1)^6 2^6$

- 4. A sequence $(a_n)_{n=1}^{\infty}$ satisfies $a_1 = 1, a_2 = 5$, and $a_{n+1} = a_n + 2a_{n-1}$. In this problem you will prove by induction that $a_n = 2^n + (-1)^n$.
 - (a) (2 points) Identify a statement P(n) to be proved.

Solution: Let P(n) be the statement that $a_n = 2^n + (-1)^n$.

(b) (2 points) Complete the base step of the induction.

Solution: For the base step we will show that $a_1 = 2^1 + (-1)^1 = 2 - 1 = 1$ and that $a_2 = 2^2 + (-1)^2 = 4 + 1 = 5$. This is true by the definition of the sequence $(a_n)_{n=1}^{\infty}$.

(c) (8 points) Complete the induction step.

Solution: For the induction step, we will show for all $n \ge 2$ that P(n-1)and P(n) together imply P(n+1). Since P(n-1) is true, we have $a_{n-1} = 2^{n-1} + (-1)^{n-1}$. Since P(n) is true, we have $a_n = 2^n + (-1)^n$. By definition of the sequence $(a_n)_{n=1}^{\infty}$, $a_{n+1} = a_n + 2a_{n-1}$. Putting these facts together, we have

$$a_{n+1} = 2^n + (-1)^n + 2 \cdot (2^{n-1} + (-1)^{n-1})$$

= $2^n + (-1)^{n-1} \cdot (-1) + 2 \cdot 2^{n-1} + 2 \cdot (-1)^{n-1} = 2^n + 2^n + (-1)^{n-1}((-1) + 2)$
= $2 \cdot 2^n + (-1)^{n-1} \cdot 1$
= $2^{n+1} + (-1)^{n-1} \cdot (-1)^2$ = $2^{n+1} \cdot (-1)^{n+1}$

This is exactly P(n+1), so we have completed the proof of the induction step.

(d) (1 point) In your proof, did you use strong induction?

Solution: Yes, we used P(n-1) and not just P(n) to show P(n+1).

- 5. Consider carefully each of the following propositions and attempted proofs. Indicate what is wrong with each attempted proof, if anything. (Some proofs may be correct.) *Hint: you are not being asked whether the propositions themselves are true. You are being asked to find the errors, if any, in the proofs.*
 - (a) (5 points) Proposition: Let m ∈ Z. If m ≠ 0 then m² ∈ N.
 Attempted Proof. Assume, seeking a contradiction, that m = 0. Then we have m² = 0. But 0 ∉ N by definition of natural numbers. This is a contradiction, proving the desired result. □

Solution: In a proof by contradiction, one assumes the negation of the statement to be proved. This attempted proof assumes instead the negation of the hypothesis $m \neq 0$. Also, the statement that is claimed to be a contradiction is not in fact a contradiction on its own, it is only contradicts the conclusion $m^2 \in \mathbb{N}$ of the statement to be proved.

(b) (5 points) **Proposition:** Let $m \in \mathbb{Z}$. If $m \neq 0$ then $m^2 \in \mathbb{N}$.

Attempted Proof. We may assume that $m \in \mathbb{N}$ or that $-m \in \mathbb{N}$, using the basic properties of integers. In the first case, take m = 1, then $m^2 = 1 \in \mathbb{N}$. In the second case, take m = -1, and again $m^2 = 1 \in \mathbb{N}$. \Box

Solution: The statement "If $m \neq 0$ " has an implicit "for all" quantifier. This proof incorrectly takes this quantifier to be a "there exists" instead. The special cases m = 1, -1 are only sufficient to prove a "there exists" version of the statement and not the "for all" version.

(c) (8 points) **Proposition:** For every nonnegative integer n, 5n = 0.

Attempted Proof. Let P(n) be the statement 5n = 0. We will prove this by strong induction.

For the base step, we have to prove that $5 \cdot 0 = 0$. This is true by basic properties of integers.

For the induction step, we show that if P(i) is true for all i such that $0 \le i \le m$, then P(m+1) is true also. Let i and j be integers such that i + j = m + 1 and $0 \le i \le m$ and $0 \le j \le m$. By the induction hypothesis and the definition of iand j, P(i) and P(j) are true. By definition of P(i) and P(j), we have 5i = 0 and 5j = 0. Adding these equations, 5i + 5j = 5(i + j) = 5(m + 1) = 0. This proves P(m + 1). This completes the proof of the induction step (PSMI 2). Thus P(n) is true for all $n \ge 0$.

Solution: The proof of the induction step $P(m) \Rightarrow P(m+1)$ fails when m = 0, because there are no integers i and j satisfying the given conditions. More specifically, when m = 0, the proof claims that there are integers i, j satisfying i + j = 0 + 1 and $0 \le i \le 0$ and $0 \le j \le 0$. These conditions are i = 0, j = 0, and i + j = 1, which is impossible. Thus the proof that $P(0) \Rightarrow P(1)$ is incorrect, and the proof of the induction step is not correct.

- 6. Are the following statements true or false? If the statement is true, you should provide a short proof. If the statement is false, you should provide a counterexample.
 - (a) (6 points) $(\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) [xy > 0]$

Solution: False. For a counterexample, let $x \in \mathbb{R}$ be given, and take y = -x. Then $xy = -x^2 \leq 0$ cannot satisfy xy > 0.

(b) (6 points) $(\forall x \in \mathbb{Q})(\forall y \in \mathbb{Q})(\exists z \in \mathbb{Q})[x < z < y]$

Solution: False. If $y \le x$, there is no z such that x < z < y.

(c) (6 points)
$$(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(\exists z \in \mathbb{Z})[(y > x) \land (y + z = 500)].$$

Solution: True. Let y = x + 1 and z = 500 - y. Then y > x and y + z = 500.

- 7. Say whether or not the following statements are true, and give a proof or counterexample, as appropriate.
 - (a) (7 points) The product of two *distinct* irrational numbers is irrational.

Solution: False. We have $(2 + \sqrt{2})(2 - \sqrt{2}) = 2^2 - 2 = 2$, a rational number. But $(2 + \sqrt{2})$ and $(2 - \sqrt{2})$ are distinct irrational numbers, because the sum of a rational number and an irrational number is irrational. For completeness we prove that the sum of a rational number $\frac{a}{b}$ and an irrational number x is irrational. Seeking a contradiction, assume that $\frac{a}{b} + x = \frac{c}{d}$ is rational. Then $x = \frac{c}{d} - \frac{a}{b} = \frac{bc-ad}{bd}$ is rational, a contradiction.

(b) (7 points) The product of a nonzero rational number and an irrational number is irrational.

Solution: True. Assume, seeking a contradiction, that the product of a rational number $\frac{a}{b}$ and an irrational number x is rational. Then $\frac{a}{b} \cdot x = \frac{c}{d}$ is rational. Therefore $x = \frac{c}{d} \frac{b}{a} = \frac{bc}{ad}$ is rational, a contradiction.

- 8. In this problem, you may use the fact (to be proved in Chapter 6) that for all integers n, if n is not divisible by 3, then there exists an integer k such that n = 3k + 1 or n = 3k + 2. You may also use without proof the fact that if n is of the form 3k + 1 or 3k + 2 for some integer k, then n is not divisible by 3.
 - (a) (6 points) Show that if n is not divisible by 3, then there is an integer l such that $n^2 = 3l + 1$.

Solution: If n is not divisible by 3, then there exists a k such that n = 3k + 1or n = 3k + 2. In the first case, $n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1 = 3l + 1$ where $l = 3k^2 + 2k$ is an integer since k is. In the second case, $n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1 = 3l + 1$ where $l = 3k^2 + 4k + 1$ is an integer since k is. So such an integer l always exists, proving the desired result.

(b) (6 points) Show that if $3|(i^2 + j^2)$, then 3|i and 3|j.

Solution: We will prove the contrapositive: if $3 \nmid i$ or $3 \nmid j$, then $3 \nmid (i^2 + j^2)$. Since $3 \nmid i$ or $3 \nmid j$, one of $3 \nmid i$, $3 \nmid j$ must be true. Suppose first that $3 \nmid i$. Then we have $i^2 = 3l + 1$ for some integer l by part (a). Now either $3 \mid j$ or $3 \nmid j$. If $3 \mid j$, then we have j = 3m for some integer m, and $i^2 + j^2 = 3l + 1 + 9m^2 =$ $3(l+3m^2)+1$ is not divisible by 3, using the facts on divisibility by 3 given in the statement of the problem. If $3 \nmid j$, by part (a) we have $j^2 = 3n + 1$ for some integer n and $i^2 + j^2 = 3l + 1 + 3n + 1 = 3(l+n) + 2$ is not divisible by 3, again using the facts given in the statement of the problem. Thus we have shown that if $3 \nmid i$, then $i^2 + j^2$ is not divisible by 3. Now we must show that if $3 \nmid j$, then $i^2 + j^2$ is not divisible by 3. If $3 \nmid j$, we have $j^2 = 3l + 1$ for some integer l. We consider two cases: either $3 \mid i \text{ or } 3 \nmid i.$ If $3 \mid i$, then we have i = 3m for some integer m, and $i^2 + j^2 = 9m^2 + 3l + 1 =$ $3(3m^2+3l)+1$ is not divisible by 3, using the facts on divisibility by 3 given in the statement of the problem. If $3 \nmid i$, by part (a) we have $i^2 = 3n + 1$ for some integer n and $i^2 + j^2 = 3n + 1 + 3l + 1 = 3(n+l) + 2$ is not divisible by 3, again using the facts given in the statement of the problem.

Thus we have shown that if $3 \nmid j$, then $i^2 + j^2$ is not divisible by 3. This completes the proof of the contrapositive, which is logically equivalent to the original statement. Thus we have completed the proof.