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Introduction
Statistical techniques are employed in almost every phase of life.

Surveys are designed to collect early returns on election day and
forecast the outcome of an election.
Consumers are sampled to provide information for predicting product
preferences.
Research physicians conduct experiments to determine the effect of
various drugs and controlled environmental conditions on humans in
order to infer the appropriate treatment for various illnesses.
Engineers sample a product quality characteristic and various
controllable process variables to identify key variables related to
product quality.
Newly manufactured electronic devices are sampled before shipping
to decide whetherto ship or hold individual lots.
Economists observe various indices of economic health over a period
of time and use the information to forecast the condition of the
economy in the future.

Statistical techniques play an important role in achieving the objective of
each of these practical situations.
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The objective of statistics is to make an inference about a population
based on information contained in a sample from that population and to
provide an associated measure of goodness for the inference.

In the broadest sense, making an inference implies partially or completely
describing a phenomenon or physical object. Little difficulty is
encountered when appropriate and meaningful descriptive measures are
available, but this is not always the case.
We can characterize the available data

Graphically, e.g. using a histogram to plot relative frequencies of,
say, GPAs of students in the class, or
Numerically, e.g. finding the average annual rainfall in California
over the past 50 years and the deviation from this average quantity
in a particular year.

We may also be interested in the likelihood of a certain event, e.g.
drawing the Royalty (King and Queen) of different suits from a standard
deck of cards.
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Basic to inference making is the problem of calculating the probability of
an observed sample.

As a result, probability is the mechanism used in
making statistical inferences.
Intuitive assessments of probabilities can often turn out to be
unsatisfactory, and we need a rigorous theory of probability in order to
develop methods of inference.

We will begin with a study of the mechanism employed in making
inferences, the theory of probability. This theory provides theoretical
models for generating experimental data and thereby provides the basis
for our study of statistical inference.
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Reference

I have prepared these notes from the
book "Mathematical Statistics with
Applications, 7th Edition" by
Wackerley, Mendenhall, and Scheaffer.
(Thomson Brooks/Cole)

For the course, this shall be the
reference book.

Throughout the notes, the words
“Text” and “Book” will refer to the
book mentioned above.
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Two problems which will be in the Final Exam (in some form or other)
1 The “Monty Hall Problem ” (Text 2.20, Wikipedia)
2 Bayes’ Theorem Problem (e.g. Text 2.125)
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Prerequisite: C or better in Math 323.

A C- is acceptable if your first semester at Binghamton was before Fall
2014.

Please try to log in to the homework system. For a link, look at the
syllabus page: www.dikran.com
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Remarks on how to study:

We want to get to a point where we can do almost any problem
from the book.
Use the fact that no problem in the book is terribly difficult. Usually
they don’t take more than 10 minutes each.
Know the tricks and techniques from each section.
Try to do the problems. Don’t spend huge amounts of time hung up
on a single problem. If you can’t do it in 20 minutes, time to look
things up: is there a technique you forgot? A formula for
expectation or variance?
If you have all the techniques, maybe it’s time to look at the
solution. (Solutions to every problem are available.)
After reading the solution, close the solution book and try to solve
the problem again. Can you explain the steps? Could you solve the
problem 2 days later without referring to the solutions?
Over time you will build a library of problems you can solve. You will
notice patterns – the problems will fit into into categories.
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things up: is there a technique you forgot? A formula for
expectation or variance?
If you have all the techniques, maybe it’s time to look at the
solution. (Solutions to every problem are available.)
After reading the solution, close the solution book and try to solve
the problem again. Can you explain the steps? Could you solve the
problem 2 days later without referring to the solutions?
Over time you will build a library of problems you can solve. You will
notice patterns – the problems will fit into into categories.
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Why should you do the applet exercises from the book?

To check whether you know the various distributions, I can show you
graphs and ask “Which of the distributions we studied is this?” or “What
are the parameter values?”.
You can prepare for this using the Applet exercises.
(Look at the book; there are dozens.) You could also prepare by using R.

Please attempt every problem I assign, and try a few more: Many have
answers in the back of the text. If you can’t do the problem:

1 Look at examples from the relevant section.
2 Answers for odd-numbered problems in the back of the text.
3 Student Solution Manual (All odd-numbered problems solved).
4 Look for analogous problems.
5 Yahoo! answers.
6 Instructor’s Solution Manual.
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You have to do the work.

An example to show that what is easy is not obvious: The University of
California at Berkeley was sued. Discrimination against women in
graduate admissions was alleged. Women were admitted to graduate
school at a much lower rate.

The university attempted to find the culprit(s).
Every department was required to report admission rates for men and
women. The reasoning: if women applicants are admitted at a lower rate
overall, there must be some department(s) which are discriminating
against women. Find those departments and institute appropriate
remedies.
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Surprise: every department reports that women are admitted at higher
rates than men.

Detailed records prove it. How is this possible?

Toy example with two departments: Engineering and Humanities
Engineering admits 40% of women and 30% of men
Humanities admits 20% of women and 10% of men
Engineering applicants: 90 men, 10 women
Humanities applicants: 90 women, 10 men
Overall: women 24% men 28%

“Simpson’s Paradox”
Probability: simple, but not obvious. You have to do the work!
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End of Chapter 1
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Chapter 2

Probability
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An “Interview Problem”

We’re going to play a game. The player is allowed to flip a fair coin
repeatedly, and decide after each flip whether to stop. When the player
stops, if they have so far flipped k heads in n flips, they are paid k

n
dollars.

Example (1)
If the player flips H on the first try and stops, their payout is 1

1 = $1.

Example (2)
If the player flips T ,T and then stops, their payout is 0

2 = $0.

Example (3)
If the player flips T ,H,T and then stops, their payout is 1

3 = $0.33 . . . .
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Questions:
How much would you pay to play this game?

How much would you charge someone else?
What is the best strategy?

A strategy:
If we flip H on the first try, stop.
If we flip T , flip 1000 times; the result will be very close to 50%
heads, very likely. (If not, flip a few thousand times more.)

Approximate Payout: 50% chance of $ 1
+ 50% chance of about 50 ¢

Total: 75 ¢.

This is called the “Chow-Robbins Game”. The exact value is unknown.
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If we flip T , flip 1000 times; the result will be very close to 50%
heads, very likely. (If not, flip a few thousand times more.)

Approximate Payout: 50% chance of $ 1
+ 50% chance of about 50 ¢
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It may be correct to keep playing even though you have more than
50% heads; for example, with 1T and 2H, it is correct to keep
playing.

The correct strategy is unknown; to see the complexity, consider
questions like: Would you continue with 5H and 3T? How about
66H and 59T?

The idea that the payout will “eventually be 50% or close to it” is a
limit theorem – called “The Law of Large Numbers”.

The fair price for the game is called an “Expected Value” or “Mean”.
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“Subjective Probability”

What is the probability that Hillary Clinton will be the next
President of The United States?
What is the probability that this patient survives the operation?

We study “Axiomatic Probability” (Kolmogorov, circa 1931).

Definition (Probability)
A probability is an assignment of numbers (probabilities) to sets of
possible outcomes satisfying certain axioms.

Example: Coin Flip
On flipping two fair coins, the possible outcomes are HH, HT , TH, and
TT , all equally likely. So the probability of each outcome is 1

4 = 0.25.
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Axiomatic Probability

Definition ((Axiomatic) Probability)
Suppose S is a sample space associated with an experiment. To every
event A in S (A is a subset of S), we assign a number, P(A), called the
probability of A, so that the following axioms hold:

Axiom 1: P(A) ≥ 0.
Axiom 2: P(S) = 1.
Axiom 3: If A1,A2, . . . form a sequence of pairwise mutually

exclusive events in S (that is, Ai ∩ Aj = ∅ if i 6= j), then

P(A1 ∪ A2 ∪ . . . ) =
∞∑

n=1
P(An).
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Example (Rolling a die)

The “sample space” S of possible outcomes is
S = {1, 2, 3, 4, 5, 6}

An event is a subset of S.

Example (continued)
Let A be the event “The result of the die roll is an even number”. Then

A = {2, 4, 6}

We already know how to assign a probability P(A):

P(A) = 1
2 .
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Define three events E2,E4,E6 by

E2 = Result is a 2,
E4 = Result is a 4,
E6 = Result is a 6.

Then
A = E2 ∪ E4 ∪ E6, P(E2) = P(E4) = P(E6) = 1

6 ,
and

P(A) = P(E2) + P(E4) + P(E6) = 1
6 + 1

6 + 1
6 = 1

2 .

You already know the axioms of probability. The fact above is a special
case of the most complex axiom.
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Problems in Discrete Probability

Here is a type of problem where there is a sample space S (which is a
finite set) and we know, or can assume, that every individual outcome in
S is equally likely. We have an event A ⊂ S, and we want to find P(A).

Solution:
Count the elements of S and those of A. Then

P(A) = |A|
|S|

←− number of elements of A
←− number of elements of S

This applies to our example of rolling the die. There
S = {1, 2, 3, 4, 5, 6} |S| = 6

A = {2, 4, 6} |A| = 3 =⇒ P(A) = 3
6 = 1

2 .

Note that this process only works when we know that all members of S
are equally likely outcomes.
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S is equally likely. We have an event A ⊂ S, and we want to find P(A).
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Count the elements of S and those of A. Then

P(A) = |A|
|S|

←− number of elements of A
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The “Sample-Point Method”

The following steps are used to find the probability of an event:
1 Define the experiment and clearly determine how to describe one

simple event.
2 List the simple events associated with the experiment and test each

to make certain that it cannot be decomposed. This defines the
sample space S.

3 Assign reasonable probabilities to the sample points in S, making
certain that P(Ei ) ≥ 0 and

∑
i P(Ei ) = 1.

4 Define the event of interest, A, as a specific collection of sample
points (A sample point is in A if A occurs when the sample point
occurs. Test all sample points in S to identify those in A.)

5 Find P(A) by summing the probabilities of the sample points in A.
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It is possible to define probabilities in a different way so that not all
members of S are equally likely.

This might correspond to, say, loading
the die so that 6 is more likely to come up.

Exercise 2.12
A vehicle arriving at an intersection can turn right, turn left, or continue
straight ahead. The experiment consists of observing the movement of a
single vehicle through the intersection.
(a) List the sample space for this experiment.
(b) Assuming that all sample points are equally likely, find the probability

that the vehicle turns.

Solution:
S = {turns right , turns left , straight ahead}. Assuming all sample points
are equally likely, find the probability that the vehicle turns. Here
T = {turns} = {turns right , turns left}. So P(T ) = |T |

|S| = 2
3 .
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We can still define probabilities even if not all points in the sample space
are equally likely.

Exercise 2.10
The proportions of blood phenotypes, A, B, AB, and O, in the population
of all Caucasians in the Unites States are approximately .41, .10, .04, and
.45, respectively. A single Caucasian is chosen at random from the
population.
(a) List the sample space for this experiment.
(b) Make use of the information given above to assign probabilities to

each of the simple events.
(c) What is the probability that the person chosen at random has either

type A or type AB blood?
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Solution:

S = {A,B,AB,O}; P(A) = 0.41, P(B) = 0.10, P(AB) = 0.04,
P(O) = 0.45; E = {person has typeA orAB blood}. Then

P(E ) = P(A) + P(AB) = 0.41 + 0.04 = 0.45.

Remark:
In a situation like this (not all simple events are equally likely), we need
extra information to find the probabilities.
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So far, we have thought of S as a finite set of points (“simple events”).

We can also think of S as a continuous space.

The probability then becomes something like a measurement of area.
Note that all axioms of probability are satisfied if S = unit square and
the event A is a subset of the unit square; then P(A) = area of A.

In Section 2.8, we will see various probability formulas to get an idea of
what’s going on. Pretend we are in the situation of subsets of the unit
square and that probability = area.
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Theorem 2.6: “Additive Law”

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Proof:
Let’s draw a picture:

area(A ∪ B) = area(A) + area(B)− double counted part︸ ︷︷ ︸
area(A∩B)

.
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Example (Theorem 2.7: P(A) = 1− P
(
A
)
)

A ∪ A = S,A ∩ A = ∅ =⇒ P(A) + P(A) = P(S) = 1.
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Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7.

Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B), that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B), that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B), that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B), that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B), that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)

= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B), that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)

= 1.5− P(A ∩ B).
So −0.5 ≥ −P(A ∩ B), that is,

P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B), that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B),

that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



Exercise:
Suppose A and B are two events with P(A) = 0.8,P(B) = 0.7. Is it
possible that P(A ∩ B) = 0.3?

Solution:
Answer: NO!

Combine the two statements
P(A∪B) = P(A) +P(B)−P(A∩B)
and P(A ∪ B) ≤ 1:

1 ≥ P(A) + P(B)− P(A ∩ B)
= 0.8 + 0.7− P(A ∩ B)
= 1.5− P(A ∩ B).

So −0.5 ≥ −P(A ∩ B), that is,
P(A ∩ B) ≥ 0.5.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 30 / 381



More complex example: Counting (Example 2.10)

A labor dispute has arisen concerning the distribution of 20 laborers to
four different construction jobs. The first job (considered to be very
undesirable) required 6 laborers; the second, third, and fourth utilized 4,
5, and 5 laborers, respectively. The dispute arose over an alleged random
distribution of the laborers to the jobs that placed all 4 members of a
particular ethnic group on job 1. In considering whether the assignment
represented injustice, a mediation panel desired the probability of the
observed event.
(a) Determine the number of sample points in the sample space S for

this experiment, that is, determine the number of ways the 20
laborers can be divided into groups of the appropriate sizes to fill all
of the jobs.

(b) Find the probability of the observed event if it is assumed that the
laborers are randomly assigned to jobs.
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Analysis:

How many ways can you assign 20 laborers to 4 construction jobs
requiring 6, 4, 5, and 5 laborers, respectively?
Notice that 6 + 4 + 5 + 5 = 20.

Question: How many ways can we divide a 20-element set into 4 subsets
of size 6, 4, 5, and 5, respectively?
Answer: Theorem 2.3: There are(

20
6 4 5 5

)
= 20!

6! · 4! · 5! · 5! (= 4.89× 1010) ways.

How many ways can we do this so that all 4 members of the minority
group are assigned to the most “unpleasant” job?
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Analysis: (continued)
Note that the “unpleasant” job requires 6 people.

We now have 16
people to assign to 4 jobs; the first job still needs 2 more people.

Answer: (
16

2 4 5 5

)
= 16!

2! · 4! · 5! · 5! (= 1.51× 108).

What is the probability that this would happen if every worker were
assigned randomly to a job?

P(A) = |A|
|S| =

16!
2!·�4!·�5!·�5!

20!
6!·�4!·�5!·�5!

= 16! · 6!
20! · 2!

= ��16! · (�6) · {��5 · 4} · (�3) ·��2!
{��20} · 19 · (��18) · 17 ·����16! · 2! = 1

19 · 17 = 1
323 .
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Note:

Observe that it is easier to expand the factorial and cancel the common
factors out, than to compute the numerator and the denominator
separately and then do the division.

Remarks:
In Example 2.10, we worked out the probability of assigning 20
laborers to jobs requiring 6, 4, 5, and 5 laborers, respectively, such
that 4 particular laborers are assigned to the first job, with respect
to the random assignment.

If the question is, “Are the 4 laborers of the particular ethnic group
being treated uniformly?”, this evidence is not conclusive by itself.

There are two possible mitigating factors:
Maybe not all assignments of laborers to the jobs are equally likely.
Maybe there were many chances to observe this event.
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Recall:

Theorem (2.3)
If n = n1 + · · ·+ nk , the number of ways of partitioning n objects into
subsets of size n1, . . . , nk is the “Multinomial Coefficient”(

n
n1 n2 . . . nk

)
= n!

n1! · n2! · · · · · nk ! .

Remark: Binomial Coefficients
Binomial coefficients are a special case of Multinomial coefficients (k=2).
Recall the binomial coefficient is written

(
n
k

)
= n!

(n − k)! · k! . This is

the same as
(

n
k n − k

)
= n!

k! · (n − k)! .
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Binomial Theorem:

(x + y)n = xn +
(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·+

(
n

n − 1

)
xyn−1 + yn

=
n∑

k=0

(
n
k

)
xn−kyk .

There is an analogous “Multinomial Theorem”:

(x1 + · · ·+ xk)n =
∑

n1,...,nk∑
i

ni =n

(
n

n1 . . . nk

)
xn1

1 . . . xnk
k .
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Exercise 2.43
A fleet of nine taxis is to be dispatched to three airports in such a way
that three go to airport A, five go to airport B, and one goes to airport
C. In how many ways can this be accomplished?

Answer:(
9

3 5 1

)
= 9!

3! · 5! · 1! = 9 · 8 · 7 · (�6) ·��5!
(��3 · 2) ·��5!

= 9 · 8 · 7 = 504.

Exercise 2.45
What is the coefficient of x2y5z10 in the expansion of (x + y + z)17?

Answer:

“17 choose 2, 5, 10” =
(

17
2 5 10

)
= 17!

2! · 5! · 10!
easy!= 408408.
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Conditional Probability and Independence

Definition
The “Conditional probability of A given B” is

P(A | B) def= P(A ∩ B)
P(B) .

Remark:
This is defined only if P(B) > 0.

Example
Two dice are thrown: let A be the event that the total showing is ≥ 10.
Let B be the event that one of the dice shows a 1. Then

P(A) = 1
6 , P(A | B) = 0.
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P(A) = 1
6 ,

P(A | B) = 0.
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Independent Events

Definition
Two events A and B are independent if P(A ∩ B) = P(A) · P(B).
Otherwise the events are dependent.

Remarks:
If P(B) > 0, this is equivalent to P(A | B) = P(A). Also, if
P(A) > 0, this is equivalent to P(B | A) = P(B).
Independence is very special — similar to orthogonality.
Sometimes independence is implicit: “We throw two dice”; it is
assumed here that the two dice are independent.

The Multiplicative Law of Probability:

P(A ∩ B) = P(A | B) · P(B) = P(B | A) · P(A).

Remark: P(A | B) 6= P(B | A) in general.
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The “Law of Total Probability”

Definition (Partition of a Set)
A “partition” of S is a division of S into disjoint pieces: sets B1, . . . ,Bk
contained in S so that

1 S = B1 ∪ · · · ∪ Bk ,
2 Bi ∩ Bj = ∅ for i 6= j .

Law of Total Probability:
If B1, . . . ,Bk is a partition of S, then

P(A) =
k∑

i=1
P(A | Bi ) · P(Bi ).

Remark:
This is really saying P(A) =

∑k
i=1 P(A ∩ Bi ).
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Example:
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Theorem (Bayes’ Rule)

If B1, . . . ,Bk is a partition of S and P(Bi ) > 0 for all i , then

P(Bj | A) = P(A | Bj) · P(Bj)
k∑

i=1
P(A | Bi ) · P(Bi )

.

Proof.
By definition,

P(Bj | A) = P(A ∩ Bj)
P(A) .

Now apply the law of total probability in the denominator.
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Example:

You are a doctor, you have a 90% accurate test for a disease. The
prevalence of this disease in the population is 1%. A patient tests
positive. What is the probability that the patient actually has the disease?

We write B1 = patient has the disease,
B2 = patient does not have the disease, A = patient tests positive. The
problem asks: what is P(B1 | A)?

P(B1 | A) = P(A | B1) · P(B1)
P(A | B1) · P(B1) + P(A | B2) · P(B2) .

Interpretation: There are two ways of testing positive:
1 have the disease (P(A | B1) · P(B1)), or
2 false positive (P(A | B2) · P(B2)).
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Example (continued):

We are given P(A | B1) = 90%,P(A | B2) = 10%,P(B1) = 1%.

We can
deduce P(B2) = 99%. We plug this information in Bayes’ formula
(previous slide):

P(B1 | A) = P(A | B1) · P(B1)
P(A | B1) · P(B1) + P(A | B2) · P(B2)

= (0.9)(0.01)
(0.9)(0.01) + (0.1)(0.99)

= 0.009
0.009 + 0.099 = 0.009

0.108
= 1

12 ≈ 0.0833.

Conclusion:
The probability that the patient actually has the disease is only about 8%.
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Another way to think about this:

Suppose in the same setup that we have 1000 patients, of which 10
actually have the disease. In this group, 9 will test positive. In the
remaining 990 patients, we will get 99 positive tests.

If we know that a patient tests positive, we know that they are one of the
108 = 9 + 99 patients identified above. The number of those who
actually have the disease is 9. So the probability that a patient who tests
positive actually has the disease is 9

108 ≈ 0.0833.

Remark:
The key to the analysis is: there are two ways to test positive: have
disease, or false positive.
Analysis: What is the relative likelihood of these two events?
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Problem:

Vlad is to play a 2-game chess match with Gary and wishes to maximize
his chances of winning, and minimize Gary’s chances of winning. To do
this, he may select a strategy right before he plays each game: timid or
bold.

Unfortunately, Gary is the superior player. If Vlad plays timidly, Gary will
still win 10% of those games, and the rest will be draws. If Vlad plays
boldly, Gary will win 5

9 of those games, and lose the rest.

Describe Vlad’s optimal strategy in this 2-game match.
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Analysis of the problem:

Scoring of a chess match: win = 1, loss = 0, draw = 1
2. After 2

games, the player with more points wins the match. If the players
have the same number of points, the match is tied.
Gary is the better player, but Vlad can vary his strategy:
(T) Timid: Gary wins 10%, draw 90%.
(B) Bold: Gary wins 5

9 , Vlad wins 4
9 .

Conclusion of the problem: With the correct strategy, Vlad has
better chances of winning the match.

Correct Strategy:
Play boldly in the first game. If win, play timidly in the second game.
Otherwise, play boldly again.
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Exercise 2.133

A student answers a multiple-choice examination question that offers four
possible answers.
Suppose the probability that the student knows the answer to the
question is .8 and the probability that the student will guess is .2.
Assume that if the student guesses, the probability of selecting the
correct answer is .25.
If the student correctly answers a question, what is the probability that
the student really knew the correct answer?
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Solution:

Setup: name the events: N = student knows answer, N = student
does not know answer, C = student answers correctly.
Translate info from problem into notation:

P(N) = 0.8,P(N) = 0.2,P(C | N) = 1,P(C | N) = 0.25.

What do we want? P(N | C).
Bayes’ Formula:

P(N | C) = P(C | N)P(N)
P(C | N)P(N) + P(C | N)P(N)

.

Now plug in the numbers:

P(N | C) = (1)(0.8)
(1)(0.8) + (0.25)(0.2) = 0.80

0.85 = 16
17 ≈ 94.12%.
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0.85 = 16
17 ≈ 94.12%.
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Where does Bayes’ Formula come from?

Setup: B1, . . . ,Bn = partition of S, A = separate event. Bayes’
Formula:

P(Bi | A) = P(A | Bi )P(Bi )
P(A | B1)P(B1) + · · ·+ P(A | Bn)P(Bn) .

To derive this, use the definition of conditional probability:

P(Bi | A) = P(Bi ∩ A)
P(A) = P(A | Bi )P(Bi )

P(A) (Multiplicative Law).

Now apply “Law of Total Probability” in the denominator:

P(Bi | A) = P(A | Bi )P(Bi )
P(A | B1)P(B1) + · · ·+ P(A | Bn)P(Bn) .
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Monty Hall Problem (Exercise 2.20)

You MUST learn this problem.
The following game was played on a popular television show. The host
showed a contestant three large curtains. Behind one of the curtains was
a nice prize (maybe a new car) and behind the other two curtains were
worthless prizes (duds). The contestant was asked to choose one curtain.
If the curtains are identified by their prizes, they could be labeled G, D1,
and D2 (Good Prize, Dud 1, and Dud 2). Thus, the sample space for the
contestant’s choice is S = G ,D1,D2.

Good Prize Dud 1 Dud 2
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Monty Hall Problem (Exercise 2.20)

(a) If the contestant has no idea which curtains hide the various prizes
and selects a curtain at random, assign reasonable probabilities to
the simple events and calculate the probability that the contestant
selects the curtain hiding the nice prize.

(b) Before showing the contestant what was behind the curtain initially
chosen, the game show host would open one of the curtains and
show the contestant one of the duds (he could always do this
because he knew the curtain hiding the good prize). He then offered
the contestant the option of changing from the curtain initially
selected to the other remaining unopened curtain.

Which strategy maximizes the c ontestant’s probability of winning the
good prize: stay with the initial choice or switch to the other curtain? In
answering the following sequence of questions, you will discover that,
perhaps surprisingly, this question can be answered by considering only
the sample space above and using the probabilities that you assigned to
answer part (a).
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Monty Hall Problem (Exercise 2.20)

(i) If the contestant choses to stay with her initial choice, she wins the
good prize if and only if she initially chose curtain G. If she stays
with her initial choice, what is the probability that she wins the
good prize?

(ii) If the host shows her one of the duds and she switches to the other
unopened curtain, what will be the result if she had initially selected
G?

(iii) Answer the question in part (ii) if she had initially selected one of
the duds.

(iv) If the contestant switches from her initial choice (as the result of
being shown one of the duds), what is the probability that the
contestant wins the good prize?

(v) Which strategy maximizes the contestant’s probability of winning
the good prize: stay with the initial choice or switch to the other
curtain?
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Analysis:

Let G be the event that the initially selected curtain hides the good
prize: P(G) = 1

3 .
Let W be the event that we win (assuming we choose to switch
curtains). What is P(W )?
Law of Total Probability:

P(W ) = P(W | G)P(G) + P(W | G)P(G) = 0 · 13 + 1 · 23 = 2
3 .

Conclusion:
It is correct to switch curtains: the probability of winning by switching
is 2

3 , while that of winning by not switching is 1
3 .
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Remark:

You can experiment with cards: You’ll need a friend to act as the game
show host.
For example,

Queen of Hearts = good prize,
3 of Spades, 5 of Clubs = bad prizes.

Question:
What if there were 4 curtains instead of 3?

Analysis:
Similar to the previous case!
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Analysis (4 curtains):

Again, let G be the event that the initially selected curtain holds the
good prize. Assume we use the switching strategy. Let W be the event
that we win.
By Law of Total Probability,

P(W ) = P(W | G)P(G) + P(W | G)P(G) = 0 · 14 + 1
2 ·

3
4 = 3

8 .

P(G) = 1
4 ,P(W | G) = 0 as before. What is P(W | G)?

Two curtains are eliminated: one because the event G is “our selection
does NOT hide the good prize”, and one because we see a dud.

We should switch because 3
8 >

1
4 .
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5 curtains, but at a cost:

Now suppose that there are 5 curtains. The good prize is $1000, but it
costs $100 to switch. Should you still switch? Why or why not?
Same analysis: G and W as before.

P(W ) = P(W | G)P(G) + P(W | G)P(G) = 0 · 15 + 1
3 ·

4
5 = 4

15 .

The probability of winning by NOT switching is P(G) = 1
5 . Since

4
15 >

1
5 , we would switch if it were free.

We have, by NOT switching, a 1
5 chance of $1000; this is worth about

$200.

By switching, we get a 4
15 chance of $1000, minus the switching cost of

$100; that is, 4
15 · $1000− $100 ≈ $166.67.

As $166.67 < $200, we should NOT switch for the cost.
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End of Chapter 2
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Chapter 3

Discrete Random Variables and
Their Probability Distributions
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Random Variables and Expected Values

Definition
A Random Variable is a real-valued function on a sample space.

In practice, we may write a random variable like this:

X =
{

2 with probability 2/3
−1 with probability 1/3

Definition
The average value of a random variable (over a large number of trials,
say) is called the Expected Value of the random variable.

This is written E [X ] and we speak of “the expectation of X” or “the
mean of X”.
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The formal definition captures some properties and subtleties not seen in
our format. But this format is very convenient for computing the
expected value E [X ] or “mean of X”: in this case,

E [X ] = 2 · 23 + (−1) · 13 = 4
3 −

1
3 = 1.

Here X can take on values 2 and −1, and P(X = 2) = 2/3,
P(X = −1) = 1/3. So the “probability function” p(x) := P(X = x) is

p(x) =


2/3 (x = 2)
1/3 (x = −1)
0 otherwise.
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The probability function must have the properties
1 0 ≤ p(x) ≤ 1 for all x ,
2
∑

x p(x) = 1.

Further, E [X ] =
∑

x xp(x) (Definition 3.4).

Example (Monty Hall: 5 curtains at a cost)
In this example, where we win $1000 or $0 (and maybe pay $100), our
winnings are a random variable.
Let X be our winnings if we don’t switch:

X =
{

$1000 with probability 1/5
$0 with probability 4/5.

Let Y be our winnings in the switch at a cost:

Y =
{

$1000− $100 with probability 4/15
−$100 with probability 11/15.
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Example (Monty Hall: 5 curtains at a cost)
We find

E [X ] = $1000 · 15 + $0 · 45

= $200,

E [Y ] = ($1000− $100) · 415 + (−$100) · 1115

= $1000 · 415 − $100 ·
(

4
15 + 11

15

)
= $1000 · 415 − $100 ≈ $166.67.

The expected value in switching is less than that without switching. So
we should NOT switch.
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Some simple types of Exercises

Write down the probability function for a random variable. Find the
mean.

Exercise 3.1:
When the health department tested private wells in a county for two
impurities commonly found in drinking water, it found that 20% of the
wells had neither impurity, 40% had impurity A, and 50% had impurity
B. (Obviously, some had both impurities.) If a well is randomly chosen
from those in the county, find the probability distribution for Y , the
number of impurities found in the well.

Solution:
Y can take the values 0, 1, or 2. We must find P(Y = 0), P(Y = 1),
and P(Y = 2). From the problem statement, P(Y = 0) = 20%.
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Solution: (continued)
To find P(Y = 1) and P(Y = 2), use the “Event-Composition Method”
(recall Monty Hall: 5 curtains).

We define events
A = well has impurity A,
B = well has impurity B.

Now translate the problem statement into probability statements about
these events:

P(A ∩ B) = 20%,P(Y = 2) = P(A ∩ B).
How can we write down P(Y = 1)?

P(Y = 1) = P(A ∪ B)− P(A ∩ B).
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Solution: (continued)
We know that P(A) = 40%, and P(B) = 50%. Also

P(Y = 1) + P(Y = 2) = P(A ∪ B) = 80%.

Plug this in P(A ∪ B) = P(A) + P(B)− P(A ∩ B) to deduce
P(A ∩ B) = 10%. We find the probability distribution of Y as

y p(y) = P(Y = y)
0 20%
1 70%
2 10%

Note that if some y is not listed in
the table, then p(y) = 0.

We can now find E [Y ]:
E [Y ] = 0 · 20% + 1 · 70% + 2 · 10% = 0.7 + 0.2 = 0.9 .
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Exercise 3.3

A group of four components is known to contain two defectives. An
inspector tests the components one at a time until the two defectives are
located. Once she locates the two defectives, she stops testing, but the
second defective is tested to ensure accuracy. Let Y denote the number
of the test on which the second defective is found. Find the probability
distribution for Y .

Solution:
Observe that Y must be 2, 3, or 4. Where can the defective components
be? We can distribute 2 defectives among 4 components in

(
4
2

)
= 6

ways. Use × to represent a defective component and ◦ to represent a
good component. There are 6 possibilities:
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Solution: (continued)

× × ◦ ◦ (Y = 2)
× ◦ ◦ × (Y = 4)
◦ × ◦ × (Y = 4)

× ◦ × ◦ (Y = 2)
◦ × × ◦ (Y = 3)
◦ ◦ × × (Y = 4)

In each of these cases, we can write down the number of the test on
which the second defective is found. (Proceed left to right).
Find the probability distribution of Y using the “Sample Point Method”
from Chapter 2:

P(Y = 2) = 1
6 ,P(Y = 3) = 2

6 ,P(Y = 4) = 3
6 .

Probability function p(y) is then given by y 2 3 4
p(y) 1/6 1/3 1/2

The expected value E [Y ] is

E [Y ] = 2 · 16 + 3 · 13 + 4 · 12 = 313 .
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Solution: (continued)
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Properties of Expected Value:

Ways to think about the expected or mean value:
Long-run average value.
Like an integral or sum.

Properties of integrals and sums usually hold for expected value. In
particular,

Expected value is linear,
Expected value of a nonrandom variable (like a constant) is just that
variable / value.

We can use these properties to give a standard formula for “variance”.
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Definition (Variance, Standard Deviation)
If Y is a random variable with mean E [Y ] = µ, the variance of the
random variable Y is defined to be the expected value of (Y − µ)2.

That
is,

V [Y ] = E [(Y − µ)2].
The standard deviation of Y , denoted by σ, is the positive square root of
V [Y ].

By the properties of expectation, we can prove the formula
V [Y ] = E [Y 2]− µ2.

Proof of V [Y ] = E [Y 2]− µ2:
By definition,

V [Y ] = E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + E [µ2] (linearity of E )
= E [Y 2]− 2µ · µ+ µ2 (properties of expected value)
= E [Y 2]− µ2.
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We noted that expectation was linear:

if X ,Y are random variables and
a, b are real numbers (constants), then

E [aX + bY ] = aE [X ] + bE [Y ].
This is NOT true for variance: if a is a constant, then V [aY ] = a2V [Y ].
This is because E [aY ] = aE [Y ] = aµ, so

V [aY ] = E [(aY − aµ)2]
= E [a2(Y − µ)2]
= a2E [(Y − µ)2]
= a2V [Y ].
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There is a concept of independence for the random variables:

If X and Y
are independent, then V [X + Y ] = V [X ] + V [Y ].

Remark:
Think of variance as being like “norm-squared” and independence as
being the orthogonality. The above equation is the Pythagorean
Theorem.

In the rest of this Chapter, several random variables are introduced, and
we compute means and variances.
For the tests, know the variables, their means and variances, and how to
derive them. The derivation of these results is often an exercise in
Calculus.
Note: We use one of the equivalent terms “distribution”, “probability
distribution”, “probability function”, and “probability mass function”.
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Definition (Bernoulli Random Variable)

A Bernoulli random variable with parameter p is one which has
probability function p(1) = p and p(0) = 1− p.

This means if X is such a variable, then

X =
{
1 (with probability p)
0 (with probability 1− p)

We can find E [X ] and V [X ]: By definition,
E [X ] =

∑
x

xp(x) = 0p(0) + 1p(1) = 0 + p = p ,

V [X ] = E [(X − µ)2] = E [X 2]− µ2.

To compute E [X 2], we apply Theorem 3.2:
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Theorem (3.2)
Let Y be a discrete random variable with probability function p(y) and
g(Y ) be a real-valued function of Y .

Then the expected value of g(Y ) is
given by

E [g(Y )] =
∑

y
g(y)p(y).

We get
E [X 2] = 02 · p(0) + 12 · p(1) = p,V [X ] = p − p2 = p(1− p) .

Notation: Sometimes we write q for 1− p; we need context to know if q
is being used this way.
Many of the variables of Chapter 3 are built from repeated independent
Bernoulli trials. Example: Binomial random variable with parameters n
and p.
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Definition (Binomial Random Variable)

We do n Bernoulli trials with parameter p which are all independent, and
count the number of 1s. The total Y is a Binomial random variable with
parameters n and p.
Equivalently, Y is Binomial with parameters n and p if Y has the
probability function

p(k) =


(
n
k

)
pk(1− p)n−k (k = 0, 1, . . . , n),

0 otherwise.

Notation: Y ∼ Bin(n, p).
Why must Y have the above probability function?
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If we have k successes in n trials, there are
(
n
k

)
ways to distribute these.

Once we consider a particular pattern of successes, each success has
probability p and each failure has it 1− p.
Since the trials are independent, we can multiply to get pk(1− p)n−k .
In the text, the definition is that Y ∼ Bin(n, p) if Y has the probability
function given above.
Terminology: Sometimes we say “Y has the binomial distribution with
parameters n and p”.
We can now compute E [Y ] and V [Y ].
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If X1, . . . ,Xn are the random variables for Bernoulli trials, then
Y = X1 + · · ·+ Xn.

E [Y ] = E [X1 + · · ·+ Xn]
= E [X1] + · · ·+ E [Xn]
= p + · · ·+ p︸ ︷︷ ︸

n times

= np ,

V [Y ] = V [X1 + · · ·+ Xn]
= V [X1] + · · ·+ V [Xn] (because X1, . . . ,Xn are independent)
= p(1− p) + · · ·+ p(1− p)︸ ︷︷ ︸

n times

= np(1− p) .
Alternate derivation is given in Theorem 3.7.
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Theorem (3.7)
If Y ∼ Bin(n, p), then E [Y ] = np and V [Y ] = npq.

Proof:
We have

E [Y ] =
∑

y
yp(y) (by definition of expectation)

=
n∑

y=0
y
(
n
y

)
pyqn−y (by definition of “binomial”)

=
n∑

y=1

yn!
y !(n − y)!p

yqn−y (note that the first term is zero)

=
n∑

y=1

n(n − 1)!
(y − 1)!(n − y)!pp

y−1qn−y

= np
n∑

y=1

(n − 1)!
(y − 1)!((n − 1)− (y − 1))!p

y−1q(n−1)−(y−1).
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Proof (continued):
Now write z = y − 1, and change the variables in the sum:

E [Y ] = np
n∑

y=1

(n − 1)!
(y − 1)!((n − 1)− (y − 1))!p

y−1q(n−1)−(y−1)

= np
n−1∑
z=0

(n − 1)!
z!((n − 1)− z)!p

zq(n−1)−z

= np
n−1∑
z=0

(
n − 1
z

)
pzq(n−1)−z︸ ︷︷ ︸ .

This is the probability function for Bin(n − 1, p), so the whole sum above
is

(p + q)n−1 = 1n−1 = 1.
So E [Y ] = np.
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Proof (continued):
For the computation of V [Y ], we could write similar sums of binomial
coefficients. But the book introduces another method.

Work with the expectation E [Y (Y − 1)] = E [Y 2]− E [Y ].
Since we already know E [Y ], knowing E [Y (Y − 1)] is equivalent to
knowing E [Y 2].
We find

E [Y (Y − 1)] =
n∑

y=0
y(y − 1)

(
n
y

)
pyqn−y .

When we expand the binomial coefficient, we can cancel the y(y − 1)
with the y !.
Do the computations to obtain V [Y ] = npq.

�
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Definition (Geometric Random Variable)

We do repeated independent Bernoulli trials until we get a success. Let
Y be the number of the trial on which the first success occurs. Then Y
is a Geometric random variable with parameter p, written Y ∼ Geom(p).
(p is the parameter in all the independent Bernoulli trials.)

Example:
Think of flipping a coin again and again until we get “heads”.

Remark:
We use the convention that the number of the first trial is 1 (not zero).
So Y ≥ 1.

From the description above, we can find the probability function, mean,
and variance of Y .
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p(1) = P(Y = 1)

= p,
p(2) = P(Y = 2) = P(Failure in 1 and success in 2).

Since trials are independent,
P(Failure in 1 and success in 2) = P(Failure in 1) ·P(success in 2) = qp.
Thus p(2) = qp.
We use similar reasoning to deduce p(3) = q2p, . . . , p(y) = qy−1p.
From the above probability function, we can write down an infinite series
for E [Y ]:

E [Y ] =
∞∑

y=1
yqy−1p.

(This is an exercise in Calculus 2.)
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Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p) = p
p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1

= p
∞∑

z=0
qz = p 1

1− q = p
1− (1− p) = p

p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz

= p 1
1− q = p

1− (1− p) = p
p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q

= p
1− (1− p) = p

p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p)

= p
p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p) = p
p

= 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p) = p
p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p) = p
p = 1 .

Review of Calculus:

for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p) = p
p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p) = p
p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴

��− 1(1− x)−2(��− 1) =

d
dx

(
1

1− x

)

=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p) = p
p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴

��

− 1(1− x)−2(

��

− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1

=
∞∑

n=1
nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Warm-up Exercise:
What is

∑∞
y=1 p(y) =

∑∞
y=1 qy−1p?

This sum is

p
∞∑

y=1
qy−1 = p

∞∑
z=0

qz = p 1
1− q = p

1− (1− p) = p
p = 1 .

Review of Calculus: for |x | < 1,
1

1− x =
∞∑

n=0
xn

∴ ��− 1(1− x)−2(��− 1) = d
dx

(
1

1− x

)
=
∞∑

n=0
nxn−1 =

∞∑
n=1

nxn−1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 83 / 381



Now change x to q and n to y to get
1

(1− q)2 =
∞∑

y=1
yqy−1

∴
∞∑

y=1
yqy−1p = p

(1− q)2 = p
p2 = 1

p .

Conclusion: E [Y ] = 1
p .

Remark:

This is very intuitive: if the chance of success is 1
3 , the expected waiting

time until success is 3 trials.

What about V [Y ]?
V [Y ] = E [Y 2]− E [Y ]2.
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We need to compute E [Y 2]; we already know E [Y ]2 = 1
p2 .

This is
∑∞

y=1 y2qy−1p. This doesn’t look like the derivative of something
we know. But we could use the technique of the last calculation to sum

∞∑
y=1

y(y − 1)qy−2 or even
∞∑

y=1
y(y − 1)qy−1p (?).

This last guy (?) is E [Y (Y − 1)] = E [Y 2]− E [Y ]. So, by computing this
sum (?), we can find E [Y 2], because we know E [Y ] already.

Exercise:
Do the work outlined above to get

V [Y ] = q
p2 .
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V [Y ] = q
p2

Step 1: Compute
d2

dx2

(
1

1− x

)
= 2

(1− x)3 = d2

dx2

∞∑
n=0

xn =
∞∑

n=0
n(n − 1)xn−2

Step 2: Write in terms of q and y and multiply by qp.
2qp

(1− q)3 =
∞∑

y=1
y(y − 1)qy−1p = E [Y (Y − 1)]

Step 3: Use E [Y (Y − 1)] = E [Y 2]− E [Y ], V [Y ] = E [Y 2]− E [Y ]2, and
E [Y ] = 1/p to find V [Y ].

E [Y 2] = E [Y (Y − 1)] + E [Y ] = 2q
p2 + 1

p

V [Y ] = E [Y 2]− E [Y ]2 = 2q
p2 + 1

p −
1
p2 = q

p2
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Negative Binomial Random Variable

We consider repeated independent Bernoulli trials, all with parameter p.
Let Y be the number of the trial on which the r th success occurs. From
this description, we can find the probability distribution of Y , E [Y ], and
V [Y ].
If the r th success is on trial y , i.e. Y = y , then
(1) The y th trial must be a success,
(2) There must be exactly r − 1 successes in the first y − 1 trials.

What is the probability of (2)? There are
(
y − 1
r − 1

)
ways to distribute

r − 1 successes in y − 1 trials. The probability of any particular way
occurring is pr−1q(y−1)−(r−1) = pr−1qy−r .
The probability of (1) is just p, and (1) and (2) are independent.
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Negative Binomial Random Variable
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Put this all together to get

p(y) =
(
y − 1
r − 1

)
pr−1qy−rp

=
(
y − 1
r − 1

)
prqy−r .

Remarks:
1 In the text, the definition of a negative binomial random variable is

something which has the probability distribution as above.
2 If r = 1, this is just a geometric random variable.
3 The waiting time for r successes is the waiting time for the first,

plus the waiting time for the second, . . . , plus the waiting time for
the r th success.

4 The waiting time for each success is a geometric random variable
with parameter p. This means that the negative binomial random
variable with parameters r and p is the sum of r independent
geometric random variables, each with parameter p.
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Now we can write down E [Y ] and V [Y ] where Y is a negative binomial
random variable with parameters r and p.

Let X1, . . . ,Xr be independent geometric RVs with parameter p. Then

E [Y ] = E [X1 + · · ·+ Xr ] = E [X1] + · · ·+ E [Xr ] = 1
p + · · ·+ 1

p︸ ︷︷ ︸
r times

= r
p ,

V [Y ] = V [X1 + · · ·+ Xr ] ∗= V [X1] + · · ·+ V [Xr ] = q
p2 + · · ·+ q

p2︸ ︷︷ ︸
r times

= rq
p2 .

*: because X1, . . . ,Xr are independent.

So if we remember that for a geometric RV the mean is 1
p and the

variance is q
p2 , then the mean and variance of a negative binomial RV are

easy to remember.
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Exercise 3.72:
Given that we have already tossed a balanced coin ten times and
obtained zero heads, what is the probability that we must toss it at least
two more times to obtain the first head?

One solution:
Note that the information about the first 10 flips is not relevant.
The probability that we need at least 2 flips to get the first head is
the same as the probability that the first flip is tails.
The word “balanced” in the problem statement means that this
probability is 1

2 .
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Formal solution: The problem is about a geometric RV with p = 1/2.
The question asks: What is P(Y ≥ 12 | Y ≥ 11)?

P(Y ≥ 12 | Y ≥ 11) = P(Y ≥ 12 ∩ Y ≥ 11)
P(Y ≥ 11) = P(Y ≥ 12)

P(Y ≥ 11)
For a geometric RV, P(Y ≥ k) = the probability of at least k − 1
successive failures = qk−1.

P(Y ≥ 12 | Y ≥ 11) = P(Y ≥ 12)
P(Y ≥ 11)

q12−1

q11−1 = q = 1
2
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What if we allowed for some possibility that it was a trick coin?

Then the first ten flips do make a difference, because they give us
evidence that the coin is biased.
New problem, 3.72 revised
We have a bag of 100 coins. One is “double-tails” and 99 are normal.
We pick one coin from the bag and flip it 10 times. It comes up tails 10
times in a row. What are the chances that it is actually the trick coin?

Name the events:
T = event that the coin selected is the trick coin.
R = event that we get a run of 10 tails.
Compute with Bayes’ Rule.
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Calculations with Bayes’ Rule

P(T ) = 0.01, P(T̄ ) = 0.99, P(R | T ) = 1, P(R | T̄ ) = 1/210

Problem
asks for P(T | R)

P(T | R) = P(T ∩ R)
P(R) = P(R | T )P(T )

P(R | T )P(T ) + P(R | T̄ )P(T̄ )

P(T | R) = 1 · 0.01
1 · 0.01 + 2−10 · 0.99 ≈ 0.912
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So far we have studied the following distributions:

(1) Bernoulli random variable (Bernoulli trial).
(2) Binomial RV, Bin(n, p).

“Number of successes in n independent Bernoulli trials”.
(3) Geometric RV.

“Number of Bernoulli trials required to get first success”.
(4) Negative Binomial RV.

“Number of Bernoulli trials required to get exactly r successes”.
For each of these RVs, you should be able to produce the “probability
function” (sometimes called distribution or PDF) p(y) = P(Y = y).
You should also be able to produce the mean and variance. Note that a
few tricks may be required to complete the computation.
Let’s try now to produce a table with the probability function, mean, and
variance for all of these RVs.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 94 / 381



So far we have studied the following distributions:
(1) Bernoulli random variable (Bernoulli trial).

(2) Binomial RV, Bin(n, p).
“Number of successes in n independent Bernoulli trials”.

(3) Geometric RV.
“Number of Bernoulli trials required to get first success”.

(4) Negative Binomial RV.
“Number of Bernoulli trials required to get exactly r successes”.

For each of these RVs, you should be able to produce the “probability
function” (sometimes called distribution or PDF) p(y) = P(Y = y).
You should also be able to produce the mean and variance. Note that a
few tricks may be required to complete the computation.
Let’s try now to produce a table with the probability function, mean, and
variance for all of these RVs.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 94 / 381



So far we have studied the following distributions:
(1) Bernoulli random variable (Bernoulli trial).
(2) Binomial RV, Bin(n, p).

“Number of successes in n independent Bernoulli trials”.

(3) Geometric RV.
“Number of Bernoulli trials required to get first success”.

(4) Negative Binomial RV.
“Number of Bernoulli trials required to get exactly r successes”.

For each of these RVs, you should be able to produce the “probability
function” (sometimes called distribution or PDF) p(y) = P(Y = y).
You should also be able to produce the mean and variance. Note that a
few tricks may be required to complete the computation.
Let’s try now to produce a table with the probability function, mean, and
variance for all of these RVs.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 94 / 381



So far we have studied the following distributions:
(1) Bernoulli random variable (Bernoulli trial).
(2) Binomial RV, Bin(n, p).

“Number of successes in n independent Bernoulli trials”.
(3) Geometric RV.

“Number of Bernoulli trials required to get first success”.

(4) Negative Binomial RV.
“Number of Bernoulli trials required to get exactly r successes”.

For each of these RVs, you should be able to produce the “probability
function” (sometimes called distribution or PDF) p(y) = P(Y = y).
You should also be able to produce the mean and variance. Note that a
few tricks may be required to complete the computation.
Let’s try now to produce a table with the probability function, mean, and
variance for all of these RVs.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 94 / 381



So far we have studied the following distributions:
(1) Bernoulli random variable (Bernoulli trial).
(2) Binomial RV, Bin(n, p).

“Number of successes in n independent Bernoulli trials”.
(3) Geometric RV.

“Number of Bernoulli trials required to get first success”.
(4) Negative Binomial RV.

“Number of Bernoulli trials required to get exactly r successes”.

For each of these RVs, you should be able to produce the “probability
function” (sometimes called distribution or PDF) p(y) = P(Y = y).
You should also be able to produce the mean and variance. Note that a
few tricks may be required to complete the computation.
Let’s try now to produce a table with the probability function, mean, and
variance for all of these RVs.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 94 / 381



So far we have studied the following distributions:
(1) Bernoulli random variable (Bernoulli trial).
(2) Binomial RV, Bin(n, p).

“Number of successes in n independent Bernoulli trials”.
(3) Geometric RV.

“Number of Bernoulli trials required to get first success”.
(4) Negative Binomial RV.

“Number of Bernoulli trials required to get exactly r successes”.
For each of these RVs, you should be able to produce the “probability
function” (sometimes called distribution or PDF) p(y) = P(Y = y).

You should also be able to produce the mean and variance. Note that a
few tricks may be required to complete the computation.
Let’s try now to produce a table with the probability function, mean, and
variance for all of these RVs.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 94 / 381



So far we have studied the following distributions:
(1) Bernoulli random variable (Bernoulli trial).
(2) Binomial RV, Bin(n, p).

“Number of successes in n independent Bernoulli trials”.
(3) Geometric RV.

“Number of Bernoulli trials required to get first success”.
(4) Negative Binomial RV.

“Number of Bernoulli trials required to get exactly r successes”.
For each of these RVs, you should be able to produce the “probability
function” (sometimes called distribution or PDF) p(y) = P(Y = y).
You should also be able to produce the mean and variance. Note that a
few tricks may be required to complete the computation.

Let’s try now to produce a table with the probability function, mean, and
variance for all of these RVs.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 94 / 381



So far we have studied the following distributions:
(1) Bernoulli random variable (Bernoulli trial).
(2) Binomial RV, Bin(n, p).

“Number of successes in n independent Bernoulli trials”.
(3) Geometric RV.

“Number of Bernoulli trials required to get first success”.
(4) Negative Binomial RV.

“Number of Bernoulli trials required to get exactly r successes”.
For each of these RVs, you should be able to produce the “probability
function” (sometimes called distribution or PDF) p(y) = P(Y = y).
You should also be able to produce the mean and variance. Note that a
few tricks may be required to complete the computation.
Let’s try now to produce a table with the probability function, mean, and
variance for all of these RVs.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 94 / 381



Distribution p(y) E[Y] V[Y]
Bernoulli pyq1−y (y = 0, 1) p pq [q = 1− p]

or
{
p y = 1
q y = 0

Geometric qy−1p 1
p

q
p2

Binomial
(
n
y

)
pyqn−y np npq

Negative Binomial
(
y − 1
r − 1

)
qy−rpr r

p
rq
p2
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Hypergeometric Random Variable

Suppose we have an urn with r red balls and N − r black balls. We select
(without replacement) n balls from the urn and count the number Y of
red balls. Then Y is said to have the hypergeometric distribution with
parameters N, r , n.
The hypergeometric RV has probability function

p(y) =

(
r
y

)(
N − r
n − y

)
(
N
n

) =
(# of ways to get y red from r)×
(# of ways to get n − y black from N − r)

# of ways to take n balls from N
.

There is a close analogy between the binomial and hypergeometric RVs.
In the limit as N becomes large, they are almost the same.
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Suppose for the moment we only take one ball from the urn, so n = 1.

Then the probability that we get a red ball is r
N and the probability that

we get a black ball is N − r
N . So the expected number of red balls is r

N .
If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n) = n · rN .

Notice the analogy with the Binomial RV.
The probability of success, p, is r

N , and the mean is n · rN . We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



Suppose for the moment we only take one ball from the urn, so n = 1.
Then the probability that we get a red ball is r

N and the probability that

we get a black ball is N − r
N .

So the expected number of red balls is r
N .

If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n) = n · rN .

Notice the analogy with the Binomial RV.
The probability of success, p, is r

N , and the mean is n · rN . We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



Suppose for the moment we only take one ball from the urn, so n = 1.
Then the probability that we get a red ball is r

N and the probability that

we get a black ball is N − r
N . So the expected number of red balls is r

N .

If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n) = n · rN .

Notice the analogy with the Binomial RV.
The probability of success, p, is r

N , and the mean is n · rN . We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



Suppose for the moment we only take one ball from the urn, so n = 1.
Then the probability that we get a red ball is r

N and the probability that

we get a black ball is N − r
N . So the expected number of red balls is r

N .
If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n)

= n · rN .

Notice the analogy with the Binomial RV.
The probability of success, p, is r

N , and the mean is n · rN . We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



Suppose for the moment we only take one ball from the urn, so n = 1.
Then the probability that we get a red ball is r

N and the probability that

we get a black ball is N − r
N . So the expected number of red balls is r

N .
If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n) = n · rN .

Notice the analogy with the Binomial RV.
The probability of success, p, is r

N , and the mean is n · rN . We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



Suppose for the moment we only take one ball from the urn, so n = 1.
Then the probability that we get a red ball is r

N and the probability that

we get a black ball is N − r
N . So the expected number of red balls is r

N .
If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n) = n · rN .

Notice the analogy with the Binomial RV.

The probability of success, p, is r
N , and the mean is n · rN . We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



Suppose for the moment we only take one ball from the urn, so n = 1.
Then the probability that we get a red ball is r

N and the probability that

we get a black ball is N − r
N . So the expected number of red balls is r

N .
If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n) = n · rN .

Notice the analogy with the Binomial RV.
The probability of success, p, is r

N , and the mean is n · rN .

We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



Suppose for the moment we only take one ball from the urn, so n = 1.
Then the probability that we get a red ball is r

N and the probability that

we get a black ball is N − r
N . So the expected number of red balls is r

N .
If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n) = n · rN .

Notice the analogy with the Binomial RV.
The probability of success, p, is r

N , and the mean is n · rN . We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



Suppose for the moment we only take one ball from the urn, so n = 1.
Then the probability that we get a red ball is r

N and the probability that

we get a black ball is N − r
N . So the expected number of red balls is r

N .
If we increase n, and do the selection n times, then the expected number
of reds is

(Expected # on try 1) + (Expected # on try 2)
+ · · ·+ (Expected # on try n) = n · rN .

Notice the analogy with the Binomial RV.
The probability of success, p, is r

N , and the mean is n · rN . We would

therefore expect to get for the variance V [Y ] the result n · rN ·
N − r
N .

BE CAREFUL!

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 97 / 381



There is a correction term:

The variance is less, because when we remove
reds, we make blacks more likely, and vice versa.
Computation (Chapter 5) shows

V [Y ] = n · rN ·
N − r
N · N − n

N − 1 .
← This we just
have to remember
for now.

Notice lim
N→∞

N − n
N − 1 = 1, i.e. the results for hypergeometric and binomial

RVs are the same in the limit N →∞.
A convention for binomial coefficients:(

n
k

)
= 0 if k > n.

This convention is relevant in evaluating the probability function for the
hypergeometric distribution.
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Exercise 3.103:

A warehouse contains ten printing machines, four of which are defective.
A company selects five of the machines at random, thinking all are in
working condition. What is the probability that all five of the machines
are nondefective?

Solution:
N = 10 ← total # of machines.
“Red ball” corresponds to a nondefective machine: r = 6.
n = 5 ← # of machines in the sample.
Y = # of nondefective machines in the sample.

We have to find P(Y = 5) = p(5). Use the hypergeometric probability
function:

p(5) =

(
6
5

)(
10− 6
5− 5

)
(
10
5

) =
6
(
4
0

)
252 = 6

252

(
= 1

42

)
.
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Distribution p(y) E[Y] V[Y]
Bernoulli pyq1−y (y = 0, 1) p pq

or
{
p y = 1
q y = 0

Geometric qy−1p 1
p

q
p2

Binomial
(
n
y

)
pyqn−y np npq

Negative Binomial
(
y − 1
r − 1

)
qy−rpr r

p
rq
p2

Hypergeometric

(
r
y

)(
N − r
n − y

)
(
N
n

) nr
N

nr
N ·

N − r
N · N − n

N − 1

[q = 1− p]
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Poisson Distribution

Suppose we have a type of event (say, tornadoes in Kansas) which occurs
randomly at a certain rate, say 5 per year.
In any given year, there might not be exactly 5. We mean only that 5 per
year is somehow an average rate; in a particular year, the actual number
might be 0, 10, 3, or 17.
The Poisson random variable is a model for this situation. There is a
parameter λ corresponding to the average rate. The variable Y is the
number of events in a given period.

Definition (Poisson Distribution)
Y has the Poisson distribution with parameter λ if Y has the probability
function

p(y) = λye−λ
y ! (y = 0, 1, 2, . . . ).

Notice that Y can take on any positive integer value.
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For this to make sense, the probabilities need to add up to 1.

Let’s check:
∞∑

y=0

λye−λ
y ! = e−λ

∞∑
y=0

λy

y ! = e−λeλ = 1.

So the probabilities do make sense.
Next step: What are the mean and variance of Y ? This is the easiest
part of the table: if Y ∼ Pois(λ), then E [Y ] = λ and V [Y ] = λ.
Easy to remember, but the derivation requires some work with power
series:
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E [Y ] =
∞∑

y=0
yp(y)

=
∞∑

y=0
y λ

ye−λ
y !

=
∞∑

y=1
�y

λy−1λ

�y · (y − 1)!e
−λ = e−λ

∞∑
y=1

λy−1λ

(y − 1)!

= e−λ · λ ·
∞∑

z=0

λz

z! (here z = y − 1)

=��e−λ · λ ·��eλ = λ.

The derivation of V [Y ] involves similar tricks.

Note:
This result is important in understanding problems which say “Y is a
Poisson distributed with average rate ”.
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Moment Generating Functions

Definitions:
The k th moment (also moment about the origin) of a random
variable X is µ′k := E [X k ].
The k th central moment (or moment about the mean) of X is
µk := E [(X − µ)k ], where µ = E [X ].

Notation: moment = µ′k , central moment = µk .

Definition:
The moment generating function of a RV X is mX (t) = E [etX ]. This is a
function of t.

Remark:
We do this because the distribution is determined by the moment
generating function (MGF).
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How is this of any use?

Sometimes we can determine the MGF of an unknown distribution. We
will use this technique in the proof of the Central Limit Theorem.

Remark:
Knowing the moments µ′k and knowing the MGF are equivalent, using
the power series for etX :

etX = 1 + tX + (tX )2

2! + . . . =
∞∑

k=0

(tX )k

k!

∴ E [etX ] =
∑

x
p(x)etx =

∑
x

p(x)
( ∞∑

k=0

(tx)k

k!

)

=
∞∑

k=0

(∑
x

p(x)xk

)
(t)k

k! =
∞∑

k=0
E [X k ] (t)k

k!

=
∞∑

k=0
µ′k

(t)k

k! .
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What about other random variables?

Let Y be a Bernoulli RV with parameter p. Then
E [etY ] =

∑
y

p(y)ety = pet(1) + qet(0) = q + pet .

Now suppose Y ∼ Bin(n, p). Then Y is the sum of n independent
Bernoulli RVs, each with parameter p.

Remark:
If X and Y are independent, then E [XY ] = E [X ]E [Y ]. Thus if X and Y
are independent, we compute

mX+Y (t) = E [et(X+Y )] = E [etXetY ]
= E [etX ]E [etY ] (by independence)
= mX (t)mY (t).

So if Y ∼ Bin(n, p), then mY (t) = (q + pet)n .
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We could, of course, do exercises from Calculus 2 to get this result
without the remark.

Remark on rigor:
In the text, we may exchange the order of limits without justification.
This does not generally work, but works in the context.
Example:

lim
n→∞

lim
m→∞

n
n + m = lim

n→∞
0 = 0

��‖

lim
m→∞

lim
n→∞

n
n + m = lim

m→∞
1 = 1.

Where did we do this? Note that an infinite sum is a limit:
∞∑

n=1
an

def= lim
N→∞

( N∑
n=1

an

)
.
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A derivative is a limit:
d
dx f (x)) = lim

h→0

[
f (x + h)− f (x)

h

]
.

In computing the mean of a geometric RV, we exchanged derivative and
infinite sum.
Remark:
We will show for the geometric RV that

m(t) = pet

1− qet .

Using the connection between the geometric and the negative binomial
RVs, namely that the negative binomial RV is the sum of r independent
geometric RVs, we get, for the negative binomial RV,

m(t) =
(

pet

1− qet

)r
.
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Problem:
Players A and B compete in a game in which they alternate throws of a
die. The objective is to be the first player to throw a 1.

A goes first. What is the probability that B wins?

One way:
Apply what we know about the geometric RV.
Let Y be the number of the turn on which the game ends. Then Y is
geometric, with p = 1/6. Let A be the event that the player A wins. Then

A = {Y = 1, 3, 5, . . . (an odd number)}.
Let B be the event that B wins, that is, Y is an even number.
For a geometric RV, P(Y = k) = qk−1p. Then

P(B) =
∑

k even
qk−1p =

∞∑
l=1

q2l−1p =
∞∑

m=0
q2m+1p

= pq
∞∑

m=0
(q2)m = pq · 1

1− q2 .
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Solution: (continued)
Now plug in p = 1/6, q = 5/6 and find

P(B) = 1
6
5
6 ·

1
1− 25/36

= 5
36

1
(11/36) = 5

11 .

Other ways to think about this:
P(B) = 1− P(A), so we can compute P(A) instead.
Also, instead of using what we know about geometric RVs, we could
write down directly the probability that B wins on turn 2 + B wins on
turn 4 + . . . :
P(B wins on turn 2) = P(A doesn’t win on turn 1)·

P(B wins at 2 | A doesn’t win at 1) = 5
6
1
6 ,

and similarly for the rest of the terms.
This is basically re-deriving the probability function for the geometric RV.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 110 / 381



Solution: (continued)
Now plug in p = 1/6, q = 5/6 and find

P(B) = 1
6
5
6 ·

1
1− 25/36

= 5
36

1
(11/36)

= 5
11 .

Other ways to think about this:
P(B) = 1− P(A), so we can compute P(A) instead.
Also, instead of using what we know about geometric RVs, we could
write down directly the probability that B wins on turn 2 + B wins on
turn 4 + . . . :
P(B wins on turn 2) = P(A doesn’t win on turn 1)·

P(B wins at 2 | A doesn’t win at 1) = 5
6
1
6 ,

and similarly for the rest of the terms.
This is basically re-deriving the probability function for the geometric RV.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 110 / 381



Solution: (continued)
Now plug in p = 1/6, q = 5/6 and find

P(B) = 1
6
5
6 ·

1
1− 25/36

= 5
36

1
(11/36) = 5

11 .

Other ways to think about this:
P(B) = 1− P(A), so we can compute P(A) instead.
Also, instead of using what we know about geometric RVs, we could
write down directly the probability that B wins on turn 2 + B wins on
turn 4 + . . . :
P(B wins on turn 2) = P(A doesn’t win on turn 1)·

P(B wins at 2 | A doesn’t win at 1) = 5
6
1
6 ,

and similarly for the rest of the terms.
This is basically re-deriving the probability function for the geometric RV.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 110 / 381



Solution: (continued)
Now plug in p = 1/6, q = 5/6 and find

P(B) = 1
6
5
6 ·

1
1− 25/36

= 5
36

1
(11/36) = 5

11 .

Other ways to think about this:

P(B) = 1− P(A), so we can compute P(A) instead.
Also, instead of using what we know about geometric RVs, we could
write down directly the probability that B wins on turn 2 + B wins on
turn 4 + . . . :
P(B wins on turn 2) = P(A doesn’t win on turn 1)·

P(B wins at 2 | A doesn’t win at 1) = 5
6
1
6 ,

and similarly for the rest of the terms.
This is basically re-deriving the probability function for the geometric RV.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 110 / 381



Solution: (continued)
Now plug in p = 1/6, q = 5/6 and find

P(B) = 1
6
5
6 ·

1
1− 25/36

= 5
36

1
(11/36) = 5

11 .

Other ways to think about this:
P(B) = 1− P(A), so we can compute P(A) instead.

Also, instead of using what we know about geometric RVs, we could
write down directly the probability that B wins on turn 2 + B wins on
turn 4 + . . . :
P(B wins on turn 2) = P(A doesn’t win on turn 1)·

P(B wins at 2 | A doesn’t win at 1) = 5
6
1
6 ,

and similarly for the rest of the terms.
This is basically re-deriving the probability function for the geometric RV.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 110 / 381



Solution: (continued)
Now plug in p = 1/6, q = 5/6 and find

P(B) = 1
6
5
6 ·

1
1− 25/36

= 5
36

1
(11/36) = 5

11 .

Other ways to think about this:
P(B) = 1− P(A), so we can compute P(A) instead.
Also, instead of using what we know about geometric RVs, we could
write down directly the probability that B wins on turn 2 + B wins on
turn 4 + . . . :

P(B wins on turn 2) = P(A doesn’t win on turn 1)·
P(B wins at 2 | A doesn’t win at 1) = 5

6
1
6 ,

and similarly for the rest of the terms.
This is basically re-deriving the probability function for the geometric RV.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 110 / 381



Solution: (continued)
Now plug in p = 1/6, q = 5/6 and find

P(B) = 1
6
5
6 ·

1
1− 25/36

= 5
36

1
(11/36) = 5

11 .

Other ways to think about this:
P(B) = 1− P(A), so we can compute P(A) instead.
Also, instead of using what we know about geometric RVs, we could
write down directly the probability that B wins on turn 2 + B wins on
turn 4 + . . . :
P(B wins on turn 2) = P(A doesn’t win on turn 1)·

P(B wins at 2 | A doesn’t win at 1) = 5
6
1
6 ,

and similarly for the rest of the terms.

This is basically re-deriving the probability function for the geometric RV.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 110 / 381



Solution: (continued)
Now plug in p = 1/6, q = 5/6 and find

P(B) = 1
6
5
6 ·

1
1− 25/36

= 5
36

1
(11/36) = 5

11 .

Other ways to think about this:
P(B) = 1− P(A), so we can compute P(A) instead.
Also, instead of using what we know about geometric RVs, we could
write down directly the probability that B wins on turn 2 + B wins on
turn 4 + . . . :
P(B wins on turn 2) = P(A doesn’t win on turn 1)·

P(B wins at 2 | A doesn’t win at 1) = 5
6
1
6 ,

and similarly for the rest of the terms.
This is basically re-deriving the probability function for the geometric RV.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 110 / 381



Recall:
We studied the “moment generating function” mY (t) = E [etY ].

We saw
that the “central moments” µ′k = E [Y k ] are related to this function:
Expand E [etY ] as a power series and the moments appear:

E [etY ] =
∑

y
etyp(y) =

∑
y

∞∑
k=0

(ty)k

k! p(y)

=
∞∑

k=0

∑
y

tkyk

k! p(y) =
∞∑

k=0

tk

k!

(∑
y

ykp(y)
)

=
∞∑

k=0

tk

k!E [Y k ] =
∞∑

k=0

tk

k!µ
′
k .

Consequence: m(k)
Y (0) = µ′k = E [Y k ].
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In particular, m(1)
Y (0) = µ′1 = E [Y ].

The series is t0

0!µ
′
0 + t1

1!µ
′
1 + t2

2!µ
′
2 + . . . .

Take one derivative: 0 + µ′1 + 2t
2!µ

′
2 + 3t2

3! µ
′
3 + . . . .

Evaluate at 0: µ′1 + 0 + 0 + · · · = µ′1.
Continue in this way to show m(k)

Y (0) = µ′k = E [Y k ].
An example of this phenomenon: the geometric RV. What is the MGF of
Y ∼ Geom(p)? Let’s derive this now (Exercise 3.147):

E [etY ] =
∑

y
etyp(y) =

∞∑
y=1

etyqy−1p =
∞∑

z=0
et(z+1)qzp

=
∞∑

z=0
petetzqz =

∞∑
z=0

pet(etq)z = pet 1
1− qet

= pet

1− qet = mY (t) .
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What about m′Y (0)?

We should get E [Y ]. We find

m′Y (t) = pet · (1− qet)− pet · (−qet)
(1− qet)2 .

Evaluate this at 0: use e0 = 1 and get

m′Y (0) = p(1− q)− p(−q)
(1− q)2 = p2 + pq

p2 = p(p + q)
p2 = 1

p ;

indeed this is E [Y ].

Notes:
This may or may not be a good way to compute E [Y k ].
Using the identity V [Y ] = E [Y 2]− E [Y ]2, we can compute
V [Y ] = m(2)

Y (0)− [m′Y (0)]2.

Caution: V [Y ] is not m(2)
Y (0), unless E [Y ] = 0.
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(1− q)2 = p2 + pq

p2 = p(p + q)
p2 = 1

p ;

indeed this is E [Y ].

Notes:
This may or may not be a good way to compute E [Y k ].
Using the identity V [Y ] = E [Y 2]− E [Y ]2, we can compute
V [Y ] = m(2)

Y (0)− [m′Y (0)]2.

Caution: V [Y ] is not m(2)
Y (0), unless E [Y ] = 0.
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Tchebysheff’s Theorem

Theorem (Tchebysheff)
Let Y be a RV with mean µ and variance σ2. Then for any k > 0,

P(|Y − µ| ≥ kσ) ≤ 1
k2 , P(|Y − µ| < kσ) ≥ 1− 1

k2 .

Note that the two events are complementary: if |Y − µ| is not ≥ kσ,
then |Y − µ| < kσ.

What does this really say?
Let’s set k = 3. Then the first statement says

P(|Y − µ| ≥ 3σ) ≤ 1
32 = 1

9 .
The result says that P(Y is far from mean) is small. In particular, the
probability that Y is 3 or more standard deviations away from its mean is
less than or equal to 1

9 .
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Remarks:
1 The theorem has a hypothesis that Y has a mean and variance.

Not
every RV has a mean and variance. Virtually all of the RVs we study
will have means and variances.

2 We said nothing else about Y , so this applies to all the RVs we have
studied, plus anything you can imagine (with a µ and σ2).

3 This bound is sharp, in the sense that it cannot be improved for
general RVs.

4 The bound is weak, in the sense that it can be greatly improved with
the knowlegde of the distribution.
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Example
Let

Y =

 0 with probability 16/18
1 with probability 1/18
−1 with probability 1/18

Then E [Y ] = 0,V [Y ] = E [Y 2]− E [Y ]2 = 1
9 . So in applying

Tchebysheff, µ = 0, σ2 = 1
9 . The theorem says P(|Y − 0| ≥ 3σ) ≤ 1

9 .

Here σ =
√

1
9 = 1

3 , so 3σ = 3 · 13 = 1. So P(|Y | ≥ 1) ≤ 1
9 .

But for our RV Y , P(|Y | ≥ 1) = 1
18 + 1

18 = 1
9 . So the bound cannot be

possibly improved.

Remark:
We specialized k = 3 for clarity. But a similar example can be
constructed with 1

18 replaced by 1
2k2 for any k, and get similar results.
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Example (Exercise 3.123)
The random variable Y has a Poisson distribution and is such that
p(0) = p(1). What is p(2)?

Solution:

Y ∼ Poisson(λ), so p(y) = λye−λ
y ! .

We are given p(0) = p(1). So
λ0e−λ
0! = λ1e−λ

1! =⇒ λ0 = λ1 =⇒ λ = 1.
Thus

p(2) = 12e−1

2! = e−1

2 = 1
2e .

Notice that we had to know the probability function for the Poisson RV.
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Another thing to try:

Derive!
Examples: MGF of geometric RV, the mean and variance of the Poisson
RV (and lots of ther examples).

MGF of the Geometric RV
What is the probability function of the geometric RV?

p(y) = qy−1p y = 1, 2, 3, . . . .
What is the definition of MGF?

mY (t) = E [etY ] Thm 3.2=
∑

y
p(y)ety =

∞∑
y=1

qy−1pety

=
∞∑

z=0
qzpet(z+1) =

∞∑
z=0

etzqzpet = pet
∞∑

z=0
(etq)z

= pet

1− qet .
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Famous Problem: “St. Petersburg Paradox”

You are to play a game where a fair coin is flipped repeatedly. If the first
flip is heads, you get pais $ 1 and the game ends. If the first flip is tails
and the second is heads, you get $2. If the first 2 flips are tails and the
third is heads, you get $4; and so on.

1 How much should you be willing to pay to play this game?
2 How much should you charge if someone else wants to play and you

are responsible for the payouts?

Interpretation:
We are looking at the expectation of a function of a geometric RV.
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Let Y ∼ Geom
(
1
2

)
.

The naïve “fair value” of this game is E [2Y−1].

Notice that

E [2Y−1] =
∞∑

y=1
qy−1p2y−1 = 1

2

∞∑
z=0

(
1
2 · 2

)z

= 1
2

∞∑
z=0

1 = 1
2 (1 + 1 + . . . )→∞.
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Before we move on to Chapter 4:

Challenging problems in Probability: “Interview Puzzles”.

Examples
1 The Chow-Robbins Game (From the 1st slide).
2 100 passengers get on a plane with 100 seats. The first passenger

has lost his boarding pass and chooses a seat at random. Subsequent
passengers sit in their assigned seats (if empty) or choose a seat at
random (if the assigned seat is occupied). What is the probability
that the 100th passenger is able to sit in their assigned seat?

3 4 points are chosen at random on the unit sphere in R3. They form
a tetrahedron. What is the probability that the origin (the center of
the sphere) lies in the tetrahedron?
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So far we have only treated “discrete probability”. In Chapter 4, we will
discuss continuous probability.

Remark:
What does a random point on the surface of a sphere mean?
“Random point on the surface of the sphere” means that the probability
that the point lies in a set S is proportional to the area of S.

Second thing which is not part of this course but very important in
practice: Statistical software. In practice “R” is most common, and there
are many online courses on how to use R.

Knowing R is an “employable skill”!.

Almost every question we discuss here is empirical: it can be addressed
by experiment and simulation. This exposition is to give you enough
background to understand what R is doing.
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End of Chapter 3
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Chapter 4

Continuous Variables and Their
Probability Distributions
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Continuous Probability

If we have a random variable Y , we can define a real-valued function
FY : R→ R:

FY (y) = P(Y ≤ y).

Example

Suppose Y ∼ Bin
(
2, 12

)
. The probability function of Y is

p(0) = 1
4 , p(1) = 1

2 , p(2) = 1
4 .

What is FY ? Try to draw a graph!
First note that if y < 0, then P(Y ≤ y) = 0. So FY (y) = 0 for y < 0.
What is FY (0)?

FY (0) def= P(Y ≤ 0) = 1
4 .
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Example (continued)
For 0 < y < 1, what is FY (y)?

FY (y) def= P(Y ≤ y) = 1
4 ,

because Bin
(
2, 12

)
can only take values 0, 1, 2.

What is FY (1)?
FY (1) = P(Y ≤ 1) = P(Y = 0) + P(Y = 1)

= p(0) + p(1) = 1
4 + 1

2 = 3
4 .

And if 1 < y < 2, then FY (y) = 3
4 .

What is FY (2)?
FY (2) = P(Y ≤ 2) = P(Y = 0) + P(Y = 1) + P(Y = 2) = 1.
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Graph of FY (y):
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This FY is called the “Distribution function” of Y (sometimes called
“Cumulative Distribution Function”).

For all the random variables we have studied thus far, it has this
step-function structure.

Remarks:
1 We could just as well define a RV by giving FY rather than the

probability function.
2 If we define an RV by a CDF FY , then a continuous random variable

is one for which the function FY is continuous.
3 If we define a RV this way, then for any interval [a, b], we can write

P(a ≤ y ≤ b) = FY (b)− FY (a).

For a continuous RV Y , what is the probability that Y = 1?
P(Y = 1) = P(1 ≤ Y ≤ 1) = FY (1)− FY (1) = 0 .
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Remark:
By definition, P(Y ≤ a) = FY (a).

Thus
FY (b)− FY (a) = P(Y ≤ b)− P(Y ≤ a)

= P({Y ≤ b} \ {Y ≤ a})
= P(a < Y ≤ b).

But the difference does not matter, because, as we saw before,
P(Y = a) = 0, and {a} ∩ {a < Y ≤ b} = ∅.

Intuition: For a continuous RV Y we really don’t want to talk about
P(Y = a). Remember the analogy between probability and length (or
area). P(Y = a) is like the length of a single point (zero). But a line
segment, which is made up of points, has a nonzero length. So just as we
only want to talk about the length of sets that are “non-discrete”
(discrete sets have zero length), for a continuous RV Y we only want to
talk about P(Y ∈ S) if S is a set that makes sense in the context.
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Example (Choosing a point at random in the unit interval)
Define

FY (y) =

0 y ≤ 0
y 0 < y < 1
1 y ≥ 1

.

Note that for this FY ,
P(0 ≤ y ≤ 1) = FY (1)− FY (0) = 1− 0 = 1.

If [a, b] ⊂ [0, 1], then
P(a ≤ y ≤ b) = FY (b)− FY (a) = b − a = length([a, b]).

So the probability that a point chosen according to this distribution lies
in a subinterval [a, b] is proportional to the length of that subinterval.
Such distributions are called Uniform.
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Here is another way we could define the uniform distribution on [0, 1]:

Let’s consider the function

fY (y) =
{
1 y ∈ [0, 1]
0 y /∈ [0, 1] .

Then
FY (y) =

∫ y

−∞
fY (x) dx ,

and we have

FY (b)− FY (a) =
∫ b

a
fY (x) dx .

This fY is called the “Probability Distribution Function” (PDF) of Y , and
we could just as well define Y by giving the PDF.
And this is what we will do for most of Chapter 4. Note by the
Fundamental Theorem of Calculus,

fY (y) = d
dy FY (y).
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We defined a “Cumulative Distribution Function” (CDF) or sometimes
just “Distribution Function” of a RV Y to be FY (y) = P(Y ≤ y).

Notice that FY : R→ R. This is different from the RV Y in the sense
that the domain of Y is some “sample space”, i.e. Y : S → R.

Properties of a distribution function:
(1)

lim
y→−∞

FY (y) = 0. [Book writes FY (−∞) = 0]

(2)
lim

y→∞
FY (y) = 1. [Book writes FY (∞) = 1]

(3) FY is nondecreasing: if y1 < y2, then FY (y1) ≤ FY (y2).
(4) FY is “right continuous”.

Recall that we studied F (Y ) where Y ∼ Bin(2, 12 ). We saw that FY is a
step function.
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FY (y) =


0 y < 0

1/4 0 ≤ y < 1
3/4 1 ≤ y < 2
1 y ≥ 2.
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F (Y ) is defined for general RVs Y .

Y is said to be “continuous” if FY is continuous. This is the definition of
a “continuous RV”.
Counter-intuitive point: For a countinuous RV Y , P(Y = a) = 0 for any
a ∈ R.
If P(Y = a) were some non-zero number, say 1

10 , then we would have,
for any y < a,

P(Y ≤ a)− P(Y ≤ y) ≥ 1
10 .

So
lim

y→a−
P(Y ≤ y) ≤ P(Y ≤ a)− 1

10 < P(Y ≤ a).

But if FY is continuous,
lim

y→a−
P(Y ≤ y) = P(Y ≤ a).
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So this is impossible, because if FY is continuous,

lim
y→a−

FY (y) = FY

(
lim

y→a−
y
)

= FY (a).

Recall the intuition: Probability is like length or area. The length of any
single point is zero. But the length of [0, 1] (which is made up of points)
is 1.
Similarly, the probability (for a continuous RV Y ) that Y = a is zero, but
P(Y ∈ [0, 1]) can be positive.

We defined the “Probability Density Function” (PDF) (sometimes
“Density Function”) to be

fY = d
dy FY , that is, fY (y) = F ′Y (y).

In this book we can just assume that FY is differentiable.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 135 / 381



So this is impossible, because if FY is continuous,

lim
y→a−

FY (y) = FY

(
lim

y→a−
y
)

= FY (a).

Recall the intuition: Probability is like length or area.

The length of any
single point is zero. But the length of [0, 1] (which is made up of points)
is 1.
Similarly, the probability (for a continuous RV Y ) that Y = a is zero, but
P(Y ∈ [0, 1]) can be positive.

We defined the “Probability Density Function” (PDF) (sometimes
“Density Function”) to be

fY = d
dy FY , that is, fY (y) = F ′Y (y).

In this book we can just assume that FY is differentiable.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 135 / 381



So this is impossible, because if FY is continuous,

lim
y→a−

FY (y) = FY

(
lim

y→a−
y
)

= FY (a).

Recall the intuition: Probability is like length or area. The length of any
single point is zero. But the length of [0, 1] (which is made up of points)
is 1.

Similarly, the probability (for a continuous RV Y ) that Y = a is zero, but
P(Y ∈ [0, 1]) can be positive.

We defined the “Probability Density Function” (PDF) (sometimes
“Density Function”) to be

fY = d
dy FY , that is, fY (y) = F ′Y (y).

In this book we can just assume that FY is differentiable.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 135 / 381



So this is impossible, because if FY is continuous,

lim
y→a−

FY (y) = FY

(
lim

y→a−
y
)

= FY (a).

Recall the intuition: Probability is like length or area. The length of any
single point is zero. But the length of [0, 1] (which is made up of points)
is 1.
Similarly, the probability (for a continuous RV Y ) that Y = a is zero, but
P(Y ∈ [0, 1]) can be positive.

We defined the “Probability Density Function” (PDF) (sometimes
“Density Function”) to be

fY = d
dy FY , that is, fY (y) = F ′Y (y).

In this book we can just assume that FY is differentiable.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 135 / 381



So this is impossible, because if FY is continuous,

lim
y→a−

FY (y) = FY

(
lim

y→a−
y
)

= FY (a).

Recall the intuition: Probability is like length or area. The length of any
single point is zero. But the length of [0, 1] (which is made up of points)
is 1.
Similarly, the probability (for a continuous RV Y ) that Y = a is zero, but
P(Y ∈ [0, 1]) can be positive.

We defined the “Probability Density Function” (PDF) (sometimes
“Density Function”) to be

fY = d
dy FY , that is, fY (y) = F ′Y (y).

In this book we can just assume that FY is differentiable.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 135 / 381



So this is impossible, because if FY is continuous,

lim
y→a−

FY (y) = FY

(
lim

y→a−
y
)

= FY (a).

Recall the intuition: Probability is like length or area. The length of any
single point is zero. But the length of [0, 1] (which is made up of points)
is 1.
Similarly, the probability (for a continuous RV Y ) that Y = a is zero, but
P(Y ∈ [0, 1]) can be positive.

We defined the “Probability Density Function” (PDF) (sometimes
“Density Function”) to be

fY = d
dy FY , that is, fY (y) = F ′Y (y).

In this book we can just assume that FY is differentiable.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 135 / 381



For a continuous RV Y with CDF F and PDF f , we have

P(a ≤ y ≤ b) = P(a < y < b) =
∫ b

a
f (y)dy .

This follows directly from the definitions we have given:∫ y

−∞
f (x)dx = F (y)− F (−∞) (By FToC)

= F (y)− 0 (By properties of CDF)
= P(Y ≤ y).

So ∫ b

a
f (x)dx = P(Y ≤ b)− P(Y ≤ a)

= P(a < y ≤ b) = P(a ≤ y ≤ b),
because P(Y = a) is zero.
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Mostly we will define our random variables by giving the PDF.

Properties of PDF:
(1)

fY (y) ≥ 0. [Recall FY is nondecreasing]

(2) ∫ ∞
−∞

fY (y)dy = 1. [= P(−∞ ≤ y ≤ ∞]
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Example
Let’s define a RV by giving a PDF.

Suppose

fY (y) =

0 y < 0
1 0 ≤ y ≤ 1
0 y > 1

Notice that (1) and (2) are satisfied.

Define

FY (y) =
∫ Y

−∞
fY (x)dx =

0 y ≤ 0
y 0 ≤ y ≤ 1
0 y ≥ 1

Notice that properties (1)-(4) of a CDF are satisfied.

We just defined a continuous RV Y . This Y is said to have “the uniform
distribution” on the interval [0, 1].
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Much of the rest of this chapter will go according to the following
scheme:

We define a RV Y by giving some PDF.
Then we compute the mean and variance of this RV.
Then you have a bunch of problems in which you use the properties
of this RV to figure something out.
This is much the same as Chapter 3, but all sums will be replaced by
integrals, because

Definition 4.5
For a continuous RV Y ,

E (Y ) =
∫ ∞
−∞

yf (y)dy ,

where f is the PDF of Y .

As before, not every RV has an expectation: we need this integral to
be convergent.
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Also, analogously to Chapter 3,

E [g(Y )] =
∫ ∞
−∞

g(y)f (y)dy .

Now we know enough to begin computing means and variances.

We already defined a RV Y ∼ Unif([0, 1]) by the PDF

fY =
{
1 y ∈ [0, 1]
0 y /∈ [0, 1]

What is E [Y ]?

E [Y ] =
∫ ∞
−∞

yf (y)dy =
∫ 0

−∞
y · 0dy +

∫ 1

0
y · 1dy +

∫ ∞
1

y · 0dy

=
∫ 1

0
ydy = y2

2

∣∣∣∣1
0

= 1
2 .
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We already defined a RV Y ∼ Unif([0, 1]) by the PDF

fY =
{
1 y ∈ [0, 1]
0 y /∈ [0, 1]

What is E [Y ]?

E [Y ] =
∫ ∞
−∞

yf (y)dy =
∫ 0

−∞
y · 0dy +

∫ 1

0
y · 1dy +

∫ ∞
1

y · 0dy

=
∫ 1

0
ydy

= y2

2

∣∣∣∣1
0

= 1
2 .
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What is V [Y ]?

We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs.

So
E [(Y − µ)2] = E [Y 2 − 2µY + µ2]

= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]

= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )

= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2

= E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2

=
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4

= y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4

= 1
12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



What is V [Y ]? We know that V [Y ] = E [(Y − µ)2], and the expectation
E has the same linearity properties as it did for discrete RVs. So

E [(Y − µ)2] = E [Y 2 − 2µY + µ2]
= E [Y 2]− 2µE [Y ] + µ2 (Linearity of E )
= E [Y 2]− 2µ · µ+ µ2 = E [Y 2]− µ2.

Thus

V [Y ] = E [Y 2]− µ2 =
∫ ∞
−∞

y2f (y)dy −
(
1
2

)2

=
∫ 0

−∞
y2 · 0dy +

∫ 1

0
y2 · 1dy +

∫ ∞
1

y2 · 0dy − 1
4

=
∫ 1

0
y2dy − 1

4 = y3

3

∣∣∣∣1
0
− 1

4

= 1
3 −

1
4 = 1

12 .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 141 / 381



Exercise 4.11.a
Suppose that Y possesses the density function

f (y) =
{
cy 0 ≤ y ≤ 2
0 elsewhere.

Find the value of c that makes f (y) a probability density function.

Solution:
Recall that, from property (2) of PDFs,∫ ∞

−∞
f (y)dy = 1.

So we have ∫ 2

0
cy dy = 1,

that is,

1 = cy2

2

∣∣∣∣2
0

= c(2)2

2 − c(0)2

2 = 2c =⇒ c = 1
2 .
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Note that we could also have an undefined c in the definition of a CDF
FY , which is determined by some property of CDFs, e.g. lim

y→∞
FY (y) = 1.

This might give us an equation for c.

Definitions: “Quantile”, “Median”
Let Y denote any random variable. If 0 < p < 1, the pth quantile of Y ,
denoted by φp, is the smallest value such that P(Y ≤ φp) = FY (φp) ≥ p.
If Y is continuous, φp is the smallest value such that

FY (φp) = P(Y ≤ φp) = p.
The quantity corresponding to 0.5, φ0.5, is called the “Median” of Y .

Many problems use this notation.

Remark:
We said that E is linear. But E does not commute with arbitrary
functions: it is not true that E [g(Y )] = g(E [Y ]).
This only works for linear functions.
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Plan:

We will study a few continuous probability distributions.
We will find means, variances, and MGFs.
We will study the continuous version of Tchebysheff’s Theorem.

Remark:
Usually the distribution will be defined by the density function (PDF).
Recall that a PDF has 2 properties:
(1) fY (y) ≥ 0 for all y ∈ R.
(2) ∫ ∞

−∞
fY (y)dy = 1.

The relationship of the density function to the values of the random
variable is:

P(a ≤ Y ≤ b) =
∫ b

a
fY (y)dy .
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Remark:
Any function satisfying properties (1) and (2) is a valid density function,
and defines a random variable.

We will study a few special ones (useful in
applications). Thus a random variable is about as general as a function.
Analogy to calculus: In principle, you can talk about the integral of any
function, but we study certain special functions that are useful in
applications.

The main random variables we will study:
The Uniform distribution, Unif(S).
The Normal distribution, N (µ, σ2).
The Beta distribution, Beta(α, β).
The Gamma distribution, Γ(α, β).
The Exponential distribution, Exp(λ).
The Chi-Squared distribution, χ2(k).

In various exercises
you may also see
Weibull distribution,
Pareto distribution,
Rayleigh distribution,
and some more.
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We defined the uniform distribution on [0, 1] by the PDF

f (y) =
{
1 y ∈ [0, 1]
0 y /∈ [0, 1].

and we computed

E [Y ] = 1
2 ,V [Y ] = 1

12 .

The uniform distribution on [θ1, θ2] is defined by the PDF

f (y) =


1

θ2 − θ1
y ∈ [θ1, θ2]

0 y /∈ [θ1, θ2].

The same computation as before will give us

E [Y ] = θ1 + θ2
2 ,V [Y ] = (θ2 − θ1)2

12 .
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Question:
If Y is in units υ, is V [Y ] in units υ?

The uniform distribution may seem trivial, but there are many nontrivial
problems based on it.

Examples:
1 If we choose 2 points at random in the unit interval, we get a

random subinterval. Suppose we choose n random subintervals.
What is the probability that there is one which has nonempty
intersection with all of the others?

2 (Classic Problem:) The uptown and downtown trains come equally
often to our station, but we wind up taking the uptown train 90% of
the time. How is this possible? (You can look up many versions of
this.)
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The Normal Distribution: “Bell Curve”

This distribution is very important: in practice, many distributions
are “approximately normal”.
Also, the main theorem of this class, the “Central Limit Theorem”,
says that if we add up a bunch of independent and identically
distributed (IID) RVs, the result is approximately normal.

Definition
The normal distribution is defined by its PDF

f (y) = 1
σ
√
2π

e−
(y−µ)2

2σ2 ,

where σ > 0 and −∞ < µ <∞ are two parameters.

If Y is normal with parameters µ and σ (denoted Y ∼ N (µ, σ2)), then
E [Y ] = µ and V [Y ] = σ2.
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Remarks on the function:

Start with e−y2 .

This is a “Bell Curve”.

Suppose we wanted to center it on
µ:

We could change this to e−(y−µ)2 .

What is ∫ ∞
−∞

e−(y−µ)2
dy =

∫ ∞
−∞

e−y2
dy ?
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This integral is usually done in Calculus 2 or 3.

Method:
Write

I =
∫ ∞
−∞

e−y2
dy .

Then

I2 =
(∫ ∞
−∞

e−x2
dx
)(∫ ∞

−∞
e−y2

dy
)

=
∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2) dx dy .

Convert to polar coordinates, and deduce that

I2 = π =⇒
∫ ∞
−∞

e−y2
dy =

√
π.

Our PDF needs to be
f (y) = 1√

π
e−y2

,

so that ∫ ∞
−∞

f (y)dy = 1.
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I2 = π =⇒
∫ ∞
−∞

e−y2
dy =

√
π.

Our PDF needs to be
f (y) = 1√

π
e−y2

,

so that ∫ ∞
−∞

f (y)dy = 1.
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Next, note that if

f (y) = 1√
π
e−y2

,

then the mean is 0:

E [Y ] =
∫ ∞
−∞

y · 1√
π
e−y2

dy = 0,

by symmetry – “odd function”.
Now normalize to have variance 1: What is the variance of the RV Y
defined by the PDF f (y) = 1√

π
e−y2?

V [Y ] = E [Y 2]−��
��*0

E [Y ]2 = E [Y 2] =
∫ ∞
−∞

y2 · 1√
π
e−y2

dy .

This is a simple exercise in integration by parts.
When we are done with all this “adjusting” and “normalizing”, we get

f (y) = 1
σ
√
2π

e−
(y−µ)2

2σ2 .
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If Y is a normal RV with mean µ and variance σ2, then

P(a ≤ Y ≤ b) =
∫ b

a

1
σ
√
2π

e−
(y−µ)2

2σ2 dy .

Unfortunately it is not possible to express this integral in closed form. So
we use tables or library functions. (e.g. Table 4, Appendix 3, Text). The
table gives, for a “standard normal RV” (µ = 0, σ = 1),

P(z ≤ Y <∞) =
∫ ∞

z

1√
2π

e−
y2
2 dy for Y ∼ N (0, 1).

Two tricks:
1. If Y is normal with mean µ and standard deviation σ (variance σ2),

then Y − µ
σ

is also normal with mean 0 and variance 1.

2. Suppose, for a standard normal RV Z , we want P(−1 ≤ z ≤ 1). This
is the same as P(−1 ≤ z <∞)− P(1 ≤ z <∞): (pictures follow:)
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Look up in the table: P(1 ≤ z <∞) = 0.1587.

What about
P(−1 ≤ z <∞)?
There are no negative numbers in Table 4, Appendix 3. But

P(−1 ≤ z <∞) + P(−∞ < z ≤ −1) = P(−∞ < z <∞) = 1.
So

P(−1 ≤ z <∞) = 1− P(−∞ < z ≤ −1) = 1− P(1 < z <∞),
by symmetry:

=−→

And we can look this up in the table:
P(−1 ≤ z <∞) = 1− 0.1587 = 0.8413.

Thus
P(−1 ≤ z ≤ 1) = 0.8413− 0.1587 ≈ 68%.
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One more trick / method:

Suppose we have a normal RV Y with mean 3 and variance 4, and we are
asked to find P(1 ≤ Y ≤ 5).
Transform Y so that it is a standard normal RV.
Don’t forget to transform the 1 and the 5!

1 ≤ Y ≤ 5 ⇐⇒ 1− 3
2 ≤ Y − 3

2 ≤ 5− 3
2 ⇐⇒ −1 ≤ Y − 3

2 ≤ 1.

Now Z := Y − 3
2 is a standard normal RV, so that the probabilities can

be found by table lookup and symmetry as before. So
P(1 ≤ Y ≤ 5) = P(−1 ≤ Z ≤ 1).

(We already saw how to compute this.)

Remark:
That Z has E [Z ] = 0,V [Z ] = 1 is easy (linearity of E ). That Z is also
normal is not trivial or obvious, but we will see it later using MGFs.
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asked to find P(1 ≤ Y ≤ 5).
Transform Y so that it is a standard normal RV.
Don’t forget to transform the 1 and the 5!

1 ≤ Y ≤ 5 ⇐⇒ 1− 3
2 ≤ Y − 3

2 ≤ 5− 3
2 ⇐⇒ −1 ≤ Y − 3

2 ≤ 1.

Now Z := Y − 3
2 is a standard normal RV, so that the probabilities can

be found by table lookup and symmetry as before. So
P(1 ≤ Y ≤ 5) = P(−1 ≤ Z ≤ 1).

(We already saw how to compute this.)

Remark:
That Z has E [Z ] = 0,V [Z ] = 1 is easy (linearity of E ). That Z is also
normal is not trivial or obvious, but we will see it later using MGFs.
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Example 4.9:
The achievement scores for a college entrance examination are normally
distributed with mean 75 and standard deviation 10. What fraction of
the scores lies between 80 and 90?

Interpretation:
Y is normal with µ = 75, σ = 10. Find P(80 ≤ Y ≤ 90).

Solution
We write

P(80 ≤ Y ≤ 90) = P
(
80− 75

10 ≤ Y − 75
10 ≤ 90− 75

10

)
.

Noting that Z = Y − 75
10 is standard normal, we need to find

P(0.5 ≤ Z ≤ 1.5). This is∫ 1.5

0.5
fZ (y)dy =

∫ ∞
0.5

fZ (y)dy −
∫ ∞

1.5
fZ (y)dy .

where fZ is the standard normal PDF.
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Solution: (continued)
Both the integrals can be looked up in table.

Answer: 0.3085-0.0668 = 0.2417 .

Remarks:
This is the most common application of probability theory. Because
this is so basic, there are many ways to do and describe this
computation.

The numbers 0.5 = 80− 75
10 and 1.5 = 90− 75

10 are called z-scores:
a “raw score” is converted to a “z-score”, which is measures in
standard deviations away from the mean.
Z is a common notation for a standard normal RV.
The table in the book is “complementary error function”:

erfc(z) =
∫ ∞

z
fZ (y)dy .
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Remarks: (continued)
Sometimes you’ll get a table of

N (z) =
∫ z

−∞
fZ (y)dy (= erf(z)).

Since N (z) + erfc(z) = 1, it is equivalent to use either N (z) or
erfc(z) for calculations.
Warning: Make sure you know what kind of table you have.

Exercise 4.73(a):
The width of bolts of fabric is normally distributed with mean 950 mm
(millimeters) and standard deviation 10 mm. What is the probability that
a randomly chosen bolt has a width of between 947 and 958 mm?

Interpretation:
Find P(947 ≤ Y ≤ 958), where Y ∼ N (950, 100).
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Solution:

We have

P(947 ≤ Y ≤ 958) = P
(
947− 950

10 ≤ Y − 950
10 ≤ 958− 950

10

)
= P(−0.3 ≤ Z ≤ 0.8)

(
where Z = Y − 950

10

)
= erfc(−0.3)− erfc(0.8)

(we cannot look up erfc(−0.3)!)
= (1− erfc(0.3))− erfc(0.8)
= (1− 0.3821)− (0.2119) = 0.406 .

Remark:
The book does not use the erfc notation.
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Remark: The “95% Rule” aka the “68− 95− 99.7% Rule”

Common probabilities for a standard normal RV are often memorized. In
particular:

P(−1 ≤ Z ≤ 1) ≈ 0.68,
P(−2 ≤ Z ≤ 2) ≈ 0.954,

P(−1.96 ≤ Z ≤ 1.96) ≈ 0.95,
P(−3 ≤ Z ≤ 3) ≈ 0.997.

These probabilities P(−n ≤ Z ≤ n) converge very rapidly to 1 as n grows.
Sometimes people say that the normal distribution has “thin tails”. By
this they mean that P(Z ≥ n) + P(Z ≤ −n) is very small for values of n
greater than, say 4.
In practical problems, it may be appropriate to use a different
distribution, if we are interested in, say, P(Z ≥ 5).
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Gamma Distribution

Observe that a normally distributed RV can take on any real value. We
might be interested in a situation where we know that the RV is positive
(or at least non-negative).
Example: Time-to-failure, or “first repair”.
The Gamma distribution is a model for this. There is a hump “near 0”,
and a “tail” going out to +∞.

Definition (The Gamma Distribution)
Y has the Gamma distribution with parameters α and β if the PDF is

fY (y) =

yα−1e−
y
β

βαΓ(α) y ≥ 0,
0 y < 0,

where
Γ(α) =

∫ ∞
0

yα−1e−ydy

is the “generalized factorial function”.
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How to make sense of this?

Simplify to a special case: α = 2, β = 1.
Then

fY (y) =
{
ye−y y ≥ 0,
0 y < 0,

and we get this shape:

−→

Note that the number βαΓ(α) is put in the PDF so that∫ ∞
−∞

fY (y)dy =
∫ ∞

0

yα−1e−
y
β

βαΓ(α) dy = 1.

This is true by the change-of-variable v = y
β

and the definition of Γ: First

dv = dy
β
, dy = βdv , y = βv .
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Using the change-of-variable, we get∫ ∞
0

yα−1e−
y
β

βαΓ(α) dy =
∫ v=∞

v=0

(βv)α−1e−v

βαΓ(α) βdv

=
∫ ∞

0

��
�βα−1vα−1e−v

��β

��β
αΓ(α) dv

=
∫ ∞

0

vα−1e−v

Γ(α) dv

= 1
Γ(α)

∫ ∞
0

vα−1e−vdv︸ ︷︷ ︸ (Γ(α) is a number)

= 1
Γ(α) ·

︷︸︸︷
Γ(α) = 1.
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You can expect a lot of computations like this:

e.g.

Theorem
If Y ∼ Γ(α, β), then E [Y ] = αβ and V [Y ] = αβ2.

Proof is an exercise in integration similar to above, but more complicated.

Remarks:
α and β are called the “shape” and the “scale” parameters,
respectively.
α > 0, β > 0.
If Y ∼ Γ(α, β), then Y ≥ 0.

Other sources may work in terms of λ = 1
β
.
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The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy

=
∫ ∞

0
e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,

Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,

Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.
Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.

Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers.

This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



The definition of the Gamma PDF involves the Gamma function, a
“generalized factorial”:

Γ(α) def=
∫ ∞

0
yα−1e−ydy .

Integration by parts proves the formula Γ(α) = (α− 1)Γ(α− 1).

Γ(1) =
∫ ∞

0
y1−1e−ydy =

∫ ∞
0

e−ydy = 1.

Using the two facts above, we find
Γ(2) = (2− 1)Γ(2− 1) = 1 · Γ(1) = 1,
Γ(3) = (3− 1)Γ(3− 1) = 2 · Γ(2) = 2 = 2!,
Γ(4) = (4− 1)Γ(4− 1) = 3 · Γ(3) = 6 = 3!.

Induction shows that Γ(n) = (n − 1)! for all n ∈ N.
Notice that Γ(α) is defines for real values of α, whereas the factorial is
defined only for nonnegative integers. This is the sense in which the Γ
function is a generalized factorial.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 165 / 381



Remark:
The values of Γ(α) when α is not an integer can be difficult to
determine,

e.g.

Exercises 4.194 and 4.196
4.194 If u > 0, then

1√
2π

∫ ∞
−∞

e−
uy2

2 dy = 1√
u
.

4.196 Show that

Γ
(
1
2

)
=
∫ ∞

0
y− 1

2 e−ydy =
√
π

by making the transformation y = x2

2 and employing
Exercise 4.194.

The way we handle the Γ function in this course is to treat it as a black
box: The Gamma PDF uses the Γ function as a normalization. We
generally will not evaluate Γ(α) unless α is a nonnegative integer.
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Theorem
If Y ∼ Γ(α, β), then E [Y ] = αβ and V [Y ] = αβ2.

Sketch of Proof:
Use integration by parts and the standard formula
V [Y ] = E [Y 2]− E [Y ]2. We find

E [Y ] =
∫ ∞
−∞

yfY (y)dy =
∫ ∞

0
y · y

α−1e−
y
β

βαΓ(α) dy .

In evaluating such an integral, remember what is a function of y and
what is a number:

E [Y ] = 1
Γ(α)

∫ ∞
−∞

yαe−
y
β

βα
dy .

Substitute v = y
β
, so that y = βv and dy = βdv .
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∴ E [Y ] = 1
Γ(α)

∫ ∞
0

(βv)αe−v

βα
βdv

= 1
Γ(α)

∫ ∞
0

vαe−v · βdv

= 1
Γ(α) · β

∫ ∞
0

v (α+1)−1e−vdv

= 1
Γ(α) · β · Γ(α + 1) by definition of Γ function.

= 1
Γ(α) · β · αΓ(α) by the recursive formula for Γ.

= αβ .

Finding V [Y ] is similar, but much more complicated.
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= 1
Γ(α) · β · αΓ(α) by the recursive formula for Γ.

= αβ .
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Here is a trick which is useful:

Recall that any PDF fY (y) has∫ ∞
−∞

fY (y)dy = 1 ⇐⇒ P(−∞ < Y <∞) = 1.

We checked that this was true for the Γ PDF:∫ ∞
0

yα−1e−
y
β

βαΓ(α) dy = 1.

But βα and Γ(α) are numbers. So∫ ∞
0

yα−1e−
y
β dy = βαΓ(α).

So we have a scheme for evaluating any integral of this form. For
example,∫ ∞

0
y3e−

y
2 dy =

∫ ∞
0

yα−1e−
y
β dy α = 4

β = 2
= βαΓ(α) = 24Γ(4) = 24 · 3! = 16 · 6 = 96 .
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Special cases of the Gamma distribution:

The Exponential Distribution:
The exponential distribution is the case α = 1, and is denoted Exp(β).
If Y ∼ Exp(β), then E [Y ] = β and V [Y ] = β2.

The Chi-Squared (χ2) Distribution with k degrees of freedom:

This is the Γ distribution with α = k
2 , β = 2. If Y ∼ χ2[k], then

E [Y ] = k and V [Y ] = 2k.

Remark:
The reason we study this separately is in Theorem 7.2: If Z1, . . . ,Zk are
independent standard normal RVs and Y = Z 2

1 + · · ·+ Z 2
k (think of Y as

a sum of squared errors), then Y ∼ χ2[k].
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Exercise 4.91 (a):
If Y has an exponential distribution and P(Y > 2) = .0821, what is
β = E [Y ]?

Solution:
Y ∼ Exp(β),P(Y > 2) = .0821. Now find β.

Notice that P(Y > 2) =
∫ ∞

2
fY (y)dy . Plug in the PDF, evaluate the

integral, and solve (expression in β) = 0.0821 for β. By definition, the
PDF is

fY (y) =

y1−1e−
y
β

β1Γ(1) y ≥ 0
0 y < 0

=


1
β
e−

y
β y ≥ 0

0 y < 0
.

∴ 0.0821 =
∫ ∞

2

1
β
e−

y
β dy = −e−

y
β

∣∣∣∞
2

= −0− (−e− 2
β ) = e−

2
β .

So − 2
β = ln(0.0821) =⇒ β = − 2

ln(0.0821) ≈ 0.8 .
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Exercise 4.89 (a):
The operator of a pumping station has observed that demand for water
during early afternoon hours has an approximately exponential
distribution with mean 100 cfs (cubic feet per second). Find the
probability that the demand will exceed 200 cfs during the early
afternoon on a randomly selected day.

Solution:
Y ∼ Exp(β),E [Y ] = 100. Since E [Y ] = β, we have β = 100. Now find
P(Y > 200).

P(Y > 200) =
∫ ∞

200
fY (y)dy =

∫ ∞
200

1
β
e−

y
β dy

= −e−
y
β

∣∣∣∞
200

= −0− (−e− 200
β )

= e−
200
β = e− 200

100 = e−2 .
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Recall:

The Gamma PDF uses the Γ function, a generalized factorial:

Γ(α) =
∫ ∞

0
yα−1e−ydy .

Integrate by parts:
u = yα−1, dv = e−ydy

du = (α− 1)yα−2dy , v = −e−y .

∴
∫ ∞

0
u dv = uv

∣∣∣∣∞
0
−
∫ ∞

0
v du = yα−1(−e−y )

∣∣∞
0 −

∫ ∞
0

vdu

= 0−
∫ ∞

0
(−e−y )(α− 1)yα−2dy

= (α− 1)
∫ ∞

0
y (α−1)−1e−ydy

= (α− 1)Γ(α− 1).
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Thus the recursion formula Γ(α) = (α− 1)Γ(α− 1).

Also
Γ(n) = (n − 1)! for positive integers n.
The key formula for many problems and exercises is∫ ∞

0
yα−1e−

y
β dy = βαΓ(α). (?)

Γ(α) can be evaluated by the recursion formula we just proved, if α ∈ N.
The formula (?) is equivalent to the statement that the Gamma PDF
integrates to 1.
The above remarks will save you from having to integrate by parts several
times.
All of this is based on integration by parts, it’s just made easier with
clever packaging.
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Exercise 4.111 (a):
Suppose that Y has a Gamma distribution with parameters α and β. If a
is any positive or negative value such that α + a > 0, show that

E [Y a] = βaΓ(α + a)
Γ(α) .

Solution:

E [Y a] =
∫ ∞
−∞

yafY (y)dy where fY is the Gamma PDF

=
∫ ∞

0
y a yα−1e−

y
β

βαΓ(α) dy = 1
βαΓ(α)

∫ ∞
0

yα+a−1e−
y
β

= 1
βαΓ(α)β

aΓ(α + a) by formula (?)

= βaΓ(α + a)
Γ(α) by cancelling powers of β.
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Definition (Beta Distribution)

A random variable Y is said to have the Beta distribution (denoted
Y ∼ Beta(α, β) if the PDF is

fY (y) =
{

yα−1(1−y)β−1

B(α,β) 0 ≤ y ≤ 1
0 elsewhere,

where

B(α, β) =
∫ 1

0
yα−1(1− y)β−1dy = Γ(α)Γ(β)

Γ(α + β)
is the “Beta function”.

Remark:
If Y ∼ Beta(α, β), then 0 ≤ Y ≤ 1.
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Theorem
If Y ∼ Beta(α, β), then

E [Y ] = α

α + β

and V [Y ] = αβ

(α + β)2(α + β + 1) .

Proof:
Use the formulas for the Beta-integral and the Γ function. We’ll look at
E [Y ]; V [Y ] is left as an exercise.

E [Y ] =
∫ ∞
−∞

yfY (y)dy =
∫ 1

0
y y

α−1(1− y)β−1

B(α, β) dy

= 1
B(α, β)

∫ 1

0
y (α+1)−1(1− y)β−1 (Now use B-integral formula.)

= 1
B(α, β) · B(α + 1, β) = 1

B(α, β) ·
Γ(α + 1)Γ(β)
Γ(α + β + 1)

=
��
��

��Γ(α + β)
Γ(α) · Γ(β) ·

α��
�Γ(α) ·���Γ(β)

(α + β)���
��Γ(α + β) = α

α + β
.

�
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Remark and Terminology:

The CDF for the Beta distribution is called the “incomplete Beta
function”.
If 0 ≤ y ≤ 1, we can write this as

F (y) =
∫ y

0

yα−1(1− y)β−1

B(α, β) dy .

If α and β are both integers, and we write n = α + β − 1, then

F (y) =
n∑

i=0

(
n
i

)
y i (1− y)n−i .

This, like so much else, is proved by integration by parts.
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Exercise 4.125:
The percentage of impurities per batch in a chemical product is a
random variable Y with density function

fY (y) =
{
12y2(1− y) 0 ≤ y ≤ 1

0 elsewhere.
Find the mean and variance of the percentage of impurities in a randomly
selected batch of the chemical.

Solution:
Note that the given PDF is the Beta distribution with parameters
α = 3, β = 2. Therefore the mean is

α

α + β
= 3

3 + 2 = 3
5 ,

and the variance is
αβ

(α + β)2(α + β + 1) = 3 · 2
(3 + 2)2(3 + 2 + 1) = 6

52 · 6 = 1
25 .
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So far we have studied the following continuous distribtions:

Uniform,
Normal,
Gamma, and
Beta.

Note that the Gamma distribution includes the special cases: The χ2

distribution and the Exponential distribution.

Now we move on to cover some things that are relevant to all
distributions:

Moment Generating Functions, and
Tchebysheff’s Theorem.
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Definition (Moment Generating Functions)

The moment generating function (MGF) of a RV Y is E [etY ] = mY (t)
or m(t).

The theoretical importance of this is in part that the MGF determines the
RV; that is, if we want to check that a RV is (say) normal with mean a
and variance b, it is enough to check that this RV has the right MGF.

Why is the MGF called that?
It “generates” the moments µ′k = E [Y k ], in the sense that(

d
dt

)k
[m(t)]

∣∣∣∣∣
t=0

= µ′k .

Remark:
Sometimes people think in terms of “central moments”
µk = E [(Y − µ)k ], but we can derive these from the µ′k (and vice versa).
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Remark:
It is not necessary that the integral defined by the expectation E [etY ]
converges for all values of t; it is enough that it converges for some t.

What will we use this for?
(1) A linear function of a normal RV is normal. (?)

In particular, if Y ∼ N (µ, σ2), then Z = Y − µ
σ

is a standard
normal RV. We know this because Z has the right MGF.
Note that (?) would NOT be true if we replaced normal by Beta,
Gamma, Exponential, etc.

(2) Later we will see using similar ideas that a linear combination of
independent normal RVs is normal. Again, this is special to the
normal distribution.
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How do we compute an MGF?

Of course we can look it up in a table. But, if you are asked to derive the
result, the answer is that you do an exercise in integration.

Example
Y ∼ Γ(α, β). Find the MGF of Y .

Solution:

mY (t) = E [etY ] =
∫ ∞
−∞

ety fY (y)︸ ︷︷ ︸
The Γ PDF

dy

=
∫ ∞

0
ety yα−1e−

y
β

βαΓ(α) dy (as Γ PDF is zero for y < 0).

Now rearrange this to get an integral we can evaluate using the standard
formula for Γ integrals.
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Solution: (continued)
Now ∫ ∞

0
yα−1e−

y
β dy = βαΓ(α).

(Integral of Γ PDF must be 1.)

So
m(t) =

∫ ∞
0

1
βαΓ(α) · y

α−1e−
y
X dy .

What should go in place of X?

ty − y
β

= − y
X ⇒ t − 1

β
= − 1

X ⇒ X = − 1
t − 1

β

= β

1− βt .

∴ m(t) = 1
βαΓ(α)

∫ ∞
0

yα−1e−
y

β/(1 − βt) dy

= 1
βαΓ(α)

(
β

1− βt

)α
Γ(α) = 1

(1− βt)α .
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Further trickery in integration will show that for a normal RV with mean
0 and variance σ2 that m(t) = e

(
σ2t2

2

)
.

From this, we can derive the
MGF of any normal RV.
Suppose Y is a RV with MGF mY (t) and X = aY + b. What is mX (t)?

mX (t) = E [etX ] = E [et(aY +b)]
= E [eatY ebt ] = ebtE [e(at)Y ]
= ebtmY (t). (?)

So if Y is normal with mean 0 and variance σ2, and X = Y + µ, then

mX (t) = eµtmY (t) = eµte
(
σ2t2

2

)
= e
(
µt+σ2t2

2

)
.

Exercise in “trickery”: (Example 4.16)
Find the MGF for g(Y ) = Y − µ, where Y ∼ N (µ, σ2).
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Exercise 4.139
If Y ∼ N (µ, σ2) and X = −3Y + 4, find mX (t).

Solution:
Using (?) from the previous slide, we find

mX (t) = e4tmY (−3t) = e4te

(
µ(−3t)+σ2(−3t)2

2

)
= e

(
4t+(−3µ)t+σ2(9t2)

2

)
= e

(
(−3µ+4)t+ (3σ)2t2

2

)
.

What is the distribution of X?
X is normal with mean −3µ+ 4 and variance (3σ)2 (or standard
deviation 3σ), because X has the same MGF as a normal RV mean
−3µ+ 4 and standard deviation 3σ.
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Theorem (Tchebysheff’s Theorem)

If Y is any RV with mean µ and standard deviation σ, then

P(|Y − µ| ≥ kσ) ≤ 1
k2 .

Equivalently,

P(|Y − µ| < kσ) ≥ 1− 1
k2 .

Note that “with mean µ and standard deviation σ” is part of the
hypothesis; not every RV has a mean and a standard deviation. (Recall
the St. Petersburg Paradox.)
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Proof:

Start with the equation for σ2, and estimate to get an inequality:

σ2 = E [(Y − µ)2] =
∫ ∞
−∞

(y − µ)2fY (y)dy

=
∫

y≤µ−kσ
(y − µ)2fY (y)dy +

∫
|y−µ|<kσ

(y − µ)2fY (y)dy

+
∫

y≥µ−kσ
(y − µ)2fY (y)dy .

Note that all 3 parts are nonnegative. In particular, the middle one is ≥ 0.
Also, in the first and the third part, (y − µ)2 ≥ k2σ2 (Check this!). So

σ2 ≥
∫

y≤µ−kσ
k2σ2fY (y)dy + 0 +

∫
y≥µ−kσ

k2σ2fY (y)dy

≥ k2σ2
(∫

y≤µ−kσ
fY (y)dy +

∫
y≥µ−kσ

fY (y)dy
)

≥ k2σ2 · P(|Y − µ| ≥ kσ) =⇒ P(|Y − µ| ≥ kσ) ≤ 1
k2 .
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Remark:
Similar proof works for discrete RVs.

When would you use Tchebysheff’s theorem? Mainly when you don’t
know the distribution of the RV being studied.
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Exercise 4.147:
A machine used to fill cereal boxes dispenses, on the average, µ ounces
per box. The manufacturer wants the actual ounces dispensed Y to be
within 1 ounce of µ at least 75% of the time. What is the largest value
of σ, the standard deviation of Y , that can be tolerated if the
manufacturer’s objectives are to be met?

Solution:
We want P(|Y − µ| ≤ 1) ≥ 0.75. Tchebysheff tells us that

P(|Y − µ| < kσ) ≥ 1− 1
k2 .

From the context, the RV Y is continuous, so we won’t worry about the
difference between ≤ and <. (Why?)

To use Tchebysheff’s Theorem, we need 1− 1
k2 = 0.75. So we can solve

for k and then solve for σ:

we find k = 2 and σ = 1
2 .
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Remark:

There is a lot of stuff buried in the exercises. For example, there are
relationships between the RVs we have studied. (Poisson-Gamma
relationship, and others.)
Hazard rate functions are frequently used in practice.
Moments of the normal distribution:
The standard normal RV Z has mean 0 and variance 1. But then
what about E [Z 3] or E [Z 4] or E [Z 5]?
In fact we can show using integration by parts, Gamma integrals, or
thinking about χ2(1), that E [Z 3] = 0,E [Z 4] = 3, and E [Z 5] = 0.
(Exercise 4.199 in the book explores further on this.)
If you want to go on, consider doing some of these exercises.
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Problem: A model for the height of adult American men.

Our model will be, that the distribution is normal with mean 5’9” and
standard deviation 3”.
(a) According to the model, how many American men have height

between 5’9” and 6’0”?

Solution:
Notice that we need to know the number of adult American men. (This
is typical of real-world problems: you need some extra information which
is not given to you.) We look this up, or we estimate from the population
of the US. Say the US population is 320 million, of which 100 million are
children, and half of the rest are adult men. This gives 110 million adult
men.
According to the model, heights between 5’9” and 6’0’ have z-scores
between 0 and 1. According to the 68%− 95%− 99.7% rule, and
symmetry, this gives 34%× 110 million ≈ 37.4 million.
(This could be improved with better data from the Census Bureau.)
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Problem: A model for the height of adult American men. (continued)
(b) According to the model, how many adult American men have

heights greater than 7’3”?

Solution:
First note that

7′3′′ = 87′′, 5′9′′ = 69′′ =⇒ 87′′ − 69′′
3′′ = 18′′

3′′ = 6.
So this is 6 standard deviations away from the mean.
What fraction of the adult male population is 6 standard deviations away
from the mean of the model?
Our table does not go this far. We cannot do the integral∫ ∞

6

1√
2π

e−x2
dx . We could use numerical approximation or look up

using R or a more extensive table.
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Remark:

Here again, the problem requires that we find more information. We have
to know which sources of information are good. Let’s say, after looking
up, we find that the answer is roughly 10−9. Then our model estimates
that the number of such men is 10−9 × 110 million ≈ 0.11.
The number of men must be a nonnegative integer, so the model
prediction is practically zero.

Problem: (continued)
(c) According to your own method of estimation, how many adult

American men actually are taller than 7’3”?

Solution:
We have to look for data. Important point we found very quickly is that
the answer was NOT zero. We think something in the order of dozens is
right, but need to do more research.
Question: Who counts as American? (Green Card? Only Citizens? etc.)
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the answer was NOT zero.

We think something in the order of dozens is
right, but need to do more research.
Question: Who counts as American? (Green Card? Only Citizens? etc.)
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Remark: “The map is not the territory.”

The model is not reality. For some questions, the model will yield a
reasonable answer, and for others, it won’t.

As applied mathematicians, we are responsible for building and
understanding models. But we are also responsible for understanding the
difference between the model and reality.

Sometimes the model isn’t appropriate for answering the question being
asked – question (b) is one of those times.
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End of Chapter 4
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Chapter 5

Multivariate Probability
Distributions
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“Multivariate Probability Distributions”

If we have 2 (or n) random variables Y1,Y2 (, . . . ,Yn), they may have
some relationship to one another, other than “independence”. This
relationship is specified by the “Joint Distribution” of Y1 and Y2.
In the discrete case, there is a joint proability function

p(y1, y2) = P(Y1 = y1 and Y2 = y2).
Y1 and Y2 are independent if and only if

p(y1, y2) = P(Y1 = y1) · P(Y2 = y2).
This joint probability function satisfies many of the same (or similar)
axioms as an ordinary probability function. In particular,

1 p(y1, y2) ≥ 0.
2 ∑

y1

∑
y2

p(y1, y2) = 1.
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Example 5.1:
A local supermarket has three checkout counters. Two customers arrive
at the counters at different times when the counters are serving no other
customers. Each customer chooses a counter at random, independently
of the other. Let Y1 denote the number of customers who choose
counter 1 and Y2, the number who select counter 2. Find the joint
probability function of Y1 and Y2.

Observe that Y1 = 0, 1, or 2. Also Y2 = 0, 1, or 2. So the “joint
probability function” p(y1, y2) can be written down in a 3× 3 table:

y2

y1 0 1 2

0 1/9 2/9 1/9
1 2/9 2/9 0
2 1/9 0 0
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Note that y1 = 0 and y2 = 0 iff both customers select counter 3. So
p(0, 0) = 1/3× 1/3 = 1/9.

Notice that y1 = 1 and y2 = 0 can happen in 2 ways:
Cust #1 selects counter #1 and cust #2 selects counter #3.
or: #1 selects counter #1 and cust #1 selects counter #3.

Question: Are Y1 and Y2 independent RVs?
Answer: No. If Y1 and Y2 were independent, p(y1, y2) would be
P(Y1 = y1) · P(Y2 = y2). So if we had a zero in the table, there would
be a whole row or column of zeroes.
What is the probability P(Y1 = 0)?
Look at this in 2 ways:
(1) Y1 = 0 means 1st customer went to counter 2 or 3, and 2nd went to

counter 2 or 3.
The decisions of the customers are independent, so the probability is
2/3× 2/3 = 4/9.
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(2) Look at the table:

P(Y1 = 0) = p(0, 0) + p(0, 1) + p(0, 2) =
∑

y2

p(0, y2),

that is, consider Y1 = 0 and all possibilities for Y2, giving
1/9 + 2/9 + 1/9 = 4/9.
From the joint probability function, we can derive the individual
probability functions (“Marginal Probability Functions”):

p1(y1) =
∑
all y2

p(y1, y2).

In our example, p1(y1) is given by the table:
y1 0 1 2

p1(y1) 4/9 4/9 1/9

So the terminology “marginal distribution” comes from the fact that
this is the distribution on the margin of the original table.
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y2
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p1(y1) → 4/9 4/9 1/9

The “marginal distribution of Y1” is written p1(y1) in the text. The
condition for independence is p(y1, y2) = p1(y1) · p2(y2).
All of this is also treated for continuous RVs. Recall that when working
with continuous RVs, we introduced the “cumulative distribution
function” FY : FY (y) = P(Y ≤ y). When studying more than 1 RV, we
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There is a “joint density function” f (y1, y2), and the relationship is
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∫ y1

−∞

∫ y2

−∞
f (t1, t2) dt2 dt1.

Everything that we did before will be repeated in the context of 2
random variables.
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Marginal Probability Functions: Discrete Case

In the discrete case, the joint probability function is
p(y1, y2) = P(Y1 = y1 and Y2 = y2),

and the marginal probability functions are
p1(y1) =

∑
y2

p(y1, y2), p2(y2) =
∑

y1

p(y1, y2).

Remark:
The marginal probability functions are the single-RV probability functions
obtained by “ignoring” the other variable.

The conditional probability functions are p(y1 | y2) and p(y2 | y1):

p(y1 | y2) = p(y1, y2)
p2(y2) = P(Y1 = y1 and Y2 = y2)

P(Y2 = y2) ; (?)

and similarly for p(y2 | y1).
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Remarks:

This corresponds to

P(A | B) = P(A ∩ B)
P(B) ,

because the comma in (?) means “and”, and “and” corresponds to
intersection.
This notation is not very good: Note that p(y1 | y2) and p(y2 | y1)
are different functions. In other words, P(A | B) 6= P(B | A).
So, in this notation of the text, if we write P(5 | 3), what does this
mean? Does it mean P(Y1 = 5 and Y2 = 3) or
P(Y2 = 5 and Y1 = 3)? We have to trust that no confusion will
arise.
Conditional probability p(y1 | y2) is only defined if p2(y2) > 0.
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Marginal Probability Functions: Continuous Case

All of these concepts exist for continuous RVs. In addition, continuous
RVs are often defined by a “Joint Distribution Function”

F (y1, y2) = P(Y1 ≤ y1,Y2 ≤ y2).
The (joint) probability function for the discrete RVs corresponds to the
joint density function for two continuous RVs:

F (y1, y2) =
∫ y1

−∞

∫ y2

−∞
f (t1, t2) dt2 dt1.

The marginal density functions are defined by replacing the sums in the
discrete case with integrals, e.g.

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2.

Also the conditional density function f (y1 | y2) is
f (y1, y2)
f2(y2) analogous to p(y1, y2)

p2(y2) .
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Recall that F (y1, y2) = P(Y1 ≤ y1,Y2 ≤ y2).

Suppose we have a rectangle in the (y1, y2)-plane.

What is P((Y1,Y2) ∈ S)
= P(a ≤ Y1 ≤ c, b ≤ Y2 ≤ d) in terms of F?

Notice that F (y1, y2) gives the probability of a
set like this:
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X =

=⇒ P((Y1,Y2) ∈ X ) = F (c, d).

A = B =

S = X \ (A ∪ B).
P(A∪B) = P(A)+P(B)−P(A∩B).

A ∩ B =
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∴ P(S) = P(X )− P(A ∪ B)

= P(X )− P(A)− P(B) + P(A ∩ B)
= F (c, d)− F (a, d)− F (c, b) + F (a, b) . (?)

Remark:
In all of this, we take P(Y1 = a) (for example) to be 0. Technically (?)
above is P(a < Y1 ≤ c, b < Y2 ≤ d).

Consequence:
Any joint distribution function (JDF) F must satisfy

F (c, d)− F (a, d)− F (c, b) + F (a, b) ≥ 0
whenever d ≥ b and c ≥ a, because P((Y1,Y2) ∈ S) ≥ 0.

Note that this JDF has other properties which are analogous to the
properties of a distribution function for a single RV, e.g.

lim
y1→∞

lim
y2→∞

F (y1, y2) = 1. (see p.228 in the text.)
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Game plan for problems in this chapter:

1 Translate paragraph into P(Y1,Y2) = X .
2 Set up a multiple integral.
3 Do multiple integral.

Example
Define the joint distribution of two RVs Y1,Y2 by taking them to be the
coordinates of a point chosen at random from the unit square
[0, 1]× [0, 1]. Find P(0.1 ≤ Y1 ≤ 0.3, 0 ≤ Y2 ≤ 0.5).

Solution:
We must find the joint density function f (y1, y2). “Chosen at random”
means “uniform distribution”, which in turn implies that “The density
function is constant in some region and is 0 elsewhere”.
Here the region is the unit square [0, 1]× [0, 1].
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Solution: (continued)
The density function is required to satisfy

Total Probability =
∫ ∞
−∞

∫ ∞
−∞

f (y1, y2) dy1 dy2 = 1.

If this f is zero outside [0, 1]× [0, 1] and f = c inside it, then∫ ∞
−∞

∫ ∞
−∞

f (y1, y2) dy1 dy2 =
∫ 1

0

∫ 1

0
c dy1 dy2 =

∫ 1

0
cy1

∣∣∣∣1
0
dy2

=
∫ 1

0
(c · 1− c · 0)dy2 =

∫ 1

0
c dy2

= cy2

∣∣∣∣1
0

= c · 1− c · 0 = c.

So c = 1, because the density function must integrate to 1.
Or, more simply,∫ 1

0

∫ 1

0
c dy1 dy2 = area of unit square · c = c.
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−∞

f (y1, y2) dy1 dy2 =
∫ 1

0

∫ 1

0
c dy1 dy2 =

∫ 1

0
cy1

∣∣∣∣1
0
dy2

=
∫ 1

0
(c · 1− c · 0)dy2 =

∫ 1

0
c dy2

= cy2

∣∣∣∣1
0

= c · 1− c · 0

= c.

So c = 1, because the density function must integrate to 1.
Or, more simply,∫ 1

0

∫ 1

0
c dy1 dy2 = area of unit square · c = c.
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Remark:
Later you will just be able to write down the density function almost
immediately, in cases like this.

Solution: (continued)
We’re supposed to find P(0.1 ≤ Y1 ≤ 0.3, 0 ≤ Y2 ≤ 0.5). This is∫ 0.3

0.1

∫ 0.5

0
f (y1, y2) dy1 dy2.

But f ≡ 1 here. So the probability is∫ 0.3

0.1

∫ 0.5

0
f (y1, y2) dy1 dy2 = (0.3− 0.1)× (0.5− 0) = 0.2× 0.5 = 0.1 .

Remark:
The double integrals and setup can get more complicated; not every
region is a rectangle.
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Also, the questions can take a different form:

In the example we saw just
now, what is F (0.2, 0.4)?

F (0.2, 0.4) = P(Y1 ≤ 0.2,Y2 ≤ 0.4) =
∫ 0.2

−∞

∫ 0.4

−∞
f (y1, y2) dy2 dy1.

Since f ≡ 1 in the unit square and 0 elsewhere, this is

F (0.2, 0.4) =
∫ 0.2

0

∫ 0.4

0
1 dy2 dy1 = 0.08 .

Remark:
In the definition of density functions, do not forget about the “f = 0
elsewhere” clause: ∫ 0.2

−∞
1 dy1

does not converge.
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Example 5.4:
Gasoline is to be stocked in a bulk tank once at the beginning of each
week and then sold to individual customers. Let Y1 denote the proportion
of the capacity of the bulk tank that is available after the tank is stocked
at the beginning of the week. Because of the limited supplies, Y1 varies
from week to week. Let Y2 denote the proportion of the capacity of the
bulk tank that is sold during the week. Because Y1 and Y2 are both
proportions, both variables take on values between 0 and 1. Further, the
amount sold, y2, cannot exceed the amount available, y1. Suppose that
the joint density function for Y1 and Y2 is given by

f (y1, y2) =
{
3y1 0 ≤ y2 ≤ y1 ≤ 1
0 elsewhere.

Find the probability that less than one-half of the tank will be stocked
and more than one-quarter of the tank will be sold.

We convert the above paragraph into some simpler-looking math:
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Interpretation:
Suppose Y1 and Y2 have the joint density function

f (y1, y2) =
{
3y1 0 ≤ y2 ≤ y1 ≤ 1
0 elsewhere.

Find P(0 ≤ Y1 ≤ 0.5,Y2 > 0.25).

Solution:
Start by graphing the region of integration.
Where is f (y1, y2) nonzero? Where is the region of integration?
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Solution: (continued)

But f is mostly zero in this region.

So really the region for integration is this:

P(0 ≤ Y1 ≤ 0.5,Y2 > 0.25) =
∫ 0.5

0

∫ ∞
0.25

f (y1, y2) dy2 dy1.

But, since f = 0 outside the small triangle, this
is ∫ 0.5

0

∫ y1

0.25
(3y1) dy2 dy1.

Close-up of the small triangle:
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Solution: (continued)

Suppressing the work, the integral comes out as 5
128 ,

So the answer is

P(0 ≤ Y1 ≤ 0.5,Y2 > 0.25) = 5
128 .

For an example where you must find the density function, see problems
5.8-5.11 in Section 5.2.
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Recall:

We have discussed marginal and conditional distributions. It is much
easier to think about definitions in the discrete case:
p(y1, y2) = P(Y1 = y1,Y2 = y2). (Recall that comma means “and”.)
If we are interested in P(Y1 = y1), this is the same as

P(Y1 = y1,Y2 = anything) =
∑
all y2

p(y1, y2).

So the “marginal distribution” p1(y1) is given by
p1(y1) =

∑
all y2

p(y1, y2),

and in continuous case, by analogy,

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2.

Here the integration with respect to y2 replaces the sum over y2.
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Recall:

Next we looked at the conditional distribution p(y1 | y2) and conditional
density f (y1 | y2).

Recall the analogy with conditional probability

P(A | B) = P(A ∩ B)
P(B) :

p(y1 | y2) = p(y1, y2)
p2(y2) , f (y1 | y2) = f (y1, y2)

f2(y2) .

Remark:
Remembering these definitions is essential to being able to do problems
without the aid of the text.
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Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2 =
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2 = y1e−y1 .

For what values of y1 does this calculation work?
Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2. This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2 =
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2 = y1e−y1 .

For what values of y1 does this calculation work?
Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2. This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2

=
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2 = y1e−y1 .

For what values of y1 does this calculation work?
Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2. This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2 =
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2 = y1e−y1 .

For what values of y1 does this calculation work?
Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2. This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2 =
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2

= y1e−y1 .

For what values of y1 does this calculation work?
Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2. This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2 =
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2 = y1e−y1 .

For what values of y1 does this calculation work?
Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2. This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2 =
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2 = y1e−y1 .

For what values of y1 does this calculation work?

Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2. This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2 =
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2 = y1e−y1 .

For what values of y1 does this calculation work?
Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2.

This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Exercise 5.33 (a):
Suppose that Y1 is the total time between a customer’s arrival in the
store and departure from the service window, Y2 is the time spent in line
before reaching the window, and the joint density of these variables is

f (y1, y2) =
{
e−y1 0 ≤ y2 ≤ y1 <∞
0 elsewhere.

Find the marginal density functions for Y1 and Y2.

Solution:

f1(y1) =
∫ ∞
−∞

f (y1, y2)dy2 =
∫ y2

0
e−y1dy2

= e−y1

∫ y2

0
1 dy2 = y1e−y1 .

For what values of y1 does this calculation work?
Notice that if y1 ≤ 0, then f (y1, y2) = 0 for all y2. This means that
f1(y1) = 0 if y1 < 0.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 219 / 381



Solution: (continued)
If y1 ≥ 0, then f (y1, y2) is nonzero for 0 ≤ y2 ≤ y1.

So our calculation
works for y1 ≥ 0, and the marginal density function is

f1(y1) =
{
y1e−y1 y1 ≥ 0

0 y1 < 0.
Now we find f2(y2):

f2(y2) =
∫ ∞
−∞

f (y1, y2)dy1 =
∫ ∞

y2

e−y1dy1

= −e−y1

∣∣∣∣∞
y2

= e−y2 .

This computation works if y2 ≥ 0. If y2 < 0, then f (y1, y2) = 0 for all y1.
So

f2(y2) =
{
e−y2 y2 ≥ 0
0 y2 < 0.
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Exercise 5.33 (b):
What is the conditional density function of Y1 given that Y2 = y2? Be
sure to specify the values of y2 for which this conditional density is
defined.

Solution:

f (y1 | y2) = f (y1, y2)
f2(y2)

is defined for f2(y2) > 0.

∴ f (y1 | y2) =


e−y1/e−y2 0 ≤ y2 ≤ y1 <∞
undefined y2 < 0

0 0 ≤ y1 ≤ y2 <∞.
Note that e−y1/e−y2 = e−(y1−y2) (in order to reconcile with back of text). It
may help to keep a picture of the plane in which the functions are defined.
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Solution: (continued)

Let’s consider f (y1, y2):

Recall when we found f1(y1) we integrated over y2.
This corresponds to the picture alongside if y1 ≥ 0:

If y2 < 0, we integrate over a line, and f (y1, y2) is
identically zero on this line.
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Remark on multiplication / division of case-defined functions:

If f has 2 cases and g has 2 cases, then fg has 4 cases.
Example:

f (x) = |x | =
{

x x ≥ 0
−x x < 0 , g(x) =

{
x −1 ≤ x ≤ 1
0 elsewhere.

Then

f (x)g(x) =


x · x x ≥ 0,−1 ≤ x ≤ 1
x · 0 x ≥ 0, x /∈ [−1, 1]
−x · x x < 0,−1 ≤ x ≤ 1
−x · 0 x < 0, x /∈ [−1, 1].

Thus

f (x)g(x) =

 x2 x ∈ [0, 1]
−x2 x ∈ [−1, 0)
0 x /∈ [−1, 1].

What we did for 5.33 (b) was much like this.
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Independence of Random Variables

Recall:
RVs are independent iff the probability function (likewise, density
function, and distribution function) is a product.

Remark:
There is a long series of problems which have not been assigned (but
which you should look at anyway). They ask “If Y1,Y2 have joint density
function BLAH, are Y1 and Y2 independent?”

An important property of independent RVs:
If Y1,Y2 are independent, then E [Y1Y2] = E [Y1]E [Y2].
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Remark:
Independence is a somewhat subtle property.

It is possible, for example,
to construct RVs Y1, Y2, and Y3, such that Y1 and Y2 are independent,
Y2 and Y3 are independent, and Y1 and Y3 are independent; BUT
Y1,Y2,Y3 are not independent.

Definition (Expectation of Functions of RVs)
If Y1,Y2 have joint probability function p(y1, y2), and g is a function of
Y1 and Y2, then

E [g(Y1,Y2)] =
∑

y1

∑
y2

g(y1, y2)p(y1, y2).

Analogously, for continuous RVs,

E [g(Y1,Y2)] =
∫ ∞
−∞

∫ ∞
−∞

g(y1, y2)f (y1, y2) dy1 dy2.

Expectation has the same linearity properties we studied before. These
can be used to simplify many problems.
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Exercise 5.74:
Suppose that a radioactive particle is randomly located in a square with
sides of unit length. A reasonable model for the joint density function for
Y1 and Y2 is

f (y1, y2) =
{
1 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1
0 elsewhere.

Find (a) E [Y1 − Y2]. (b) E [Y1Y2].
(c) E [Y 2

1 + Y 2
2 ]. (d) V [Y1Y2].

Solution: (a)
Observe that the RVs are independent, and the marginal distributions are
uniform on [0, 1]. So

E [Y1 − Y2] = E [Y1]− E [Y2] = 1
2 −

1
2 = 0,

without any integration at all.
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Tricks for Double-Integral Problems

Example

The joint distribution of Y1,Y2 is uniform
over the triangle shown alongside. Find
E [Y1].

Solution by formal procedure and integration:
We must integrate ∫ ∞

−∞

∫ ∞
−∞

y1f (y1, y2) dy1 dy2,

where f is the joint density function. What is this joint density function?
“Uniform” means f is a constant in the triangle (let’s call it T ) and 0
outside.
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Solution by formal procedure and integration: (continued)
What is this constant?

We can find this constant by using the fact that
the “total probability” is 1, i.e.∫ ∞

−∞

∫ ∞
−∞

f (y1, y2) dy1 dy2 = 1.

∴
∫∫

T
c dy1 dy2 = 1 because f =

{
c inside T
0 elsewhere.

∴ c
∫∫

T
1 dy1 dy2 = 1 =⇒ c · area(T ) = 1.

But area(T ) = 1
2 · b · h = 1

2 · 2 · 1 = 1. So c = 1. So now we know the
joint density f .
To find E [Y1], we must integrate

E [Y1] =
∫ ∞
−∞

∫ ∞
−∞

y1f (y1, y2) dy1 dy2 =
∫∫

T
y1 dy1 dy2.
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
What is this constant? We can find this constant by using the fact that
the “total probability” is 1, i.e.∫ ∞
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Solution by formal procedure and integration: (continued)
What is this constant? We can find this constant by using the fact that
the “total probability” is 1, i.e.∫ ∞
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Solution by formal procedure and integration: (continued)

Now we must find the limits of integration
for the triangle:

∫∫
T
y1 dy1 dy2 =

∫ 0

y1=−1

∫ y1+1

y2=0
y1 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y1 dy2 dy1

=
∫ 0

−1
y1

∫ y1+1

0
dy2 dy1 +

∫ 1

0
y1

∫ 1−y1

0
dy2 dy1

=
∫ 0

−1
y1(y1 + 1)dy1 +

∫ 1

0
y1(1− y1)dy1

=
∫ 0

−1
(y2

1 + y1)dy1 +
∫ 1

0
(y1 − y2

1 )dy1
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)

=
(
y3

3 + y2

2

)∣∣∣∣0
−1

+
(
y2

2 −
y3

3

)∣∣∣∣1
0

= −
[

(−1)3

3 + (−1)2

2

]
+
[
12

2 −
13

3

]
= −

[
1
2 −

1
3

]
+
[
1
2 −

1
3

]
= 0 .

Solution by symmetry:

What is the geometric interpretation of E [Y1]?
This is the y1-coordinate such that we can
“balance” the triangle at this point, i.e.,
By symmetry, E (Y1) = 0.
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Solution by formal procedure and integration: (continued)
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Example
With (Y1,Y2) uniformly distributed over the
triangle T alongside, find E [Y2].

You can use the results obtained earlier, e.g.

f (y1, y2) =
{
1 in T
0 elsewhere.

Solution:

E [Y2] =
∫∫

T
y2 dy1 dy2 (just like before)

=
∫ 0

y1=−1

∫ y1+1

y2=0
y2 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y2 dy2 dy1

=
∫ 0

−1

y2
2
2

∣∣∣∣y1+1

0
dy1 +

∫ 1

0

y2
2
2

∣∣∣∣1−y1

0
dy1

=
∫ 0

−1

(y1 + 1)2

2 dy1 +
∫ 1

0

(1− y1)2

2 dy1

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 231 / 381



Example
With (Y1,Y2) uniformly distributed over the
triangle T alongside, find E [Y2].
You can use the results obtained earlier, e.g.

f (y1, y2) =
{
1 in T
0 elsewhere.

Solution:

E [Y2] =
∫∫

T
y2 dy1 dy2 (just like before)

=
∫ 0

y1=−1

∫ y1+1

y2=0
y2 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y2 dy2 dy1

=
∫ 0

−1

y2
2
2

∣∣∣∣y1+1

0
dy1 +

∫ 1

0

y2
2
2

∣∣∣∣1−y1

0
dy1

=
∫ 0

−1

(y1 + 1)2

2 dy1 +
∫ 1

0

(1− y1)2

2 dy1

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 231 / 381



Example
With (Y1,Y2) uniformly distributed over the
triangle T alongside, find E [Y2].
You can use the results obtained earlier, e.g.

f (y1, y2) =
{
1 in T
0 elsewhere.

Solution:

E [Y2] =
∫∫

T
y2 dy1 dy2 (just like before)

=
∫ 0

y1=−1

∫ y1+1

y2=0
y2 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y2 dy2 dy1

=
∫ 0

−1

y2
2
2

∣∣∣∣y1+1

0
dy1 +

∫ 1

0

y2
2
2

∣∣∣∣1−y1

0
dy1

=
∫ 0

−1

(y1 + 1)2

2 dy1 +
∫ 1

0

(1− y1)2

2 dy1

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 231 / 381



Example
With (Y1,Y2) uniformly distributed over the
triangle T alongside, find E [Y2].
You can use the results obtained earlier, e.g.

f (y1, y2) =
{
1 in T
0 elsewhere.

Solution:

E [Y2] =
∫∫

T
y2 dy1 dy2

(just like before)

=
∫ 0

y1=−1

∫ y1+1

y2=0
y2 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y2 dy2 dy1

=
∫ 0

−1

y2
2
2

∣∣∣∣y1+1

0
dy1 +

∫ 1

0

y2
2
2

∣∣∣∣1−y1

0
dy1

=
∫ 0

−1

(y1 + 1)2

2 dy1 +
∫ 1

0

(1− y1)2

2 dy1

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 231 / 381



Example
With (Y1,Y2) uniformly distributed over the
triangle T alongside, find E [Y2].
You can use the results obtained earlier, e.g.

f (y1, y2) =
{
1 in T
0 elsewhere.

Solution:

E [Y2] =
∫∫

T
y2 dy1 dy2 (just like before)

=
∫ 0

y1=−1

∫ y1+1

y2=0
y2 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y2 dy2 dy1

=
∫ 0

−1

y2
2
2

∣∣∣∣y1+1

0
dy1 +

∫ 1

0

y2
2
2

∣∣∣∣1−y1

0
dy1

=
∫ 0

−1

(y1 + 1)2

2 dy1 +
∫ 1

0

(1− y1)2

2 dy1

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 231 / 381



Example
With (Y1,Y2) uniformly distributed over the
triangle T alongside, find E [Y2].
You can use the results obtained earlier, e.g.

f (y1, y2) =
{
1 in T
0 elsewhere.

Solution:

E [Y2] =
∫∫

T
y2 dy1 dy2 (just like before)

=
∫ 0

y1=−1

∫ y1+1

y2=0
y2 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y2 dy2 dy1

=
∫ 0

−1

y2
2
2

∣∣∣∣y1+1

0
dy1 +

∫ 1

0

y2
2
2

∣∣∣∣1−y1

0
dy1

=
∫ 0

−1

(y1 + 1)2

2 dy1 +
∫ 1

0

(1− y1)2

2 dy1

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 231 / 381



Example
With (Y1,Y2) uniformly distributed over the
triangle T alongside, find E [Y2].
You can use the results obtained earlier, e.g.

f (y1, y2) =
{
1 in T
0 elsewhere.

Solution:

E [Y2] =
∫∫

T
y2 dy1 dy2 (just like before)

=
∫ 0

y1=−1

∫ y1+1

y2=0
y2 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y2 dy2 dy1

=
∫ 0

−1

y2
2
2

∣∣∣∣y1+1

0
dy1 +

∫ 1

0

y2
2
2

∣∣∣∣1−y1

0
dy1

=
∫ 0

−1

(y1 + 1)2

2 dy1 +
∫ 1

0

(1− y1)2

2 dy1

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 231 / 381



Example
With (Y1,Y2) uniformly distributed over the
triangle T alongside, find E [Y2].
You can use the results obtained earlier, e.g.

f (y1, y2) =
{
1 in T
0 elsewhere.

Solution:

E [Y2] =
∫∫

T
y2 dy1 dy2 (just like before)

=
∫ 0

y1=−1

∫ y1+1

y2=0
y2 dy2 dy1 +

∫ 1

0

∫ 1−y1

0
y2 dy2 dy1

=
∫ 0

−1

y2
2
2

∣∣∣∣y1+1

0
dy1 +

∫ 1

0

y2
2
2

∣∣∣∣1−y1

0
dy1

=
∫ 0

−1

(y1 + 1)2

2 dy1 +
∫ 1

0

(1− y1)2

2 dy1

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 231 / 381



Solution: (continued)

=
∫ 0

−1

(
(y2

1
2 + y1 + 1

2

)
dy1 +

∫ 1

0

(
1
2 − y1 + y2

1
2

)
dy1

=
(
y3

1
6 + y2

1
2 + y1

2

)∣∣∣∣0
−1

+
(
y1
2 −

y2
1
2 + y3

1
6

)∣∣∣∣1
0

= −
(

(−1)3

6 + (−1)2

2 + (−1)
2

)
+
(
1
2 −

12

2 + 13

6

)
= −

(
−1
6 + 1

2 −
1
2

)
+
(
1
2 −

1
2 + 1

6

)
= 1

6 + 1
6 = 1

3 .
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Suppose we do this problem by symmetry like this:

Find a so that the area of the top triangle is the
same as the area of the bottom trapezoid.

The a that works has
1
2 · 2a · a = 1− 1

2 · 2a · a =⇒ a2 = 1− a2 =⇒ a =
√
2
2 6=

2
3 .

Why is this wrong?
We are not asking for “area of top ∆” = “area of the trapezoid”. We are
asking geometrically for the balance point. Weight far from the balance
point disturbs the balance more than the weight near the balance point.
This problem shows the weakness of symmetry methods: It’s possible to
find an attractive argument which is just wrong.
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Covariance and Correlation

Definition (Covariance)

The covariance of two RVs Y1 and Y2 is
Cov(Y1,Y2) = E [(Y1 − µ)(Y2 − ν)],

wher µ = E [Y1] and ν = E [Y2].

Definition (Correlation)
The correlation of the RVs Y1 and Y2 is measured by

ρY1,Y2 = Cov(Y1,Y2)
σ1σ2

,

where σ1, σ2 are the standard deviations of Y1,Y2, respectively.

Remark:
In order to compute these, we need to know the joint distribution of Y1
and Y2.
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Remarks:

Using the linearity properties of E , we have
E [(Y1 − µ)(Y2 − ν)] = E [Y1Y2]− µν.

This is basically the same calculation that gave us
V [Y ] = E [(Y − µ)2] = E [Y 2]− µ2.

If Y1,Y2 are independent, then E [Y1Y2] = E [Y1]E [Y2], so that
Cov(Y1,Y2) = E [Y1Y2]− µν = E [Y1]E [Y2]− µν = µν − µν = 0.

Thus
Y1,Y2 independent =⇒ Cov(Y1,Y2) = 0.

But the converse is not true!
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Cov(Y1,Y2) = E [Y1Y2]− µν = E [Y1]E [Y2]− µν = µν − µν = 0.

Thus
Y1,Y2 independent =⇒ Cov(Y1,Y2) = 0.

But the converse is not true!
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Example
Suppose that Y1,Y2 are discrete RVs whose joint probability function is
given by the following table:

↓ Y2

Y1 → −1 0 +1 p2(Y2) ↓

−1 1/16 3/16 1/16 5/16

0 3/16 0 3/16 6/16

+1 1/16 3/16 1/16 5/16

p1(Y1)→ 5/16 6/16 5/16

µ = E [Y1] = 0, ν = E [Y2] = 0.
What is E [Y1Y2]?

+1 · 116 + 1 · 116 − 1 · 116 − 1 · 116 = 0.

+1 0 −1
0 0 0
−1 0 +1
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Example (continued)

Cov(Y1,Y2) = E [Y1Y2]− µν

= 0− 0 = 0 .
But Y1,Y2 are NOT independent.
Recall that Y1 and Y2 are independent if the joint probability function
p(y1, y2) is the product of the marginal distributions:

p(y1, y2) = p1(y1) · p2(y2).
But 0 6= 6/16 · 6/16. So Y1 and Y2 are NOT independent.
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Example (continuous RVs)

The joint distribution of Y1,Y2 is uniform over
the triangle shown
alongside. Are Y1 and Y2 independent?

No, because if they were, the joint density function would be nonzero in
a rectangle. What is Cov(Y1,Y2)?

Cov(Y1,Y2) = E [Y1Y2]−��
�*0

E [Y1] · E [Y2] = E [Y1Y2].
After some computing, we find that E [Y1Y2] = 0.
So Cov(Y1,Y2) = 0, but Y1 and Y2 are NOT independent.
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Recall:

Cov(X ,Y ) = E [(X − µ)(Y − ν)] ,
where µ = E [X ] and ν = E [Y ]. We noted the convenience that we can
express Cov(X ,Y ) as E [XY ]− µν:

E [(X − µ)(Y − ν)] = E [XY − µY − νX + µν]
= E [XY ]− µE [Y ]− νE [X ] + µν

= E [XY ]− µν − µν + µν = E [XY ]− µν.

Remark:
The covariance is a measure of the extent to which X and Y “vary
together”. Note that the covariance can be negative.
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Theorem (5.12)

Let Y1, . . . ,Yn and X1, . . . ,Xm be random variables with E (Yi ) = µi and
E (Xj) = νj . Define

U1 =
n∑

i=1
aiYi and U2 =

m∑
j=1

bjXj

for constants a1 . . . an and b1 . . . bm. Then
(a) E [U1] =

∑n
i=1 aiµi .

(b) V [U1] =
∑n

i=1 a2
i V [Yi ] + 2

∑∑
1≤i<j≤n

aiaj Cov(Yi ,Yj).

(c) Cov(U1,U2) =
∑n

i=1
∑m

j=1 aibj Cov(Yi ,Xj).

The above theorem presents an important property of covariance:
Covariance is bilinear, that is, it is a function of two variables which is
separately linear in each variable.
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Thus
Cov(2X + 1,Y ) = Cov(2X ,Y ) + Cov(1,Y ).

Also
Cov(X , 3Y + 4) = Cov(X , 3Y ) + Cov(X , 4).

Also
Cov(2X ,Y ) = 2 Cov(X ,Y ),Cov(X , 3Y ) = 3 Cov(X ,Y ).

Remark:
Note that it is “separately” linear in each variable: it is NOT true that

Cov(2X + 1, 2Y + 1) = 2 Cov(X ,Y ) + 1.

How does this give us the complicated statement of Theorem 5.12?
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Observe that V [X ] = Cov(X ,X ).

If U = b1X1 + · · ·+ bmXm, then we
can apply bilinearity to compute

V [U] = Cov(U,U)
= Cov(b1X1 + · · ·+ bmXm, b1X1 + · · ·+ bmXm)
= b1 Cov(X1, b1X1 + · · ·+ bmXm) + . . .

+ bm Cov(Xm, b1X1 + · · ·+ bmXm)
= b1b2 Cov(X1,X1) + b1b2 Cov(X1,X2) + · · ·+ b1bm Cov(X1,Xm)

+ b2b1 Cov(X2,X1) + b2b2 Cov(X2,X2) + · · ·+ b2bm Cov(X2,Xm)

+
...

...
...

+ bmb1 Cov(Xm,X1) + bmb2 Cov(Xm,X2) + · · ·+ bmbm Cov(Xm,Xm)

=
m∑

j=1
b2

j V [Xj ] + 2
∑∑
1≤i<j≤n

bibj Cov(Xi ,Xj).
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Remark:
The proof of Theorem 5.12 consists of calculations like this one.

The key
point is the verification (directly from the definition) that the covariance
is bilinear.
How will this come up? You may be asked to compute some variance (or
covariance) and the easiest way to do it will be to use this result.

Exercise 5.112
Let Y1 and Y2 denote the lengths of life, in hundreds of hours, for
components of types I and II, respectively, in an electronic system. The
joint density of Y1 and Y2 is

f (y1, y2) =
{y1

8 e−(y1 + y2)/2 y1 > 0, y2 > 0,
0 elsewhere.

The cost C of replacing the two components depends upon their length of
life at failure and is given by C = 50 + 2Y1 + 4Y2. Find E [C ] and V [C ].
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Solution:

Additive constants don’t matter for variance and covariance, i.e.
V [X + a] = V [X ]. Also Cov(X + a,Y ) = Cov(X ,Y ). So V [C ] above is

Cov(2Y1 + 4Y2, 2Y1 + 4Y2)
= 2Cov(Y1, 2Y1 + 4Y2) + 4Cov(Y2, 2Y1 + 4Y2)
= 2 · 2Cov(Y1,Y1) + 4 · 2Cov(Y1,Y2) + 2 · 4Cov(Y2,Y1)

+ 4 · 4Cov(Y2,Y2) [Remark: Cov(X ,Y ) = Cov(Y ,X )]
= 2 · 2V [Y1] + (4 · 2 + 2 · 4)Cov(Y1,Y2) + 4 · 4V [Y2]
= 4V [Y1] + 16Cov(Y1,Y2) + 16V [Y2].

Remarks:
This dupliates the calculation for Theorem 5.12, but with 4 terms
and not m2 terms.
The biggest “difficulty” in some of the problems is setting up and
doing double integrals.
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Practice Problem 1: Exercise 5.27 (b)
Given that the joint density function of Y1 and Y2 is

f (y1, y2) =
{
6(1− y2) 0 ≤ y1 ≤ y2 ≤ 1,

0 elsewhere,
find P (Y2 ≤ 1/2 | Y1 ≤ 3/4).

Solution:

We need to know P (Y2 ≤ 1/2,Y1 ≤ 3/4)
P (Y1 ≤ 3/4) . To get the two parts of this

fraction, we must compute

P (Y1 ≤ 3/4) =
∫∫
Y1≤ 3

4

f (y1, y2) dy1 dy2.

We need to graph the region of integration.
First draw the region where f 6= 0:
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Solution: (continued)

P
(
Y1 ≤

3
4

)
=

∫∫
shaded region

6(1− y2) dy1 dy2

=
∫ 3/4

y1=0

∫ 1

y2=y1

6(1− y2) dy2 dy1

=
∫ 3/4

0

(
6y2 − 3y2

2
∣∣1
y1

)
dy1

=
∫ 3/4

0

[
(6− 3)− (6y1 − 3y2

1 )
]
dy1

=
∫ 3/4

0

[
3− 6y1 + 3y2

1
]
dy1

=
∫ 3/4

0
3(1− y1)2 dy1 = 3 ·

(
−1
3

)
(1− y1)3

∣∣∣∣3/4

0
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Solution: (continued)
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Solution: (continued)

= −(1− y1)3∣∣3/4

0

=
[
−
(
1− 3

4

)3
]
−
[
− (1− 0)3

]
= −

(
1
4

)3
+ 1 = − 1

64 + 1 = 63
64 .

Next: P (Y2 ≤ 1/2,Y1 ≤ 3/4).
Again, draw the region:
Notice for this region, the cutoff Y1 ≤ 3/4
doesn’t matter!

Remark: We might have missed this if we hadn’t drawn the region: this is
a common mistake.
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Solution: (continued)

P
(
Y2 ≤

1
2 ,Y1 ≤

3
4

)
=

∫∫
shaded region

6(1− y2) dy1 dy2

=
∫ 1/2

y1=0

∫ 1/2

y2=y1

6(1− y2) dy2 dy1

=
∫ 1/2

0

(
6y2 − 3y2

2
∣∣1/2

y1

)
dy1

=
∫ 1/2

0

[(
6 · 12 − 3 ·

(
1
2

)2
)
−
(
6y1 − 3y2

1
)]

dy1

=
∫ 1/2

0

[(
3− 3

4

)
− 6y1 + 3y2

1

]
dy1

=
∫ 1/2

0

[(
−3
4

)
+
(
3− 6y1 + 3y2

1
)]

dy1
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1
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Solution: (continued)
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4
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0
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3
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(1− y1)3
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0
+ 1

2 ·
(
−3
4

)
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(
1− 1

2

)3
−
(
−(1− 0)3)− 3

8

= −1
8 − (−1)− 3

8 = 1
2 .

To finish, divide this by the previous fraction.

Final answer: 32
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Practice Problem 2:
Given that the joint density function of Y1 and Y2 is

f (y1, y2) =
{y1

8 e−
(y1+y2)

2 y1 > 0, y2 > 0,
0 elsewhere,

find E
[

Y2
Y1

]
.

[Hint: Y1,Y2 are independent.]

Solution:

Since Y1,Y2 are independent, so are Y2,
1

Y1
. So E

[
Y2
Y1

]
= E [Y2] · E

[
1

Y1

]
.

To find E [Y2], we first find the marginal density function

f2(y2) =
∫ ∞
−∞

f (y1, y2) dy1.

Then
E [Y2] =

∫ ∞
−∞

y2f2(y2) dy2.
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Solution: (continued)
We compute

f2(y2) =
∫ ∞
−∞

f (y1, y2) dy1

=
∫ ∞

0

y1
8 e−

(y1+y2)
2 dy1 = 1

8e
− y2

2

∫ ∞
0

y1e−
y1
2 dy1

= 1
8e
− y2

2

∫ ∞
v=0

2ve−v 2dv v = y1
2 2v = y

dv = 1
2dy1 2dv = dy1

= 1
2e
− y2

2

∫ ∞
v=0

ve−v dv = 1
2e
−y2/2

[
−ve−v ∣∣∞

0 −
∫ ∞

0
e−v dv

]
= 1

2e
− y2

2 . (Note f2(y2) = 0 for y2 < 0.)
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Solution: (continued)
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Solution: (continued)
So

E [Y2] =
∫ ∞
−∞

y2f2(y2) dy2

=
∫ ∞

0

1
2y2e−

y2
2 dy2

= 1
2

∫ ∞
0

y2e−
y2
2 dy2︸ ︷︷ ︸ ←−

This is exactly the
integral we just did

with y1 replaced by y2.

= 1
2 · 4 = 2 .

Similarly, compute E
[

1
Y1

]
.
(
= 1

2
)
.

Now multiply these to get the final answer: E
[

Y2
Y1

]
= 1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 252 / 381



Solution: (continued)
So

E [Y2] =
∫ ∞
−∞

y2f2(y2) dy2 =
∫ ∞

0

1
2y2e−

y2
2 dy2

= 1
2

∫ ∞
0

y2e−
y2
2 dy2︸ ︷︷ ︸ ←−

This is exactly the
integral we just did

with y1 replaced by y2.

= 1
2 · 4 = 2 .

Similarly, compute E
[

1
Y1

]
.
(
= 1

2
)
.

Now multiply these to get the final answer: E
[

Y2
Y1

]
= 1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 252 / 381



Solution: (continued)
So

E [Y2] =
∫ ∞
−∞

y2f2(y2) dy2 =
∫ ∞

0

1
2y2e−

y2
2 dy2

= 1
2

∫ ∞
0

y2e−
y2
2 dy2

︸ ︷︷ ︸ ←−
This is exactly the
integral we just did

with y1 replaced by y2.

= 1
2 · 4 = 2 .

Similarly, compute E
[

1
Y1

]
.
(
= 1

2
)
.

Now multiply these to get the final answer: E
[

Y2
Y1

]
= 1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 252 / 381



Solution: (continued)
So

E [Y2] =
∫ ∞
−∞

y2f2(y2) dy2 =
∫ ∞

0

1
2y2e−

y2
2 dy2

= 1
2

∫ ∞
0

y2e−
y2
2 dy2︸ ︷︷ ︸ ←−

This is exactly the
integral we just did

with y1 replaced by y2.

= 1
2 · 4 = 2 .

Similarly, compute E
[

1
Y1

]
.
(
= 1

2
)
.

Now multiply these to get the final answer: E
[

Y2
Y1

]
= 1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 252 / 381



Solution: (continued)
So

E [Y2] =
∫ ∞
−∞

y2f2(y2) dy2 =
∫ ∞

0

1
2y2e−

y2
2 dy2

= 1
2

∫ ∞
0

y2e−
y2
2 dy2︸ ︷︷ ︸ ←−

This is exactly the
integral we just did

with y1 replaced by y2.

= 1
2 · 4

= 2 .

Similarly, compute E
[

1
Y1

]
.
(
= 1

2
)
.

Now multiply these to get the final answer: E
[

Y2
Y1

]
= 1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 252 / 381



Solution: (continued)
So

E [Y2] =
∫ ∞
−∞

y2f2(y2) dy2 =
∫ ∞

0

1
2y2e−

y2
2 dy2

= 1
2

∫ ∞
0

y2e−
y2
2 dy2︸ ︷︷ ︸ ←−

This is exactly the
integral we just did

with y1 replaced by y2.

= 1
2 · 4 = 2 .

Similarly, compute E
[

1
Y1

]
.
(
= 1

2
)
.

Now multiply these to get the final answer: E
[

Y2
Y1

]
= 1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 252 / 381



Solution: (continued)
So

E [Y2] =
∫ ∞
−∞

y2f2(y2) dy2 =
∫ ∞

0

1
2y2e−

y2
2 dy2

= 1
2

∫ ∞
0

y2e−
y2
2 dy2︸ ︷︷ ︸ ←−

This is exactly the
integral we just did

with y1 replaced by y2.

= 1
2 · 4 = 2 .

Similarly, compute E
[

1
Y1

]
.

(
= 1

2
)
.

Now multiply these to get the final answer: E
[

Y2
Y1

]
= 1.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 252 / 381



Solution: (continued)
So

E [Y2] =
∫ ∞
−∞

y2f2(y2) dy2 =
∫ ∞

0

1
2y2e−

y2
2 dy2

= 1
2

∫ ∞
0

y2e−
y2
2 dy2︸ ︷︷ ︸ ←−

This is exactly the
integral we just did

with y1 replaced by y2.

= 1
2 · 4 = 2 .
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[

1
Y1

]
.

(
= 1

2
)
.
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Exercise 5.27: (Relevant for MATH 448)
Let Y1,Y2, . . . ,Yn be independent random variables with E [Yi ] = µ and
V [Yi ] = σ2. Consider the new RV Y = 1

n
∑n

i=1 Yi . What are the mean
and the variance of Y ?

Solution:

E
[
Y
]

= E
[
1
n

n∑
i=1

Yi

]
= 1

n

n∑
i=1

E [Yi ] = 1
n

n∑
i=1

µ = µ,

V
[
Y
]

= V
[
1
n

n∑
i=1

Yi

]
= Cov

(
1
n

n∑
i=1

Yi ,
1
n

n∑
i=1

Yi

)

= 1
nCov

( n∑
i=1

Yi ,
1
n

n∑
i=1

Yi

)
= 1

n2Cov
( n∑

i=1
Yi ,

n∑
i=1

Yi

)

= 1
n2

[ n∑
i=1

Cov
(
Yi ,

n∑
j=1

Yj

)]
= 1

n2

[ n∑
i=1

n∑
j=1

Cov (Yi ,Yj)
]
.
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Solution: (continued)
But Yi and Yj are independent if i 6= j .

So Cov(Yi ,Yj) = 0 if i 6= j . Thus

V [Y ] = 1
n2

 n∑
i=1

Cov (Yi ,Yi ) +
n∑

i,j=1
i 6=j

��
���

�:0
Cov (Yi ,Yj)


= 1

n2 · n · σ
2 = σ2

n .

Shortcut: If random variables X ,Y are independent, then
V [X + Y ] = V [X ] + V [Y ].
Warning: It does NOT follow that V [X − Y ] = V [X ]− V [Y ]. In fact

V [X − Y ] = V [X + (−1)Y ] = V [X ] + V [(−1)Y ]
= V [X ] + (−1)2V [Y ] = V [X ] + V [Y ].

Note that in the correct version of this computation, we used
V [aY ] = a2V [Y ], and that if X ,Y are independent, then X and − Y
are independent.
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V [aY ] = a2V [Y ], and that if X ,Y are independent, then X and − Y
are independent.
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Example 5.29:
Suppose that an urn contains r red balls and N − r black balls. A
random sample of n balls is drawn without replacement and Y , the
number of red balls in the sample, is observed. Find the mean and
variance of Y .

[Hint: From Chapter 3 we know that Y has a
hypergeometric probability distribution.]

Solution:
We have learnt that for a hypergeometric distribution Y ,

E [Y ] = nr
N , V [Y ] = nr

N ·
N − r
N · N − n

N − 1 .

Now we will prove this: Let

Xi =
{
1 if i th ball in the sample is red,
0 if it is black.

Let Y = X1 + · · ·+ Xn. Consider each Xi separately. P(Xi = 1) = r
N , so

E [Xi ] = r
N . By linearity of Expectation, we find
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Solution: (continued)

E [Y ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn] = nr
N .

Note that the Xi are dependent on one another and we can use linearity
of E anyway.
Let’s consider the dependence more carefully:

P(X2 = 1,X1 = 1) = P(X2 = 1 | X1 = 1) · P(X1 = 1) = r − 1
N − 1 ·

r
N .

More generally, P(Xj = 1,Xi = 1) = (r − 1)r
(N − 1)N .

Since Xi = 0 or 1, E [XiXj ] = (r − 1)r
(N − 1)N .

We can now start thinking about

V [Y ] = Cov(Y ,Y ) = Cov(
n∑

i=1
Xi ,

n∑
i=1

Xi ) =
n∑

i=1

n∑
j=1

Cov(Xi ,Xj).
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Solution: (continued)
If i 6= j , then

Cov(Xi ,Xj) = E [XiXj ]− E [Xi ]E [Xj ]

= (r − 1)r
(N − 1)N −

r
N ·

r
N .

If i = j , then
Cov(Xi ,Xi ) = E [X 2

i ]− E [Xi ]2.
But Yi = 0 or 1. So X 2

i = Xi . Thus E [X 2
i ] = r

N , and

Cov(Xi ,Xi ) = r
N −

( r
N

)2
. Therefore

V [Y ] = n ·
[
r
N −

( r
N

)2
]

+ n(n − 1) ·
[

(r − 1)r
(N − 1)N −

( r
N

)2
]

= nr
N ·

([
1− r

N

]
+ (n − 1)

[
r − 1
N − 1 −

r
N

])
= nr

N ·
(
N − r
N + (n − 1)(r − 1)

N − 1 − (n − 1)r
N

)
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Solution: (continued)
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N + N
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(n − 1)(r − 1)
N − 1
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N(N − 1)
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N(N − 1)
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N
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(N − r)

N
(N − n)
(N − 1)
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Definition (Multinomial Experiment)

A multinomial experiment possesses the following properties:
(1) The experiment consists of n identical trials.
(2) The outcome of each trial falls into one of k classes or cells.
(3) The probability that the outcome of a single trial falls into cell i , is

pi , i = 1, . . . , k and remains the same from trial to trial. Notice that
p1 + · · ·+ pk = 1.

(4) The trials are independent.
(5) The random variables of interest are Y1, . . . ,Yk , where Yi equals the

number of trials for which the outcome falls into cell i . Notice that
Y1 + · · ·+ Yk = n.

Multinomial experiment is like a binomial experiment, but there are k
possible outcomes, not just 2.
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These RVs Y1, . . . ,Yk are said to have a multinomial distribution.

Formally,

Definition (Multinomial Distribution)
Assume that p1, . . . , pk are such that

∑n
i=1 pi = 1, and pi > 0 for

i = 1, . . . , k. The random variables Y1, . . . ,Yk are said to have a
multinomial distribution with parameters n and p1, . . . , pk if the joint
probability function of Y1, . . . ,Yk is given by

p(y1, . . . , yk) = n!
y1! . . . yk !p

y1
1 . . . pyk

k ,

where, for each i , yi = 0, 1, . . . , n and
∑k

i=1 yi = n.

By thinking of outcome type i as success, and anything else as failure, we
see that the marginal distribution of each Yi is binomial with parameters
n (the number of trials) and pi (the probability of outcome type i).
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Theorem (5.13)
If Y1, . . . ,Yk have a multinomial distribution with parameters n and
p1, . . . , pk , then
(1) E [Yi ] = npi ,V [Yi ] = npiqi , where qi = 1− pi .

(2) Cov(Ys ,Yt) = −npspt , if s 6= t.

Remark:
The hard part of Theorem 5.13 is the statement (2). Notice that this
covariance is negative; this is intuitive from Y1 + · · ·+Yk = n. (Since the
sum is constant, if one Yi is large the others are more likely to be small.)

Proof: (Part (2) of Theorem 5.13)
Define

Ui =
{
1 if trial i results

in outcome s,
0 otherwise

,Vj =
{
1 if trial j results

in outcome t,
0 otherwise.
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Proof: (continued)
Then

Ys =
n∑

i=1
Ui ,

Yt =
n∑

j=1
Vj , Cov(Ys ,Yt) = Cov

( n∑
i=1

Ui ,

n∑
j=1

Vj

)
.

Now we can use the bilinearity of covariance. Notice also that if i 6= j ,
then trial i is independent of trial j , by definition of multinomial
experiment. So Ui is independent of Vj if i 6= j . So Cov(Ui ,Vj) = 0, and

Cov(Ys ,Yt) =
n∑

i=1
Cov(Ui ,Vi ) +

∑
i 6=j
��

���
�:0

Cov(Ui ,Vj).

Now Cov(Ui ,Vi ) = E [UiVi ]− E [Ui ]E [Vi ]. Since Ui and Vi cannot both
be 1, E [UiVi ] = 0. Also E [Ui ] = ps ,E [Vi ] = pt implies
Cov(Ui ,Vj) = −pspt . Thus

Cov(Ys ,Yt) =
n∑

i=1
Cov(Ui ,Vj) = −npspt ,

as claimed.
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Exercise 5.119
A learning experiment requires a rat to run a maze (a network of
pathways) until it locates one of three possible exits. Exit 1 presents a
reward of food, but exits 2 and 3 do not. (If the rat eventually selects
exit 1 almost every time, learning may have taken place.) Let Yi denote
the number of times exit i is chosen in successive runnings. For the
following, assume that the rat chooses an exit at random on each run.

(a) Find the probability that n = 6 runs result in Y1 = 3, Y2 = 1, and
Y3 = 2.

(b) For general n, find E [Y1] and V [Y1].
(c) Find Cov(Y2,Y3) for general n.
(d) To check for the rat’s preference between exits 2 and 3, we may look

at Y2 − Y3. Find E [Y2 − Y3] and V [Y2 − Y3] for general n.
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Hints and Answers:

Note that k = 3 and p1 = p2 = p3 = 1
3 .

For part (a), apply the joint probability function of the multinomial
distribution:

Answer:
(

6
3 1 2

)
· p3

1p1
2p3

3 = 6!
3!1!2!

(
1
3

)3(1
3

)(
1
3

)2
= 20

243 .

For part (b), apply our knowledge of binomial distributions:

E [Y1] = n
3 , V [Y1] = 2n

9 .

For part (c), apply Theorem 5.13: Cov(Y2,Y3) = −n
9 .

For part (d),
E [Y2 − Y3] = E [Y2]− E [Y3] = n

3 −
n
3 = 0.
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Correlation

There is one issue with covariance as a measure of how much X and Y
‘vary together”: It is larger when X and Y are larger, even if the
connection between X and Y is not very strong.
For example, if Cov(X ,Y ) = 1, then Cov(2X , 2Y ) = 4, by bilinearity of
covariance. But the connection between 2X and 2Y is no better than the
connection between X and Y .
One way to measure this (undefined) “connection” is correlation. For two
RVs X ,Y with some joint distribution,

ρX ,Y = Cov(X ,Y )
σXσY

, where σX =
√
V [X ], σY =

√
V [Y ].

For the example above with 2X and 2Y , we have

ρ2X ,2Y = Cov(2X , 2Y )
σ2Xσ2Y

= Cov(X ,Y )
σXσY

= ρX ,Y .
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Remark:

Think of this as a covariance “normalized” for the size of X and Y .

FACT: − 1 ≤ ρX ,Y ≤ 1.

To see this, we use the Cauchy-Schwarz inequality adapted to random
variables.
Cauchy-Schwarz Inequality:

|〈v ,w〉| ≤ ‖v‖ · ‖w‖.
You may recall that 〈v ,w〉 = ‖v‖ · ‖w‖ · cos θ, where θ is the angle
between v and w . If you are willing to assume this fact, then the
Cauchy-Schwarz inequality follows from | cos θ| ≤ 1.

If we translate this to the language of random variables by saying that
the inner product of two RVs X ,Y is Cov(X ,Y ) – notice that 〈·, ·〉 and
Cov(·, ·) are both bilinear.
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|〈v ,w〉| ≤ ‖v‖ · ‖w‖.
You may recall that 〈v ,w〉 = ‖v‖ · ‖w‖ · cos θ, where θ is the angle
between v and w . If you are willing to assume this fact, then the
Cauchy-Schwarz inequality follows from | cos θ| ≤ 1.

If we translate this to the language of random variables by saying that
the inner product of two RVs X ,Y is Cov(X ,Y ) – notice that 〈·, ·〉 and
Cov(·, ·) are both bilinear.
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The length or norm ‖v‖ translates to σX , i.e.
√

V [X ].

Then the
Cauchy-Schwarz inequality translates to |Cov(X ,Y )| ≤ σXσY . So

|ρX ,Y | = |Cov(X ,Y )|
σXσY

≤ 1.

Remark:
If the correlation is exactly 1 or − 1, this implies a perfect linear
relationship between X and Y , i.e. Y = aX + b with probability 1.

Remark: “Correlation does not imply causation”
There is no value of the correlation that implies a causal connection
between X and Y . There might be, for example, some common cause of
X and Y that explains the correlation.

Remark:
If you think of X and Y as being like vectors, you can think of ρX ,Y as
being like the cosine of the angle between them.
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Example
Suppose ρX ,Y = 0.9 and ρY ,Z = 0.8. What is the minimum possible
value of ρX ,Z?

Solution:
Suppose that we write θX ,Y and θY ,Z for the angles between the RVs
X ,Y and Y ,Z . Then θX ,Y = cos−1(0.9) and θY ,Z = cos−1(0.8). (Note
that the principal range of cos−1(t) is [0, π].)
The maximum possible angle between X and Z is less than or equal to
θX ,Y + θY ,Z , that is, θX ,Z ≤ θX ,Y + θY ,Z . So

ρX ,Z = cos θX ,Z ≤ cos(θX ,Y + θY ,Z )
≤ cos(cos−1(0.9) + cos−1(0.8)) ≤ 0.458.
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Example (Properties of Correlation)

Suppose ρX ,Y = 0.2 and Z = 2Y + 3. What is ρX ,Z?

Solution:
From the definitions, we calculate

ρX ,Z = Cov(X ,Z )
σXσZ

= Cov(X , 2Y + 3)
σXσZ

= 2Cov(X ,Y )
σXσZ

but σZ =
√
V [2Y + 3] = 2

√
V [Y ]

= 2Cov(X ,Y )
σX · 2σY

= ρX ,Y .

What if Z = −3Y + 4 instead? Same calculation shows that
ρX ,Z = −ρX ,Y . This means that a linear change of variable can only
change the sign of the correlation and not the magnitude.
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The Bivariate Normal Distribution

No discussion of multivariate probability distributions would be complete
without reference to the multivariate normal distribution, which is a
keystone of much modern statistical theory. We look at the simplest
case, the Bivariate Normal Distribution:

Definition (Bivariate Normal Distribution)
Two continuous RVs Y1,Y2 are said to have the bivariate normal
distribution if the density function is given by

f (y1, y2) = e−Q/2

2πσ1σ2
√

1− ρ2
, −∞ < y1 <∞,−∞ < y2 <∞,

where

Q = 1
1− ρ2

[
(y1 − µ1)2

σ2
1

− 2ρ (y1 − µ1)(y2 − µ2)
σ1σ2

+ (y2 − µ2)2

σ2
2

]
.
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Thus the bivariate normal distribution is a function of five parameters:
µ1, µ2, σ

2
1 , σ

2
2 , and ρ.

The choice of notation employed for these
parameters is not coincidental:

Exercise 5.128
The marginal distributions of Y1 and Y2 are normal distributions with
means µ1 and µ2 and variances σ2

1 and σ2
2 , respectively.

Remarks:
With a bit of somewhat tedious integration, we can also show that

ρ = Cov(Y1,Y2)
σ1σ2

= ρY1,Y2 ,

the correlation coefficient between Y1 and Y2.
This distribution is special, in the sense that, if Y1 and Y2 have a
bivariate normal distribution, they are independent if and only if
their covariance (equivalently, ρ = ρY1,Y2) is zero. Zero covariance
does not imply independence in general.
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The expression for the joint density function of the k-variate normal
distribution (k > 2) is most easily expressed by using the matrix algebra.

Definition (The k-variate Normal Distribution (k ≥ 2))
Let Y = (Y1, . . . ,Yk) denote a k-dimensional random vector (i.e.
Y1, . . . ,Yk are k random variables).
Also let µ = E [Y] = (E [Y1], . . . ,E [Yk ]) denote the k-dimensional mean
vector, and
Σ := E [(Y− µ)(Y− µ)T ] = [[Cov(Yi ,Yj)]]1≤i,j≤k the k × k Covariance
Matrix.
Then Y1, . . . ,Yk have the k-variate normal distribution if their joint
density function is

fY(y1, . . . , yk) = 1
(2π)k/2

√
detΣ

e(− 1
2 (Y−µ)T Σ−1(Y−µ))

= 1√
det(2πΣ)

e(− 1
2 (Y−µ)T Σ−1(Y−µ)).

Check that k = 2 gives the bivariate normal distribution we have just
seen.
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Conditional Expectation

E [Y1 | Y2 = y2] or E [g(Y1) | Y2 = y2].
This is defined by integrating with respect to the conditional density
defined earlier:

E [g(Y1) | Y2 = y2] =
∫ ∞
−∞

g(y1)f (y1 | y2) dy1.

Notice that this is a function of y2.

Recall that f (y1 | y2) = f (y1, y2)
f2(y2)

Assuming that everything is defined and we haven’t divided by zero, we
could compute the expectation of E [Y1 | Y2 = y2], because it is a
function of Y2.
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Theorem (5.14)
Let Y1 and Y2 denote random variables. Then

E [Y1] = E [E [Y1 | Y2]],
where on the right-hand side the inside expectation is with respect to the
conditional distribution of Y1 given Y2 and the outside expectation is
with respect to the distribution of Y2.

Proof: (continuous case; the discrete case is analogous.)

E [E [Y1 | Y2]] =
∫ ∞
−∞

E [Y1 | Y2]f2(y2) dy2

=
∫ ∞

y2=−∞

[∫ ∞
y1=−∞

y1f (y1 | y2) dy1

]
f2(y2) dy2

=
∫ ∞

y2=−∞

∫ ∞
y1=−∞

y1
f (y1, y2)

�
��f2(y2) �

��f2(y2) dy1 dy2

=
∫ ∞
−∞

∫ ∞
−∞

y1f (y1, y2) dy1 dy2 = E [Y1].
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Remark:
Our computation may be easier with the information given in the
problem.

Note:
E [Y1 | Y2] can be regarded as a RV. Then

V [Y1 | Y2] = E [Y 2
1 | Y2]− E [Y1 | Y2]2.

The formula in Theorem 5.14 was a relationship between the
unconditional expectation E [Y1] and the conditional expectation
E [Y1 | Y2]. There is a more complicated relation between the
unconditional variance V [Y ] and the conditional variance V [Y1 | Y2]:

Theorem (5.15)

V [Y1] = E [V [Y1 | Y2]] + V [E [Y1 | Y2]].
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Remark:
There are similar, but more complicated relationships between conditional
and unconditional higher moments E [Y 3

1 ], etc.

Proof of Theorem 5.15:
Recall

V [Y1 | Y2] = E [Y 2
1 | Y2]− E [Y1 | Y2]2.

Then
E [V [Y1 | Y2]] = E [E [Y 2

1 | Y2]]− E [E [Y1 | Y2]2].
By definition,

V [E [Y1 | Y2]] = E [E [Y 2
1 | Y2]2]− E [E [Y1 | Y2]]2.
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Proof: (continued)
The variance of Y1 is

V [Y1] = E [Y 2
1 ]− E [Y1]2

= E [E [Y 2
1 | Y2]]− E [E [Y1 | Y2]]2 (By Theorem 5.14)

= E [E [Y 2
1 | Y2]]− E [E [Y 2

1 | Y2]2]︸ ︷︷ ︸ + E [E [Y 2
1 | Y2]2]

− E [E [Y1 | Y2]]2

=
︷ ︸︸ ︷
E [V [Y1 | Y2]] + V [E [Y1 | Y2]], as claimed.

By the definition of “conditional variance”.
Because E [Y1 | Y2] is a RV and V [X ] = E [X 2]− E [X ]2.

Note: Make sure to remember this result: it will help with Exercises
5.136 and 5.138.
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Exercise 5.136
The number of defects per yard in a certain fabric, Y , has a Poisson
distribution with parameter λ, which is assumed to be a random variable
with a density function given by

f (λ) =
{
e−λ λ ≥ 0,
0 elsewhere.

Find (a) the expectation, and (b) the variance of Y . (c) Is it likely that
Y ≥ 9?

Exercise 5.138
Assume that Y denotes the number of bacteria per cubic centimeter in a
particular liquid and that Y has a Poisson distribution with parameter λ.
Further assume that λ varies from location to location and has a Gamma
distribution with parameters α and β, where α is a positive integer. If we
randomly select a location, what is the
(a) expected number of bacteria per cubic centimeter?
(b) standard deviation of the number of bacteria per cubic centimeter?
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Hints for Exercises 5.136 and 5.138:

Use Theorem 5.14 for parts (a) and Theorem 5.15 for parts (b).
Now 5.136(c) is easy.

Exercise 5.167
Let Y1 and Y2 be jointly distributed random variables with finite
variances.
(a) Show that

E [Y1Y2]2 ≤ E [Y 2
1 ]E [Y 2

2 ]
by observing that

E [(tY1 − Y2)2] ≥ 0
for any real number t.

(b) Hence prove that
− 1 ≤ ρY1,Y2 ≤ 1

.
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Solution: (Exercise 5.167(a))

If Y1,Y2 are RVs, then note that E [(tY1 − Y2)2] ≥ 0. So
E [t2Y 2

1 − 2tY1Y2 + Y 2
2 ] ≥ 0.

∴ t2E [Y 2
1 ]− 2tE [Y1Y2] + E [Y 2

2 ] ≥ 0.
This is a quadratic at2 + bt + c ≥ 0. Since this is true for all real t,
b2 − 4ac ≤ 0. Now

b = −2E [Y1Y2], a = E [Y 2
1 ], c = E [Y 2

2 ].
So

(−2E [Y1Y2])2 − 4E [Y 2
1 ]E [Y 2

2 ] ≤ 0.
∴ 4(E [Y1Y2])2 − E [Y 2

1 ]E [Y 2
2 ]) ≤ 0.

∴ E [Y1Y2]2 ≤ E [Y 2
1 ]E [Y 2

2 ].
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Solution: (Exercise 5.167(b))
Now recall, for RVs X1,X2,

ρX1,X2 = Cov(X1,X2)
σX1σX2

= E [(X1 − µ1)(X2 − µ2)]√
E [(X1 − µ1)2]E [(X2 − µ2)2]

,

where µ1 = E [X1] and µ2 = E [X2].
Now let Y1 = X1 − µ1 and Y2 = X2 − µ2.
By Exercise 5.167(a), we know that E [Y1Y2]2 ≤ E [Y 2

1 ]E [Y 2
2 ], that is,

E [Y1Y2]2
E [Y 2

1 ]E [Y 2
2 ] ≤ 1 =⇒ ρ2

Y1,Y2
≤ 1,

where we have used the linearity of Expectations. Thus
− 1 ≤ ρY1,Y2 ≤ 1,

as desired.
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Exercise 5.31:
The joint density function of Y1 and Y2 is given by

f (y1, y2) =
{
30y1y2

2 y1 − 1 ≤ y2 ≤ 1− y1, 0 ≤ y1 ≤ 1,
0 elsewhere.

(a) Show that the marginal density of Y1 is a beta density with α = 2
and β = 4.

(b) Derive the marginal density of Y2.
(c) Derive the conditional density of Y2 given Y1 = y1.
(d) Find P(Y2 > 0 | Y1 = .75).

Solution:

First, graph the region in which the density
function is nonzero:
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Solution: (a)
Recall the definition of marginal density function:

f1(y1) =
∫ ∞
−∞

f (y1, y2) dy2

=


∫ 1−y1

y1−1
30y1y2

2 dy2 0 ≤ y1 ≤ 1,

0 otherwise.

=

30y1
y3

2
3

∣∣∣∣1−y1

y1−1
0 ≤ y1 ≤ 1,

0 otherwise.

=
{
20y1(1− y1)3 0 ≤ y1 ≤ 1,

0 otherwise.
All of this is part of the definition of f1(y1)!
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Solution: (b)

f2(y2) =
∫ ∞
−∞

f (y1, y2) dy1. Now there are 3 cases!

If − 1 ≤ y2 ≤ 0,
∫ 1+y2

0
30y1y2

2 dy1 = 30y2
2
y2

1
2

∣∣∣∣1+y2

0
= 15y2

2 (1 + y2)2,

if 0 ≤ y2 ≤ −1,
∫ 1−y2

0
30y1y2

2 dy1 = 30y2
2
y2

1
2

∣∣∣∣1−y2

0
= 15y2

2 (1− y2)2,

and 0 otherwise. That is,

f2(y2) =

 0 y2 /∈ [−1, 1],
15y2

2 (1 + y2)2 y2 ∈ [−1, 0],
15y2

2 (1− y2)2 y2 ∈ [0, 1].
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15y2
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Solution: (c)

f (y2 | y1) = f (y1, y2)
f1(y1) . This is defined only if y1 ∈ (0, 1). In the triangle

{y1 − 1 < y2 < 1− y1, 0 < y1 < 1}, it is 30y1y2
2

20y1(1− y1)3 = 3
2y

2
2 (1− y1)−3.

Thus

f (y2 | y1) =


undefined y1 /∈ (0, 1),

3
2y

2
2 (1− y1)−3 0 < y1 < 1 and y1 − 1 < y2 < 1− y1,

0 otherwise.

Solution: (d)

P(Y2 > 0 | Y1 = .75) =
∫ ∞

0
f (y2 | y1)︸ ︷︷ ︸ dy2

This is 0 unless
y2 < 1− 0.75 = 0.25

=
∫ 0.25

0

3
2y

2
2 (1− 0.75)−3 dy2 = 1

2 .
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Example 5.32:
A quality control plan for an assembly line involves sampling n = 10
finished items per day and counting Y , the number of defectives. If p
denotes the probability of observing a defective, then Y has a binomial
distribution, assuming that a large number of items are produced by the
line. But p varies from day to day and is assumed to have a uniform
distribution on the interval from 0 to 1

4 . Find the expected value of Y .

Solution:
We employ Theorem 5.14: E [Y ] = E [E [Y | p]].

E [Y | p] = np because we know the expectation
of a binomial RV.

E [Y ] = E [np] where p ∼ Unif
(
0, 14

)
.

We know E [p] = 1
8 , because we know the expectation of a uniform RV.

So E [Y ] = n
8 .
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Example 5.33:
In Example 5.32, find the variance of Y .

Solution:
Here we apply Theorem 5.15: V [Y ] = E [V [Y | p]] + V [E [Y | p]]. We
know that for any particular value of p, Y is a binomial RV, whose mean
and variance are known:

E [Y | p]− np,V [Y | p] = npq, (where q = 1− p).

So V [Y ] = E [npq]− V [np]. Remember that p ∼ Unif
(
0, 14

)
. So

E [npq] = nE [pq] = n
∫ 1/4

0
y(1− y) 1

1/4
dy

= n
∫ 1/4

0
y · 4dy − n

∫ 1/4

0
y2 4dy = nE [p]− nE [p2].

So this can be done using the known mean and variance of a uniform RV.
Instead, we directly do the above integrals:
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Solution: (continued)

E [npq] = n · 4 · y
2

2

∣∣∣∣1/4

0
− n · 4 · y

3

3

∣∣∣∣1/4

0

= n
8 −

n
48 = 5n

48 .
The other term is V [E [Y | p]], which is

V [np] = n2V [p], where p ∼ Unif
(
0, 14

)
= n2 · 112 ·

(
1
4 − 0

)2
= n2

192 .

So V [Y ] = 5n
48 + n2

192 .
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Solution: (Exercise 5.136 (c))

The simplest solution is to apply Tchebysheff’s theorem.
You previously found µ and σ2 for Y in parts (a) and (b). The value 9 is
far from µ, measured in units of σ. So applying Tchebysheff makes sense.
Here µ = 1, so
P(Y > 9) = P((Y − µ) > (9− µ)) = P(Y − µ > 8) ≤ P(|Y − µ| > 8).
Now use the theorem.

Slogan for Tchebysheff’s Theorem:
The probability that Y is far from its mean, where “far” is measured in
units of σ, is small.
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Example:

Suppose Y is a normal RV with mean µ and variance σ2. What kind of
RV is Z = Y − µ

σ
? Standard Normal.

Why? Notice that we can compute

E [Z ] = E
[
Y − µ
σ

]
= 1
σ
E [Y − µ] = 1

σ
(µ− µ) = 0,

V [Z ] = V
[
Y − µ
σ

]
= 1
σ2V [Y − µ] = 1

σ2V [Y ] = 1
σ2σ

2 = 1.

Does this show that Z is standard normal? No. This shows the
“standard” part, but not the “normal” part. That is, we showed that Z
has mean 0 and variance 1, but not that Z is normally distributed.
Can you think of another RV which has mean 0 and variance 1?
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Two examples:

1 Uniform RV on [−a, a].

This has mean a + (−a)
2 = 0 and variance

(a − (−a))2

12 = 4a2

12 = a2

3 . So if we take a =
√
3, this has variance 1.

2 Let

X =
{

+1 with probability 1/2,

−1 with probability 1/2.

Then E [X ] = 0, V [X ] = E [X 2]− 02 = 1.
This shows that it is not possible to “recognize” a RV using only its
mean and variance.
One way to “recognize” a RV is to use the moment generating function.
That is, if we know (for whatever reason) that mX (t) = mY (t) for all t
near t = 0, then we have that X and Y have the same distribution.
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The way we prove that Z = Y − µ
σ

is normal is we show that Z has the
right MGF.

What is the MGF of a normal RV Y with mean µ and
variance σ2? eµt+σ2t2

2 .
This means that the MGF of Z is

E [etZ ] = E [et( Y −µ
σ )] = E [e t

σ (Y−µ)] = E [e( t
σY )]E [e( t

σ (−µ))]

= e−
µt
σ E [e( t

σ )Y ] = e−
µt
σ mY

(
t
σ

)
= e−

µt
σ e

(
µ( t

σ )+
σ2( t

σ )2

2

)

= e
(
−µt
σ +µt

σ + t2
2

)
= e t2

2 .

And thus m2(t) = e(0)t+ (1)2t2
2 . This is the MGF of a normal RV with

mean 0 and variance 1. Therefore by “uniqueness of MGF”, Z is normal,
with mean 0 and variance 1.
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2 .

This is the MGF of a normal RV with
mean 0 and variance 1. Therefore by “uniqueness of MGF”, Z is normal,
with mean 0 and variance 1.
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End of Chapter 5
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Functions of Random Variables

Suppose we have random variables X ,Y with some joint distribution. We
can construct a new RV U from X and Y by combining them somehow.
For example, U = X

Y , U = 4X + 3, U = X + Y , U = arctanX ,
U = X 2 + Y 2, etc.
Suppose we “know” X and Y in the sense that we know the joint density
or joint distribution function. How do we figure out the distribution or
density function of U? This problem is addressed by the methods of
Chapter 6.

Simple Example:
Suppose Y has the density function

f (y) =
{
2y y ∈ [0, 1],
0 y /∈ [0, 1].

Let U = 3Y − 1. Find the PDF of U.
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Finding the Probability Distribution of a Function of RVs

There are three key methods for finding the probability distribution for a
function of random variables:
(1) The method of Distribution Functions,
(2) The method of Transformations, and
(3) The method of Moment-Generating Functions.
There is also a fourth method for finding the joint distribution of several
functions of random variables.
The method that works “best” varies from one application to another.
Hence, acquaintance with the first three methods is desirable.
Consider random variables Y1, . . . ,Yn and a function U(Y1, . . . ,Yn),
denoted simply as U. Then three of the methods for finding the
probability distribution of U are as follows:
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“Method of Distribution Functions”

Outline:
Find the distribution function (CDF) FY (y) = P(Y ≤ y).
Use this CDF to find the CDF FU(u), by transforming the inequality
Y ≤ y so that U(= 3Y − 1) is on the LHS.
Now differentiate FU(u) to get the density function for U, fU(u).

Solution: (Simple Example)

Step 1: Find FY = P(Y ≤ y) =
∫ y

−∞
f (t) dt.

FY ≡ 0 if y < 0. Also, since the PDF fY integrates to 1, FY ≡ 1 if y > 1.

If y ∈ [0, 1], then
∫ y

−∞
f (t) dt =

∫ y

0
2t dt = t2

∣∣∣∣y
0
. So FY (y) = y2. Thus

FY (y) =


y2 y ∈ [0, 1],
0 y < 0,
1 y > 1.
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Now differentiate FU(u) to get the density function for U, fU(u).

Solution: (Simple Example)

Step 1: Find FY = P(Y ≤ y) =
∫ y

−∞
f (t) dt.

FY ≡ 0 if y < 0. Also, since the PDF fY integrates to 1, FY ≡ 1 if y > 1.

If y ∈ [0, 1], then
∫ y

−∞
f (t) dt =

∫ y

0
2t dt = t2

∣∣∣∣y
0
.

So FY (y) = y2. Thus

FY (y) =


y2 y ∈ [0, 1],
0 y < 0,
1 y > 1.
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Solution:(continued)
Step 2:

We know P(Y ≤ y); we will use this to find P(U ≤ u).
We write

FU(u) = P(U ≤ u) = P(3Y − 1 ≤ u)

Now we start transforming: = P(3Y ≤ u + 1) = P
(
Y ≤ u + 1

3

)
Now we use Step 1: = FY

(
u + 1
3

)

=


( u+1

3
)2 u+1

3 ∈ [0, 1],
0 u+1

3 < 0,
1 u+1

3 > 1.
Notice u+1

3 < 0 corresponds to u < −1, while u+1
3 > 1 corresponds to

u > 2. Thus

FU(u) =


(u+1)2

9 u ∈ [−1, 2],
0 u < −1,
1 u > 2.
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Solution:(continued)

Step 3:

Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:
Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:
Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution:(continued)

Step 3: Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:
Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:
Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution:(continued)

Step 3: Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:
Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:
Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution:(continued)

Step 3: Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:
Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:
Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution:(continued)

Step 3: Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:

Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:
Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution:(continued)

Step 3: Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:
Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:
Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution:(continued)

Step 3: Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:
Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:
Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution:(continued)

Step 3: Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:
Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:

Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution:(continued)

Step 3: Find the PDF fU(u) = d
duFU .

Now that we know FU , this is straightforward:

fU(u) =
{ 2(u+1)

9 u ∈ [−1, 2],
0 u /∈ [−1, 2].

A more complicated example:
Suppose that X and Y are independent and have the unniform
distribution on the unit interval [0, 1]. Let U = X + Y . Find the density
function fU(u).

Remark:
(X ,Y ) is a random point in [0, 1]× [0, 1].

Solution:
Write FU(u) = P(U ≤ u) = P(X + Y ≤ u).

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 299 / 381



Solution: (continued)
Since (X ,Y ) is a random point in [0, 1]× [0, 1], we have 0 ≤ X + Y ≤ 2.

Thus FU(u) = 0 if u < 0 and FU(u) = 1 if u > 2. In between we can
draw a picture and solve geometrically.
We want to draw a square and the region x + y ≤ u:

Shaded region: (x , y) ∈ [0, 1]× [0, 1]
and x + y ≤ u.

What is the area of the shaded region? u2

2 .

This works for 0 ≤ u ≤ 1.
If 1 ≤ u ≤ 2, the picture is different:

Notice that this is no longer a triangle; it is a
square with a triangle removed.

The removed triangle has area 1
2 (2−u)(2−u).
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If 1 ≤ u ≤ 2, the picture is different:

Notice that this is no longer a triangle; it is a
square with a triangle removed.

The removed triangle has area 1
2 (2−u)(2−u).
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Solution: (continued)
This tells us that

FU(u) =


0 u < 0,
1 u > 2,
u2

2 u ∈ [0, 1],
1− 1

2 (2− u)2 u ∈ [1, 2].

Notice that values match at endpoints: FU is continuous.

The PDF fU(u) is d
duFU . So

if u /∈ [0, 2], fU(u) = 0,
if u ∈ [0, 1], fU(u) = u, and

if u ∈ [1, 2], fU(u) = d
du

(
1− 1

2 (2− u)2
)

= 2 ·
(
−1
2

)
· (2− u) · (−1) = 2− u.
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Solution: (continued)
So the graph of fU(u) is

Remark:
This is a special case of a general fact: if U = X + Y , then the density of
U is the convolution of the densities of X and Y .
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Remark:

Why are we interested in this problem of understanding a RV U which is
a function of other RVs? From the point of view of this book, the answer
is “statistics”.
If Y1, . . . ,Yn are IID samples from some distribution, we take our
samples and compute, for example, U = 1

n (Y1 + · · ·+ Yn). What is the
distribution of U? Note that it is NOT the the same as the distribution
of one of the Yi !
We can ask the same question for, e.g., U = Y 2

1 , . . . ,Y 2
n , U = standard

deviation or variance of the Yi .
Since the Yi are RVs, U is a RV. What is the distribution of U?
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Example

Suppose Y1,Y2 have joint density

f (y1, y2) =
{
3y1 0 ≤ y2 ≤ y1 ≤ 1,
0 otherwise.

Find the PDF of U = Y1 − Y2.

Solution:

FU(u) = P(U ≤ u) = P(Y1 − Y2 ≤ u).
To find this probability, we will need to do a double integral, so we draw
a picture:

Shaded region is where y1 − y2 ≥ u and the
PDF is nonzero.
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Solution: (continued)
P(Y1 − Y2 ≤ u) is one minus the integral of the PDF over the shaded
region.

Assuming that u ∈ [0, 1], we see that

P(Y1 − Y2 ≤ u) = 1−
∫ 1

u

∫ y1−u

0
3y1 dy2 dy1.

This is an exercise in integration. Answer: 12 (3u − u3).
Now we can write down the CDF FU(u) by handling the “stupid” cases.
Recall that (Y1,Y2) is a point in the triangle, so 0 ≤ Y1 − Y2 ≤ 1. Thus

FU(u) =


0 u ≤ 0,
1 u ≥ 1,

1
2 (3u − u3) u ∈ [0, 1].

To find the density function fU(u), use fU(u) = d
duFU(u).
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1 u ≥ 1,

1
2 (3u − u3) u ∈ [0, 1].
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“Method of Transformations”

Recall our first example: Y was a RV with the PDF

fY (y) =
{
2y 0 ≤ y ≤ 1,
0 otherwise. U = 3Y − 1.

We found FU(u) by writing FU(u) = P(U ≤ u) = P(3Y − 1 ≤ u) and
then rearranging to get P

(
Y ≤ u + 1

3

)
= FY

(
u + 1
3

)
.

Abstractly, we know fY and FY . Also u = h(Y ), where h is an increasing
function, so it preserves inequalities. So we can write
FU(u) = P(U ≤ u) = P(h(Y ) ≤ u) = P(Y ≤ h−1(u)) = FY (h−1(u)).

Thus
fU(u) = d

duFU(u) = d
duFY (h−1(u)) = fY (h−1(u)) · ddu (h−1)(u).

This also works if h is decreasing: if h is decreasing, it reverses
inequalities.
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So for such an h,

P(U ≤ u) = P(h(Y ) ≤ u) = P(h−1(h(y)) ≥ h−1(u))
= P(Y ≥ h−1u) = 1− FY (h−1(u)).

So
d
duFU(u) = d

du
[
1− FY (h−1(u))

]
= −fY (h−1(u)) · ddu (h−1)(u).

Thus, we can combine these two observations into the main formula:

fU(u) = fY (h−1(u)) ·
∣∣∣∣ ddu (h−1)(u)

∣∣∣∣ .
Note that the absolute value covers both the cases.
Going back to our example, how do we apply this? What is h−1?

U = h(Y ) = 3Y − 1 =⇒ Y = U + 1
3 =⇒ h−1(u) = u + 1

3 .

So
∣∣∣∣ ddu (h−1)

∣∣∣∣ ≡ 1
3 . Thus fU(u) = 1

3 fY
(
u + 1
3

)
, which is
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fU(u) =


2
3

(
u + 1
3

)
0 ≤ u + 1

3 ≤ 1,
0 otherwise.

∴ fU(u) =
{2(u + 1)

9 − 1 ≤ u ≤ 2,
0 otherwise.

Notice that we have seen cases where U = h(X ,Y ) – this will not be
invertible. Even cases with one variable might not be invertible.
The method can be adapted for non-invertible cases; we consider such an
example:

Example
Let Y1,Y2 be independent exponential RVs with parameter = 1. Let
U = Y1 + Y2. Find the PDF fU(u).
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Solution:
We already know the method:

Write
FU(u) = P(U ≤ u) = P(Y1 + Y2 ≤ u), and then do a double integral.
Note that we need to know the joint density function of Y1,Y2. They are
independent, so the joint density is the product of the marginal densities:

f (y1, y2) =
{
e−(y1+y2) y1, y2 ≥ 0,

0 otherwise.

P(Y1 + Y2 ≤ u) =
∫∫

shaded region

f (y1, y2) dy2 dy1

=
∫ u

0

∫ u−y1

0
e−(y1+y2)dy2 dy1.

Rather than do this integral, we will apply the method of transformations.
Where is our function invertible and increasing? For fixed y1,
U = y1 + Y2 = h(Y2).
Regard this as a function of Y2.
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Solution: (continued)
Now we will use the method to obtain the joint density of U and Y1:

g(y1, u) =

f (y1, h−1(u)) ·
∣∣∣∣ ddu (h−1)(u)

∣∣∣∣ y1 ≥ 0, y2 ≥ 0,
0 otherwise.

Note that h(Y2) = Y2 + y1, so h−1(U) = U − y2. Thus
d
du (h−1) ≡ 1.

The condition y2 ≥ 0 gives us u − y1 ≥ 0, or u ≥ y1. So “y1 ≥ 0, y2 ≥ 0”
translates to 0 ≤ y1 ≤ u. Thus

g(y1, u) =
{
e−(y1+(u−y1)) · 1 0 ≤ y1 ≤ u,

0 otherwise.

∴ g(y1, u) =
{
e−u 0 ≤ y1 ≤ u,
0 otherwise.
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d
du (h−1) ≡ 1.

The condition y2 ≥ 0 gives us u − y1 ≥ 0, or u ≥ y1. So “y1 ≥ 0, y2 ≥ 0”
translates to 0 ≤ y1 ≤ u. Thus

g(y1, u) =
{
e−(y1+(u−y1)) · 1 0 ≤ y1 ≤ u,

0 otherwise.

∴ g(y1, u) =
{
e−u 0 ≤ y1 ≤ u,
0 otherwise.
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Solution: (continued)
How do we obtain the density fU(u)?

This is the marginal density: Take the joint PDF and integrate out the y1:

fU(u) =
∫ ∞
−∞

g(y1, u) dy1

=


∫ u

0
e−u dy1 u ≥ 0,
0 otherwise.

=
{
ue−u u ≥ 0,
0 otherwise.
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Exercise 6.26(a)

Let α,m > 0 be constants. Suppose that Y has the Weibull distribution,
whose density function is

f (y) =
{ 1
α
mym−1e−

ym
α y > 0,

0 otherwise.
Find the density function of U = Ym.

Solution:
We use the method of transformations:
Note that h(Y ) = Ym is an increasing function for Y > 0, and
h−1(U) = U 1

m . What is the density fU(u)?

fU(u) =

fY (h−1(u)) ·
∣∣∣∣ ddu (h−1)(u)

∣∣∣∣ y > 0,
0 otherwise.

Now translate this to obtain the desired fU(u):
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Solution: (continued)

fU(u)

=


1
α
m
(
u 1

m

)m−1
e−

(u1/�m)�m
α

∣∣∣∣ ddu (h−1)(u)
∣∣∣∣ y > 0,

0 otherwise.

=
{ 1
α
��m
(
u 1

m

)m−1
e− u

α · 1
��m

u( 1
m−1) u > 0,

0 otherwise.

=
{ 1
α
e− u

α��
��u(1− 1
m ) ·����u( 1

m−1) u > 0,
0 otherwise.

=
{ 1
α
e− u

α u > 0,
0 otherwise.

So U is exponential with parameter α.

The text covers only the 4 distributions and 2 special cases mentioned in
Chapter 4, because many others can be obtained from these by simple
transformations. In the book, you will find numerous exercises with good
material: Poisson-Gamma relationship, Hazard Rates, etc.
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Method of Moment Generating Functions

Method of MGF:
Try to determine the MGF of U = f (X ,Y ).
Then try to “recognize” this MGF as one we already know (see
tables in the text).
Then, by uniqueness of MGF, we know the distribution of U.

This might go wrong: the MGF for U might not be one in our tables.
But for simple functions f (X ,Y ) e.g. f (X ,Y ) = X + Y and the right
RVs X ,Y , we will be “lucky”.

Example
Suppose Z is a standard normal RV. Suppose Y is a normal RV with
mean µ and variance σ2. Notice that the MGF of Y is eµt+σ2t2

2 , and that
of Z is e(0)t+ (1)2t2

2 = e t2
2 . What is the distribution of X = Y−µ

σ ?
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Solution:
We use the method of MGFs.

mX (t) = E
[
etX ] = E

[
et( Y −µ

σ )
]

= E
[
e( t

σ )Y e−
µt
σ

]
= e−

µt
σ · E

[
e( t

σ )Y
]

= e−
µt
σ mY

(
t
σ

)
= e−

µt
σ e

µ
t
σ

+

��σ2
(
t
�σ

)2

2


= e
(
−��
µt
σ +��

µt
σ + t2

2

)
= e t2

2 , exactly the same as the MGF of Z .

Conclusion: X = Y − µ
σ

has the standard normal distribution.
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Example

Let Z be a standard normal RV, and let Y = Z 2. What is the
distribution of Y ?

Solution:
We compute

mY (t) = E
[
etY ] = E

[
etZ 2

]
=
∫ ∞
−∞

etz2
f (z) dz where f is the standard normal PDF

=
∫ ∞
−∞

etz2 1√
2πσ2

e−
(z−µ)2

2σ2 dz where µ = 0, σ = 1

=
∫ ∞
−∞

etz2 1√
2π

e− z2
2 dz To integrate, use the trick:

The integral of a PDF is 1.
If we can rearrange this into something that looks like
(factor) · (normal PDF), then

∫
(factor)(PDF) = (factor).
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Solution: (continued)

∴ mY (t) =
∫ ∞
−∞

1√
2π

e
(
− z2

2 +tz2
)
dz .

We’d like −z2

2 + tz2 = z2

2σ2 for some σ. What does σ have to be?

− 1
2 + t = − 1

2σ2 =⇒ 1
2 − t = 1

2σ2

=⇒ 1− 2t = 1
σ2 =⇒ σ2 = 1

1− 2t .

∴ mY (t) =
∫ ∞
−∞

1√
2π

e−
z2

2σ2 dz where σ2 = 1
1− 2t .

∴
1
σ
mY (t) =

∫ ∞
−∞

1
σ
√
2π

e−
z2

2σ2︸ ︷︷ ︸
normal PDF

dz = 1.

Thus mY (t) = σ = 1
(1− 2t)1/2

. This is the MGF for a Gamma RV with

α = 1
2 and β = 2. The same is a MGF of a χ2[1] RV.
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Solution: (continued)

Conclusion: The distribution of Y = Z 2 is Γ
(
1
2 , 2
)

which is the same as

χ2[1].

Problem:
In the above setting, find E [Z 4].

Solution:
We have just shown that if Z is standard normal, then Z 2 is χ2[1].
∴ E [Z 4] = E [(Z 2)2] = V [Z 2] + E [Z 2]2 using V [X ] = E [X 2]− E [X ]2.
Now let X = Z 2. Then

V [Z 2] = αβ2, E [Z 2] = αβ, where α = 1
2 , β = 2.

∴ E [Z 4] = E [(Z 2)2] = αβ2 + (αβ)2 = 1
22

2 +
(
1
22
)2

= 3 .
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Example

Suppose X ,Y are RVs with X ∼ Γ(α1, β) and Y ∼ Γ(α2, β), and X ,Y
are independent. Let U = X + Y . What is the distribution of U?

Solution:
Note that

mU(t) = E [etU ] = E [et(X+Y )] = E [etXetY ]
= E [etX ]E [etY ] (by independence) = mX (t)MY (t)

= 1
(1− βt)α1

· 1
(1− βt)α2

= 1
(1− βt)α1+α2

.

This is the MGF of a Γ(α1 + α2, β) RV. So if X ∼ Γ(α1, β) and
Y ∼ Γ(α2, β) are independent, then U = X + Y ∼ Γ(α1 + α2, β).
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Solution:
Note that

mU(t) = E [etU ] = E [et(X+Y )] = E [etXetY ]

= E [etX ]E [etY ] (by independence) = mX (t)MY (t)

= 1
(1− βt)α1

· 1
(1− βt)α2

= 1
(1− βt)α1+α2

.

This is the MGF of a Γ(α1 + α2, β) RV. So if X ∼ Γ(α1, β) and
Y ∼ Γ(α2, β) are independent, then U = X + Y ∼ Γ(α1 + α2, β).
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Theorem (6.3)
Let Y1, . . . ,Yn be independent normally distributed random variables
with E [Yi ] = µi and V [Yi ] = σ2

i , for i = 1, . . . , n, and let a1, . . . , an be
constants. If

U =
n∑

i=1
aiYi ,

then U is a normally distributed random variable with

E [U] =
n∑

i=1
aiµi and V [U] =

n∑
i=1

a2
i σ

2
i .
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Sketch of Proof:
The normally distributed RV Yi has the MGF

mYi (t) = e

(
µi t + σ2

i t2

2

)
for each i = 1, . . . , n.

So the RV aiYi has the MGF . (Find it!)
Now use the independence of Yi (thus that of aiYi) to find

mU(t) =
n∏

i=1
mai Yi (t) = e

(
t

n∑
i=1

aiµi + t2

2

n∑
i=1

a2
i σ

2
i

)
. (Verify!)

By uniqueness of MGF, U is a normally distributed random variable with

E [U] =
n∑

i=1
aiµi and V [U] =

n∑
i=1

a2
i σ

2
i .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 321 / 381



Sketch of Proof:
The normally distributed RV Yi has the MGF

mYi (t) = e

(
µi t + σ2

i t2

2

)
for each i = 1, . . . , n. So the RV aiYi has the MGF . (Find it!)

Now use the independence of Yi (thus that of aiYi) to find

mU(t) =
n∏

i=1
mai Yi (t) = e

(
t

n∑
i=1

aiµi + t2

2

n∑
i=1

a2
i σ

2
i

)
. (Verify!)

By uniqueness of MGF, U is a normally distributed random variable with

E [U] =
n∑

i=1
aiµi and V [U] =

n∑
i=1

a2
i σ

2
i .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 321 / 381



Sketch of Proof:
The normally distributed RV Yi has the MGF

mYi (t) = e

(
µi t + σ2

i t2

2

)
for each i = 1, . . . , n. So the RV aiYi has the MGF . (Find it!)
Now use the independence of Yi (thus that of aiYi) to find

mU(t) =
n∏

i=1
mai Yi (t)

= e

(
t

n∑
i=1

aiµi + t2

2

n∑
i=1

a2
i σ

2
i

)
. (Verify!)

By uniqueness of MGF, U is a normally distributed random variable with

E [U] =
n∑

i=1
aiµi and V [U] =

n∑
i=1

a2
i σ

2
i .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 321 / 381



Sketch of Proof:
The normally distributed RV Yi has the MGF

mYi (t) = e

(
µi t + σ2

i t2

2

)
for each i = 1, . . . , n. So the RV aiYi has the MGF . (Find it!)
Now use the independence of Yi (thus that of aiYi) to find

mU(t) =
n∏

i=1
mai Yi (t) = e

(
t

n∑
i=1

aiµi + t2

2

n∑
i=1

a2
i σ

2
i

)
. (Verify!)

By uniqueness of MGF, U is a normally distributed random variable with

E [U] =
n∑

i=1
aiµi and V [U] =

n∑
i=1

a2
i σ

2
i .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 321 / 381



Sketch of Proof:
The normally distributed RV Yi has the MGF

mYi (t) = e

(
µi t + σ2

i t2

2

)
for each i = 1, . . . , n. So the RV aiYi has the MGF . (Find it!)
Now use the independence of Yi (thus that of aiYi) to find

mU(t) =
n∏

i=1
mai Yi (t) = e

(
t

n∑
i=1

aiµi + t2

2

n∑
i=1

a2
i σ

2
i

)
. (Verify!)

By uniqueness of MGF, U is a normally distributed random variable with

E [U] =
n∑

i=1
aiµi and V [U] =

n∑
i=1

a2
i σ

2
i .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 321 / 381



Theorem (6.4)
If Z1, . . . ,Zn are independent standard normal RVs, then
U = Z 2

1 + · · ·+ Z 2
n has the distribution χ2[n]. (Same as Γ

(n
2 , 2
)
.)

Proof:
We use the method of MGFs.

Claim: mU(t) = 1
(1− 2t)n/2

, the MGF of Γ
(n
2 , 2
)
.

mU(t) = E [etU ] = E [et(Z 2
1 +···+Z 2

n )]
= E [etZ 2

1 . . . etZ 2
n ]

= E [etZ 2
1 ] . . .E [etZ 2

n ] (by independence)

= 1
(1− 2t)1/2

· · · · · 1
(1− 2t)1/2︸ ︷︷ ︸

n times

(as each Z 2
i has the

χ2[1] distribution)

= 1
(1− 2t)n/2

.
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Multivariate Transformations using Jacobians

Let’s consider the case of two random variables first.
The Bivariate Transform Method
Suppose that Y1 and Y2 are continuous random variables with joint
density function fY1,Y2 (y1, y2) and that for all (y1, y2), such that
fY1,Y2 (y1, y2) > 0,

u1 = h1(y1, y2) and u2 = h2(y1, y2)
is a one-to-one transformation from (y1, y2) to (u1, u2) with inverse

y1 = h−1
1 (u1, u2) and y2 = h−1

2 (u1, u2).
If h−1

1 (u1, u2) and h−1
2 (u1, u2) have continuous partial derivatives with

respect to u1 and u2 and the Jacobian

J = det
[
∂h−1

1 /∂u1 ∂h−1
1 /∂u2

∂h−1
2 /∂u1 ∂h−1

2 /∂u2

]
= ∂h−1

1
∂u1

∂h−1
2

∂u2
− ∂h−1

2
∂u1

∂h−1
1

∂u2
6= 0,

then the joint density of U1 and U2 is
fU1,U2 (u1, u2) = fY1,Y2

(
h−1

1 (u1, u2), h−1
2 (u1, u2)

)
|J |,

where |J | is the absolute value of J .
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The transformation follows from calculus results used for change of
variables in multiple integration.

The absolute value of the Jacobian, |J |,
in the multivariate transformation is analogous to the quantity

∣∣∣ dh−1(u)
du

∣∣∣
that is used when making the one-variable transformation U = h(Y ).

Caution:
Be sure that the bivariate transformation u1 = h1(y1, y2), u2 = h2(y1, y2)
is a one-to-one transformation for all (y1, y2) such that fY1,Y2 (y1, y2) > 0.
If not, then the resulting “density” function will not have the necessary
properties of a valid density function.

Let’s use this method for the following example:

Example 6.13
Let Y1 and Y2 be independent standard normal random variables. If
U1 = Y1 + Y2 and U2 = Y1 − Y2, then what is the joint density of U1
and U2?
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Solution:

The density functions for Y1 and Y2 are

f1(y1) = e− 1
2 y2

1
√
2π

, f2(y2) = e− 1
2 y2

2
√
2π

,
−∞ < y1 <∞,
−∞ < y2 <∞,

and the independence of Y1 and Y2 implies that their joint density is

fY1,Y2 (y1, y2) = 1
2π e

− 1
2 (y2

1 +y2
2 ),

−∞ < y1 <∞,
−∞ < y2 <∞.

In this case fY1,Y2 (y1, y2) > 0 for all −∞ < y1 <∞ and −∞ < y2 <∞.
We are interested in the transformation

u1 = y1 + y2 = h1(y1, y2) and u2 = y1 − y2 = h2(y1, y2),
with the inverse transformation

y1 = u1 + u2
2 = h−1

1 (u1, u2) and y2 = u1 − u2
2 h−1

2 (u1, u2).

Because ∂h
−1
1

∂u1
= 1

2 ,
∂h−1

1
∂u2

= 1
2 ,

∂h−1
2

∂u1
= 1

2 , and
∂h−1

2
∂u2

= −1
2 , the

Jacobian of this transformation is
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Solution: (continued)

J = det
[

1/2 1/2
1/2 −1/2

]

=
(
1
2

)(
−1
2

)
−
(
1
2

)(
1
2

)
= −1

2 6= 0,

and the joint density of U1 and U2 is

fU1,U2 (u1, u2) = 1
2π e

− 1
2

[
( u1+u2

2 )2+( u1−u2
2 )2] ∣∣∣∣−1

2

∣∣∣∣ , −∞ < u1+u2
2 <∞,

−∞ < u1−u2
2 <∞.

A little algebra manipulation yields

fU1,U2 (u1, u2) = e
− 1

2

(
u2
1
2

)
√
2
√
2π

e
− 1

2

(
u2
2
2

)
√
2
√
2π

,
−∞ < u1 <∞,
−∞ < u2 <∞.

Notice that U1 and U2 are independent and normally distributed, both
with mean 0 and variance 2. The extra information provided by the joint
distribution of U1 and U2 is that the two variables are independent!
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with mean 0 and variance 2. The extra information provided by the joint
distribution of U1 and U2 is that the two variables are independent!
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The k-variate Transformation

If Y1, . . . ,Yk are jointly continuous random variables and
U1 = h1(Y1, . . . ,Yk), . . . ,Uk = hk(Y1, . . . ,Yk),

where the transformation
u1 = h1(y1, . . . , yk), . . . , uk = hk(y1, . . . , yk)

is a one-to-one transformation from (y1, . . . , yk) to (u1, . . . , uk), which
has the inverse transformations

y1 = h−1
1 (u1, . . . , uk), . . . , yk = h−1

k (u1, . . . , uk),
such that h−1

1 (u1, . . . , uk), . . . , h−1
k (u1, . . . , uk) have continuous partial

derivatives with respect to u1, . . . , uk , and the Jacobian

J = det

∂h−1
1 /∂u1 · · · ∂h−1

1 /∂uk

... . . . ...
∂h−1

k /∂u1 · · · ∂h−1
k /∂uk

 6= 0,

then there is a result analogous to the bivariate case that can be used to
find the joint density of U1, . . . ,Uk .
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Why does this matter for statistics?

If Y1, . . . ,Yn are independent normal RVs with means µi and variances
σ2

i , we can write Zi = Yi − µi
σi

and compute

Z 2
1 + · · ·+ Z 2

n (a sum of squared normalized “errors”).
We know the distribution of this quantity.
So we can do hypothesis testing by computing this quantity, and seeing
how the results compare to the predicted distribution.

“Order Statistics”
Suppose we have Y1, . . . ,Yn independent and identically distributed (IID)
RVs. We could write Y(1) for the smallest, Y(n) for the largest; so

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n);
where Y(1) = min{Y1, . . . ,Yn}, Y(n) = max{Y1, . . . ,Yn}.
What is the distribution of Y(1), . . . ,Y(n)? The answer is given by
Theorem 6.5:
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Definition
A statistic is a function of the observable random variables in a sample
and known constants.

Theorem (6.5)
Let Y1, . . . ,Yn be independent identically distributed continuous random
variables with common distribution function F (y) and common density
function f (y). If Y(k) denotes the k th-order statistic, then the density
function of Y(k) is given by

g(k)(yk) = n!
(k − 1)!(n − k)! [F (yk)]k−1[1− F (yk)]n−k f (y).

If j and k are two integers such that 1 ≤ j < k ≤ n, the joint density of
Y(j) and Y(k), for yj < yk , is given by

g(j)(k)(yj , yk) = n!
(j − 1)!(k − 1− j)!(n − k)! [F (yj)]j−1

× [F (yk)− F (yj)]k−1−j × [1− F (yk)]n−k f (yj)f (yk).

We will look at the simplest cases Y(n) and Y(1).
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Proof:

Assume that the distribution of each Yi is known, with CDF F (y) and
PDF f (y). What is the distribution of Y(n)?

distribution of Y(n) = G(n)(y) := P(Y(n) ≤ y).
Write g(n)(y) for the PDF of Y(n). Then

G(n)(y) = P(Y(n) ≤ y) = P(max{Y1, . . . ,Yn} ≤ y)
= P(Y1 ≤ y and . . . and Yn ≤ y)
= P(Y1 ≤ y) · · · · · P(Yn ≤ y) (by independence)
= F (y) · · · · · F (y)︸ ︷︷ ︸

n times

= (F (y))n
.

So G(n)(y) = (F (y))n. It follows that
g(n)(y) = G ′(n)(y) = n (F (y))n−1 f (y).

What about the CDF and PDF for Y(1) = min{Y1, . . . ,Yn}? Work it out
in a similar manner as above to discover

G(1)(y) = 1− (1− F (y))n
, and g(1)(y) = n (1− F (y))n−1 f (y).
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Exercise: (steps to find distributions of the minimum)

Let Y1, . . . ,Yn be independent identically distributed continuous random
variables with common distribution function F (y) and common density
function f (y). Let Ym = min{Y1, . . . ,Yn}.

(1) In terms of the distribution function F , what is P(Y1 > y)?
(2) In terms of the distribution function F , what is P(Ym > y)?
(3) In terms of the distribution function F , what is P(Ym ≤ y)?
(4) Find the probability density function fm of Ym in terms of F and f .
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Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .
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= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)

= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸
n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y)

= 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .

(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y)

= d
dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y))

= n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Solutions:

(1) P(Y1 > y) = 1− P(Y1 ≤ y) = 1− F (y) .
(2)

Ym > y ⇐⇒ Y1 > y and . . . and Yn > y .
Therefore
P(Ym > y) = P(Y1 > y and . . . and Yn > y)

= P(Y1 > y) · · · · · P(Yn > y) (by independence)
= (1− F (y)) · · · · · (1− F (y))︸ ︷︷ ︸

n times

= (1− F (y))n
.

(3) P(Ym ≤ y) = 1− P(Ym > y) = 1− (1− F (y))n .
(4)

fm(y) = d
dy Fm(y) = d

dy
[
1− (1− F (y))n]

= −n[1− F (y)]n−1 d
dy (−F (y)) = n (1− F (y))n−1 f (y) .

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 332 / 381



Exercise 6.6:

The joint distribution of amount of pollutant emitted from a smokestack
without a cleaning device (Y1) and a similar smokestack with a cleaning
device (Y2) is

f (y1, y2) =
{
1 0 ≤ y1 ≤ 2, 0 ≤ y ≤ 1 and 2y2 ≤ y1,
0 elsewhere.

The reduction in amount of pollutant due to the cleaning device is given
by U = Y1 − Y2. Find the probability density function for U.

Solution:

Note that the region where the PDF
f (y1, y2) 6= 0 is as shown along:
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Solution: (continued)
Now we find the PDF for U = Y1 − Y2.

FU(u) = P(U ≤ u) = P(Y1 − Y2 ≤ u) = P(Y2 ≥ Y1 − u).

If 0 ≤ u ≤ 1, the region looks like this:
How does the picture change depending on
the value of u?

This picture shows that u = 1 is the
“transition”.
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Solution: (continued)

If 1 ≤ u ≤ 2, this is how the region looks:

The area of the region is 1 minus the area of
the small triangle.
The area of the shaded region, as a function
of u, is the PDF of U.

Example 6.4
Let Y have probability density function given by

fY (y) =
{ y+1

2 −1 ≤ y ≤ 1,
0 otherwise.

Find the density function for U = Y 2.

Answer: fU(u) =
{ 1

2
√

u 0 < u ≤ 1,
0 elsewhere.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 335 / 381



Solution: (continued)

If 1 ≤ u ≤ 2, this is how the region looks:

The area of the region is 1 minus the area of
the small triangle.
The area of the shaded region, as a function
of u, is the PDF of U.

Example 6.4
Let Y have probability density function given by

fY (y) =
{ y+1

2 −1 ≤ y ≤ 1,
0 otherwise.

Find the density function for U = Y 2.

Answer: fU(u) =
{ 1

2
√

u 0 < u ≤ 1,
0 elsewhere.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 335 / 381



Solution: (continued)

If 1 ≤ u ≤ 2, this is how the region looks:
The area of the region is 1 minus the area of
the small triangle.

The area of the shaded region, as a function
of u, is the PDF of U.

Example 6.4
Let Y have probability density function given by

fY (y) =
{ y+1

2 −1 ≤ y ≤ 1,
0 otherwise.

Find the density function for U = Y 2.

Answer: fU(u) =
{ 1

2
√

u 0 < u ≤ 1,
0 elsewhere.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 335 / 381



Solution: (continued)

If 1 ≤ u ≤ 2, this is how the region looks:
The area of the region is 1 minus the area of
the small triangle.
The area of the shaded region, as a function
of u, is the PDF of U.

Example 6.4
Let Y have probability density function given by

fY (y) =
{ y+1

2 −1 ≤ y ≤ 1,
0 otherwise.

Find the density function for U = Y 2.

Answer: fU(u) =
{ 1

2
√

u 0 < u ≤ 1,
0 elsewhere.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 335 / 381



Solution: (continued)

If 1 ≤ u ≤ 2, this is how the region looks:
The area of the region is 1 minus the area of
the small triangle.
The area of the shaded region, as a function
of u, is the PDF of U.

Example 6.4
Let Y have probability density function given by

fY (y) =
{ y+1

2 −1 ≤ y ≤ 1,
0 otherwise.

Find the density function for U = Y 2.

Answer: fU(u) =
{ 1

2
√

u 0 < u ≤ 1,
0 elsewhere.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 335 / 381



Solution: (continued)

If 1 ≤ u ≤ 2, this is how the region looks:
The area of the region is 1 minus the area of
the small triangle.
The area of the shaded region, as a function
of u, is the PDF of U.

Example 6.4
Let Y have probability density function given by

fY (y) =
{ y+1

2 −1 ≤ y ≤ 1,
0 otherwise.

Find the density function for U = Y 2.

Answer: fU(u) =
{ 1

2
√

u 0 < u ≤ 1,
0 elsewhere.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 335 / 381



End of Chapter 6
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Chapter 7

Sampling Distributions and the
Central Limit Theorem
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Sampling Distributions related to the Normal Distribution

Theorem (7.1)
Let Y1, . . . ,Yn be a random sample of size n from a normal distribution
with mean µ and variance σ2. Then

Y = 1
n

n∑
i=1

Yi

is normally distributed with mean µY = µ and variance σ2
Y = σ2/n.

Proof:
Because Y1, . . . ,Yn is a random sample from a normal distribution with
mean µ and variance σ2, Yi , i = 1, . . . , n, are independent, normally
distributed variables, with E (Yi ) = µ and V (Yi ) = σ2. Further,

Y = 1
n

n∑
i=1

Yi = Y1
n + · · ·+ Yn

n = a1Y1 + · · ·+ anYn,

where ai = 1/n, i = 1, . . . , n. Thus, Y is a linear combination of
Y1, . . . ,Yn.
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Proof: (continued)
By Theorem 6.3, we conclude that Y is normally distributed with

E [Y ] = E
[
Y1
n + · · ·+ Yn

n

]

= µ

n + · · ·+ µ

n︸ ︷︷ ︸
n times

= µ,

and

V [Y ] = V
[
Y1
n + · · ·+ Yn

n

]
= σ2

n2 + · · ·+ σ2

n2︸ ︷︷ ︸
n times

= σ2

n .

Remark:
Under the conditions of Theorem 7.1, Y is normally distributed with
mean µY = µ and variance σ2

Y = σ2/n. It follows that

Z =
Y − µY
σY

= Y − µ
σ/
√

n

has the standard normal distribution.
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Remarks:
Notice that the variance of each of the random variables Y1, . . . ,Yn
is σ2 and that of the sampling distribution of the random variable Y
is σ2/n.

With Y as in Theorem 7.1, it follows that

Z =
Y − µY
σY

= Y − µ
σ/
√

n
=
√
n
(
Y − µ
σ

)
has a standard normal distribution.

Example 7.2:
A bottling machine can be regulated so that it discharges an average of µ
ounces per bottle. It has been observed that the amount of fill dispensed
by the machine is normally distributed with σ = 1.0 ounce. A sample of
n = 9 filled bottles is randomly selected from the output of the machine
on a given day (all bottled with the same machine setting), and the
ounces of fill are measured for each. Find the probability that the sample
mean will be within .3 ounce of the true mean µ for the chosen machine
setting.
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Solution:

If Y1, . . . ,Y9 denote the ounces of fill to be observed, then we know that
the Yis are normally distributed with mean µ and variance σ2 = 1 for
i = 1, . . . , 9. Therefore, by Theorem 7.1, Y possesses a normal sampling
distribution with mean µY = µ and variance σ2

Y = σ/
√

n = 1/9.
We want to find

P(|Y − µ| ≤ 0.3) = P(−0.3 ≤ Y − µ ≤ 0.3)

= P
(
− 0.3
σ/
√

n
≤ Y − µ

σ/
√

n
≤ 0.3

σ/
√

n

)
.

Because
Y − µY
σY

= Y − µ
σ/
√

n
has a standard normal distribution, it follows

that

P(|Y − µ| ≤ 0.3) = P
(
− 0.3

1/
√

9
≤ Z ≤ 0.3

1/
√

9

)
= P(−0.9 ≤ Z ≤ 0.9).

Using Table 4, Appendix 3, we find
P(−0.9 ≤ Z ≤ 0.9) = 1− 2P(Z > 0.9) = 1− 2(0.1841) = 0.6318.

Thus, the probability is only .6318 that the sample mean will be within .3
ounce of the true population mean.
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Example 7.3:
Refer to Example 7.2. How many observations should be included in the
sample if we wish Y to be within .3 ounce of µ with probability .95?

Solution:
Now we want

P(|Y − µ| ≤ 0.3) = P(−0.3 ≤ Y − µ ≤ 0.3) = 0.95.
Divide each term of the inequality by σY = σ/

√
n to get

P
(
− 0.3
σ/
√

n
≤ Y − µ

σ/
√

n
≤ 0.3

σ/
√

n

)
= P(−0.3

√
n ≤ Z ≤ 0.3

√
n) = 0.95.

(Recall that σ = 1). But using Table 4, Appendix 3, we obtain
P(−1.96 ≤ Z ≤ 1.96) = 0.95. It must follow that

0.3
√
n = 1.96 =⇒ n =

(
1.96
0.3

)2
≈ 42.68.

Practically, it is impossible to take a sample of size 42.68. Our solution
indicates that a sample of size 42 is not quite large enough to reach our
objective. If n = 43, P(|Y − µ| ≤ 0.3) slightly exceeds 0.95.
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0.3

)2
≈ 42.68.

Practically, it is impossible to take a sample of size 42.68. Our solution
indicates that a sample of size 42 is not quite large enough to reach our
objective. If n = 43, P(|Y − µ| ≤ 0.3) slightly exceeds 0.95.
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Theorem (7.2)

Let Y1, . . . ,Yn be as in Theorem 7.1. Then Zi = Yi − µ
σ

are independent
standard normal random variables, i = 1, . . . , n, and

n∑
i=1

Z 2
i =

n∑
i=1

(
Yi − µ
σ

)2

has a χ2 distribution with n degrees of freedom.

Proof.
Because Y1, . . . ,Yn is a random sample from a normal distribution with
mean µ and variance σ2, Zi = Yi − µ

σ
has a standard normal distribution

for i = 1, . . . , n. Further, the random variables Zi are independent as the
random variables Yi are independent, i = 1, . . . , n. It follows directly

from Theorem 6.4 that
n∑

i=1
Z 2

i has the distribution χ2[n].

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 343 / 381



Theorem (7.2)

Let Y1, . . . ,Yn be as in Theorem 7.1. Then Zi = Yi − µ
σ

are independent
standard normal random variables, i = 1, . . . , n, and

n∑
i=1

Z 2
i =

n∑
i=1

(
Yi − µ
σ

)2

has a χ2 distribution with n degrees of freedom.

Proof.

Because Y1, . . . ,Yn is a random sample from a normal distribution with
mean µ and variance σ2, Zi = Yi − µ

σ
has a standard normal distribution

for i = 1, . . . , n. Further, the random variables Zi are independent as the
random variables Yi are independent, i = 1, . . . , n. It follows directly

from Theorem 6.4 that
n∑

i=1
Z 2

i has the distribution χ2[n].

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 343 / 381



Theorem (7.2)

Let Y1, . . . ,Yn be as in Theorem 7.1. Then Zi = Yi − µ
σ

are independent
standard normal random variables, i = 1, . . . , n, and

n∑
i=1

Z 2
i =

n∑
i=1

(
Yi − µ
σ

)2

has a χ2 distribution with n degrees of freedom.

Proof.
Because Y1, . . . ,Yn is a random sample from a normal distribution with
mean µ and variance σ2, Zi = Yi − µ

σ
has a standard normal distribution

for i = 1, . . . , n.

Further, the random variables Zi are independent as the
random variables Yi are independent, i = 1, . . . , n. It follows directly

from Theorem 6.4 that
n∑

i=1
Z 2

i has the distribution χ2[n].

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 343 / 381



Theorem (7.2)

Let Y1, . . . ,Yn be as in Theorem 7.1. Then Zi = Yi − µ
σ

are independent
standard normal random variables, i = 1, . . . , n, and

n∑
i=1

Z 2
i =

n∑
i=1

(
Yi − µ
σ

)2

has a χ2 distribution with n degrees of freedom.

Proof.
Because Y1, . . . ,Yn is a random sample from a normal distribution with
mean µ and variance σ2, Zi = Yi − µ

σ
has a standard normal distribution

for i = 1, . . . , n. Further, the random variables Zi are independent as the
random variables Yi are independent, i = 1, . . . , n.

It follows directly

from Theorem 6.4 that
n∑

i=1
Z 2

i has the distribution χ2[n].

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 343 / 381



Theorem (7.2)

Let Y1, . . . ,Yn be as in Theorem 7.1. Then Zi = Yi − µ
σ

are independent
standard normal random variables, i = 1, . . . , n, and

n∑
i=1

Z 2
i =

n∑
i=1

(
Yi − µ
σ

)2

has a χ2 distribution with n degrees of freedom.

Proof.
Because Y1, . . . ,Yn is a random sample from a normal distribution with
mean µ and variance σ2, Zi = Yi − µ

σ
has a standard normal distribution

for i = 1, . . . , n. Further, the random variables Zi are independent as the
random variables Yi are independent, i = 1, . . . , n. It follows directly

from Theorem 6.4 that
n∑

i=1
Z 2

i has the distribution χ2[n].

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 343 / 381



Remark:
From Table 6, Appendix 3, we can find values χ2

α so that
P(χ2 > χ2

α) = α, that is, P(χ2 ≤ χ2
α) = 1− α.

Thus χ2
α is the (1− α)

quantile of the χ2 RV.

The following example illustrates the combined use of Theorem 7.2 and
the χ2 tables.
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Example 7.4:
If Z1, . . . ,Z6 denotes a random sample from the standard normal
distribution, find a number b such that

P
( 6∑

i=1
Z 2

i ≤ b
)

= 0.95.

Solution:

By Theorem 7.2,
6∑

i=1
Z 2

i has the distribution χ2[6]. Looking at Table 6,

Appendix 3, in the row headed 6 df and the column headed χ2
.05, we see

the number 12.5916. Thus

P
( 6∑

i=1
Z 2

i > 12.5916
)

= 0.05 ⇐⇒ P
( 6∑

i=1
Z 2

i ≤ 12.5916
)

= 0.95,

and b = 12.5916 is the .95 quantile (95th percentile) of the sum of the
squares of six independent standard normal random variables.
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The χ2 distribution plays an important role in many inferential
procedures.

For example, suppose that we wish to make an inference
about the population variance σ2 based on a random sample Y1, . . . ,Yn
from a normal population. A good estimator of σ2 is the sample variance

S2 = 1
n − 1

n∑
i=1

(Yi − Y )2.

The following theorem gives the probability distribution for a function of
the statistic S2.

Theorem (7.3)
Let Y1, . . . ,Yn be a random sample from a normal distribution with
mean µ and variance σ2. Then

(n − 1)S2

σ2 = 1
σ2

n∑
i=1

(Yi − Y )2

has the distribution χ2[n − 1]. Also Y and S2 are independent random
variables.
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Proof:

For simplicity, we only consider the case n = 2, and show that (n − 1)S2

σ2
has the distribution χ2[1].

In case n = 2, Y = Y1 + Y2
2 , and, therefore,

S2 = 1
2− 1

2∑
i=1

(Yi − Y )2 =
[
Y1 −

Y1 + Y2
2

]2
+
[
Y2 −

Y1 + Y2
2

]2

=
[
Y1 − Y2

2

]2
+
[
Y2 − Y1

2

]2
= 2

[
Y1 − Y2

2

]2
= (Y1 − Y2)2

2 .

It follows that, when n = 2,
(n − 1)S2

σ2 = (Y1 − Y2)2

2σ2 =
(
Y1 − Y2√

2σ2

)2
.

We will show that this quantity is equal to the square of a standard
normal random variable; that is, it is a Z 2, which possesses the
distribution χ2[1].
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Proof: (continued)
Because Y1 − Y2 is a linear combination of independent, normally
distributed random variables (Y1 − Y2 = a1Y1 + a2Y2 with a1 = 1 and
a2 = −1),

Theorem 6.3 tells us that Y1 − Y2 has a normal distribution
with mean 1µ− 1µ = 0 and variance (1)2σ2 + (−1)2σ2 = 2σ2. Therefore,
Z = Y1 − Y2√

2σ2
has a standard normal distribution. Because for n = 2,

(n − 1)S2

σ2 =
(
Y1 − Y2√

2σ2

)2
= Z 2,

it follows that (n − 1)S2

σ2 has the distribution χ2[1].

In Example 6.13, we proved that U1 = Y1 + Y2
σ

and U2 = Y1 − Y2
σ

are
independent. Notice that, because n = 2,

Y = Y1 + Y2
2 = σU1

2 , S2 = (Y1 − Y2)2

2 = (σU2)2

2 .

Because Y is a function of only U1 and S2 is a function of only U2, the
independence of U1,U2 implies the independence of Y and S2.
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The t-Distribution

Definition (7.2)
Let Z be a standard normal random variable and let W be a
χ2[ν]-distributed variable. Then, if Z and W are independent,
T = Z√

W/ν
is said to have the t-distribution with ν degrees of freedom

(or parameter ν).

If Y1, . . . ,Yn constitute a random sample from a normal population with
mean µ and variance σ2, Theorem 7.1 may be applied to show that

Z =
√
n(Y − µ)
σ

has a standard normal distribution. Theorem 7.3 tells

us that W = (n − 1)S2

σ2 has a χ2 distribution with ν = n − 1 df and that
Z and W are independent (because Y and S2 are independent).
Therefore, by Definition 7.2,

T = Z√
W/ν

=
√
n ((Y − µ)/σ)√

((n − 1)S2/σ2)/(n − 1)
=
√
n
(
Y − µ

S

)
has a t-distribution with n − 1 df.
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Exercise 7.98 outlines a method to find the density function of a
t-distribution.

Exercise 7.98:
Suppose that T is defined as in Definition 7.2.
(a) If W is fixed at w , then T is given by Z/c, where c = w/ν. Use this

idea to find the conditional density of T for a fixed W = w .
(b) Find the joint density of T and W , f (t,w), by using

f (t,w) = f (t | w)f (w).
(c) Integrate over w to show that

f (t) =
Γ
(
ν+1

2
)

√
πνΓ

(
ν
2
) (1 + t2

ν

)− ν+1
2

, −∞ < t <∞.
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Table 5, Appendix 3 lists the values of tα such that P(T > tα).
In general, tα = φ1−α, the (1− α) quantile (the 100(1− α)th percentile)
of a t-distributed RV.
Example 7.6:
The tensile strength for a type of wire is normally distributed with
unknown mean µ and unknown variance σ2. Six pieces of wire were
randomly selected from a large roll; Yi , the tensile strength for portion i ,
is measured for i = 1, . . . , 6. The population mean µ and variance σ2 can
be estimated by Y and S2, respectively. Because σ2

Y = σ2/n, it follows
that σ2

Y can be estimated by σ2/n. Find the approximate probability that
Y will be within 2S/

√
n of the true population mean µ.
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Solution:

We want to find

P
(
− 2S√

n
≤ Y − µ ≤ 2S√

n

)
= P

(
−2 ≤

√
n
(
Y − µ

S

)
≤ 2
)

= P(−2 ≤ T ≤ 2),
where T has a t-distribution with, in this case, n − 1 = 5 df. Table 5,
Appendix 3 suggests that the upper-tail area to the right of 2.015 is 0.05.
Hence P(−2.015 ≤ T ≤ 2.015) = 0.9, and the probability that Y will be
within 2 estimated standard deviations of µ is slightly less than 0.9.

Remark:
If σ2 were known, the probability that Y will fll within 2σY of µ would be

P
(
− 2σ√

n
≤ Y − µ ≤ 2σ√

n

)
= P

(
−2 ≤

√
n
(
Y − µ
σ

)
≤ 2
)

= P(−2 ≤ Z ≤ 2) = 0.9544.
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The F -Distribution

Suppose that we want to compare the variances of two normal
populations based on information contained in independent random
samples from the two populations. Samples of sizes n1 and n2 are taken
from the two populations with variances σ2

1 and σ2
2 , respectively. From

the observations in the samples, we can estimate σ2
1 and σ2

2 from S2
1 and

S2
2 , respectively. Thus it seems intuitive that the ratio S2

1/S2
2 could be used

to make inferences about the relative magnitudes of σ2
1 and σ2

2 .

The ratio
S2

1/σ2
1

S2
2/σ2

2

= σ2
2
σ2

1

(
S2

1
S2

2

)
has the F -distribution with n1− 1 numerator

degrees of freedom and n2 − 1 denominator degrees of freedom.

Definition (7.3)
Let W1 and W2 be independent χ2-distributed random variables with ν1

and ν2 df, respectively. Then F =
W1/ν1

W2/ν2
is said to have an F -distribution

with ν1 numerator degrees of freedom and ν2 denominator degrees of
freedom.
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1 and σ2

2 from S2
1 and

S2
2 , respectively. Thus it seems intuitive that the ratio S2

1/S2
2 could be used

to make inferences about the relative magnitudes of σ2
1 and σ2

2 .

The ratio
S2

1/σ2
1

S2
2/σ2

2

= σ2
2
σ2

1

(
S2

1
S2

2

)
has the F -distribution with n1− 1 numerator

degrees of freedom and n2 − 1 denominator degrees of freedom.

Definition (7.3)
Let W1 and W2 be independent χ2-distributed random variables with ν1
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Exercise 7.99 outlines a method to find the probability distribution
function of an F -distribution.

Exercise 7.99:
Suppose F is defined as in Definition 7.3.
(a) If W2 is fixed at w2, then F = W1/c, where c = w2ν1/ν2. Find the

conditional density of F for fixed W2 = w2.
(b) Find the joint density of F and W2.
(c) Integrate over w2 to show that the probability density function of F

– say, g(y) – is given by

g(y) =
Γ
(
ν1+ν2

2
)

(ν1/ν2)
ν1/2

Γ (ν1/2) Γ (ν2/2) y
ν1
2 −1

(
1 + ν1y

ν2

)− ν1+ν2
2

, 0 < y <∞.
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Table 7, Appendix 3 lists values of Fα such that P(F > Fα).
In general, Fα = φ1−α, the (1− α) quantile (the 100(1− α)th percentile)
of an F -distributed RV.
Example 7.7:
If we take independent samples of size n1 = 6 and n2 = 10 from two
normal populations with equal population variances, find the number b
such that

P
(
S2

1
S2

2
≤ b

)
= 0.95.
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Solution:

Because n1 = 6 and n2 = 10, and the population variances are equal,
S2

1/σ2
1

S2
2/σ2

2

= S2
1

S2
2
has an F -distribution with ν1 = n1−1 = 5 numerator degrees

of freedom and ν2 = n2 − 1 = 9 denominator degrees of freedom. Also,

P
(
S2

1
S2

2
≤ b

)
= 1− P

(
S2

1
S2

2
> b

)
.

Therefore, we want to find the number b cutting off an upper-tail area of
0.05 under the F density function with 5 numerator degrees of freedom
and 9 denominator degrees of freedom. Looking in column 5 and row 9
in Table 7, Appendix 3, we see that the appropriate value of b is 3.48.

Remark:
Even when the population variances are equal, the probability that the
ratio of the sample variances exceeds 3.48 is still 0.05 (assuming sample
sizes of n1 = 6 and n2 = 10).
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The Central Limit Theorem

Heuristically, if you add up a lot of IID RVs and normalize appropriately,
the result is a standard normal RV. More specifically,

Theorem (7.4)
Let Y1, . . . ,Yn be independent and identically distributed random
variables with E [Yi ] = µ and V [Yi ] = σ2 <∞. Define

Un =
∑n

i=1 Yi − nµ
σ
√
n

= Y − µ
σ/
√

n
where Y = 1

n

n∑
i=1

Yi .

Then the distribution function of Un converges to the standard normal
distribution function as n→∞. That is,

lim
n→∞

P(Un ≤ u) =
∫ u

−∞

1√
2π

et2/2 dt for all u.

Note: The formula Un = Y − µ
σ/
√

n
, where Y = 1

n

n∑
i=1

Yi , guarantees that

E [Un] = 0.
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Exercises:

(1) Show that E [Un] = 0 using linearity of expectation and E [Yi ] = µ.
(2) Also show that V [Un] = 1 using independence, properties of

variance, and V [Yi ] = σ2.

So Un is “correctly normalized” to approach a standard normal RV, in
the sense of convergence in distribution.

Conclusion:
The distribution function of Un converges to the distribution function of
a standard normal RV. That is,

lim
n→∞

P(Un ≤ u) =
∫ u

−∞

1√
2π

et2/2 dt.

Note: This result is true for any distribution of the Y s that satisfies the
hypotheses V [Y ] = σ2 <∞, etc.
Remark: There are other senses of convergence, such as “weak
convergence”, “almost sure convergence”, etc.
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Conclusion:
The distribution function of Un converges to the distribution function of
a standard normal RV.

That is,

lim
n→∞

P(Un ≤ u) =
∫ u

−∞

1√
2π

et2/2 dt.

Note: This result is true for any distribution of the Y s that satisfies the
hypotheses V [Y ] = σ2 <∞, etc.
Remark: There are other senses of convergence, such as “weak
convergence”, “almost sure convergence”, etc.
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How do we apply this theorem in the context of Chapter 7?

The
problems will not specifically say “Apply the CLT”.

Exercise 7.43:
An anthropologist wishes to estimate the average height of men for a
certain race of people. If the population standard deviation is assumed to
be 2.5 inches and if she randomly samples 100 men, find the probability
that the difference between the sample mean and the true population
mean will not exceed .5 inch.

Interpretation:
Rule of thumb: For most distributions, we get good convergence of
Uns to normal after about n = 30. The exercise has 100 samples.
Since 100 > 30, it is OK to apply the CLT.
No specific distribution is mentioned. So if we don’t apply the CLT,
how can we do the problem?
We are given the population standard deviation, which we need to
apply the CLT for this exercise.
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Solution:

Let Y1, . . . ,Y100 be the heights, and let Y = 1
100

∑100
i=1 Yi be the sample

mean.

We are interested in P
(∣∣Y − µ∣∣ < 0.5

)
.

To solve, translate this into P (|U100| < something), and then use that
U100 is approximately standard normal (by CLT).

What is U100? U100 ≈
Y − µ
σ/
√

n
= Y − µ

(2.5)/
√

100
= Y − µ

0.25 . So
∣∣Y − µ∣∣ < 0.5

iff |U100| < 2.
Thus our question “What is P

(∣∣Y − µ∣∣ < 0.5
)
?” is the same as “What

is P (|U100| < 2)?”.
But U100 is approximately standard normal. Using the “95% rule”
approximation, the answer is P (|U100| < 2) = 1− 2(0.0228) ≈ 95.4%.
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Remark:

We said V [Yi ] = σ2 <∞ was a hypothesis of the CLT. The CLT is not
true for distributions without a variance. What kind of distribution
doesn’t have V [Y ] <∞?
There is one we will study in this chapter: The t-distribution with “1
degree of freedom” (or with parameter 1). This is also called the Cauchy
distribution, and it comes up in physics.

Definition (The t-distribution)
Let Z be a standard normal random variable and let W be a
χ2[ν]-distributed variable. Then, if Z and W are independent,
T = Z√

W/ν
is said to have the t-distribution with ν degrees of freedom

(or parameter ν).

Remark:
The t-distribution with larger ν does have a variance. ν = 1 is something
of an exceptional case.
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The t-distribution with ν = 1 has the PDF f (y) = 1
π

1
1 + y2 .

If we take
n IID samples Y1, . . . ,Yn from a t-distribution with ν = 1, then
Y = 1

n
∑n

i=1 Yi also has the t-distribution with ν = 1 for any n. So this
sum will never converge to a standard normal RV.
Recall that if Z1, . . . ,Zν are independent standard normal RVs, then
Z 2

1 + · · ·+ Z 2
ν has the χ2[ν] distribution. So think of T as the

observation Z divided by “observed normalized errors”. This comes up as
a “regression coefficient”.
The reason for defining T is that it is a “Sampling Distribution derived
from the normal distribution”.

Remark: (for those interested in finance)
The standard model for “log-returns” in risk management is the
t-distribution with ν = 5 (maybe 4 or 6).
Reason: “fatter tails”.
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Recall: The Central Limit Theorem

Theorem (7.4)
Let Y1, . . . ,Yn be independent and identically distributed random
variables with E [Yi ] = µ and V [Yi ] = σ2 <∞.

Define

Un =
∑n

i=1 Yi − nµ
σ
√
n

= Y − µ
σ/
√

n
where Y = 1

n

n∑
i=1

Yi .

Then the distribution function of Un converges to the standard normal
distribution function as n→∞. That is,

lim
n→∞

P(Un ≤ u) =
∫ u

−∞

1√
2π

et2/2 dt for all u.

Proof:
Start with some key ingredients:
(a) Theorem 7.5, which we use as a black box.
(b) Taylor’s theorem with remainder, which is another black box.
(c) Limit definition of the exponential function.
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Theorem (7.5)
Let Y and Y1,Y2, . . . be random variables with moment-generating
functions m(t) and m1(t),m2(t), . . . , respectively. If
limn→∞mn(t) = m(t) for all real t, then the distribution function of Yn
converges to the distribution function of Y as n→∞.

Theorem (Taylor’s theorem with remainder)

f (t) = f (0) + f ′(0) · t︸ ︷︷ ︸
linear approximation to f

+ f ′′(ξ)
2 · t2︸ ︷︷ ︸

error term

, where 0 < ξ < t.

We will bound the error term by knowing something about f ′′.

The Exponential Function:

Recall that lim
n→∞

(
1 + 1

n

)n
= e and lim

n→∞

(
1 + x

n

)n
= ex , and if

lim
n→∞

bn = b, then lim
n→∞

(
1 + bn

n

)n
= eb.
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Proof: (continued)
How does this apply to the CLT?

(a) shows that it is enough to show that mUn (t)→ mZ (t) = et2/2. We
know that Un = 1√

n
∑n

i=1 Zi , where Zi = Yi − µ
σ

. The Zi are
independent since Yi are. So

mUn (t) = mZ1

(
t√
n

)
· · · · ·mZn

(
t√
n

)
.

Also the Zi are identically distributed. So this means
mUn (t) =

[
mZ1

(
t√
n

)]n
. Now apply

(b) to mZ1 : mZ1 (t) = mZ1 (0) + m′Z1
(0)t + m′′Z1

(ξ) t
2

2 , 0 < ξ < t. But
we know that the derivatives of MGF are the moments: mZ1 (0) = 1,
m′Z1

(0) = E [Z1] = 0, m′′Z1
(0) = E [Z 2

1 ] = V [Z1] + E [Z1]2 = 1.

Recall that we “normalized” Z1 = Y1 − µ
σ

so that it has mean 0 and
variance 1.
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σ

. The Zi are
independent since Yi are. So

mUn (t) = mZ1

(
t√
n

)
· · · · ·mZn

(
t√
n

)
.

Also the Zi are identically distributed. So this means
mUn (t) =

[
mZ1

(
t√
n

)]n
. Now apply

(b) to mZ1 : mZ1 (t) = mZ1 (0) + m′Z1
(0)t + m′′Z1

(ξ) t
2

2 , 0 < ξ < t. But
we know that the derivatives of MGF are the moments: mZ1 (0) = 1,
m′Z1

(0) = E [Z1] = 0, m′′Z1
(0) = E [Z 2

1 ] = V [Z1] + E [Z1]2 = 1.

Recall that we “normalized” Z1 = Y1 − µ
σ

so that it has mean 0 and
variance 1.
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Proof: (continued)
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t√
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1 + m′′Z1

(ξn) (t/
√

n)2

2
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=
[
1 +

m′′Z1
(ξn) t2

2
n

]n

. Here 0 < ξn <
t√
n
.

Now lim
n→∞

mUn (t) = lim
n→∞

[
1 +

m′′Z1
(ξn) t2

2
n

]n

.

Since the MGF is continuous and 0 < ξn <
t√
n , we have ξn → 0 and

m′′Z1
(ξn)→ m′′Z1

(0) = 1. So

m′′Z1
(ξn) t

2

2 →
t2

2 .
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Proof: (continued)
Now use

(c) :

This tells us that lim
n→∞

mUn (t) = lim
n→∞

(
1 + bn

n

)n
, where

bn = m′′Z1
(ξn) t

2

2 , and lim
n→∞

bn = t2

2 .

So lim
n→∞

mUn (t) = eb = et2/2. This proves the Central Limit Theorem.

What do we need to know for solving CLT problems?
We need to know facts about MGF used in the proof. You should be
able to prove, for example, that maX (t) = mX (at).
Also using the facts about mean and variance used, you should be
able to show E [Zi ] = 0 and V [Zi ] = 1.
You should be able to produce a correct statement of the CLT. Most
importantly, using this, you should be able to do the problems of the
form “Apply the CLT”, even if the problem statements do not
explicitly mention the CLT.
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Application of the Central Limit Theorem

Exercise 7.45:
Workers employed in a large service industry have an average wage of
$7.00 per hour with a standard deviation of $0.50. The industry has 64
workers of a certain ethnic group. These workers have an average wage
of $6.90 per hour. Is it reasonable to assume that the wage rate of the
ethnic group is equivalent to that of a random sample of workers from
those employed in the service industry? [Hint: Calculate the probability
of obtaining a sample mean less than or equal to $6.90 per hour.]

Solution:
Let Y1, . . . ,Y64 be the pay rates of the workers in the ethnic group. We
are interested in the probability P

(
Y ≤ $6.90

)
, where Y = 1

64
∑64

i=1 Yi

is the average. We can apply the CLT because of the rule of thumb - “30
samples is good enough”, and 64 > 30.
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Solution: (continued)

Y ≤ 6.9 ⇐⇒ Y − 7 ≤ 6.9− 7 = −0.1.

But Un = Y − µ
σ/
√

n
. Here σ = 0.5 and √n =

√
64 = 8. So

Y − 7 ≤ −0.1 ⇐⇒ Y − 7
0.5/8

≤ −0.10.5/8
⇐⇒ U64 ≤ −

8
5 ⇐⇒ Un ≤ −1.6.

The approximation of the CLT is P(Un ≤ −1.6) ≈ P(Z ≤ −1.6). From
the table, P(Z ≤ −1.6) symmetry= P(Z ≥ 1.6) ≈ 0.0548 . That is, the
probability that we would observe such a wage variation by chance is
about 5.5% in this model.

Remark:
Is this sufficient to conclude that there is differential pay for this ethnic
group? Answer: The calculation above is not sufficient – You have to
believe that the model is valid. You must also show that the result is
sufficiently unlikely to make people believe that it is not pure chance.
How unlikely? This depends on context.
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group? Answer: The calculation above is not sufficient – You have to
believe that the model is valid. You must also show that the result is
sufficiently unlikely to make people believe that it is not pure chance.
How unlikely? This depends on context.
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Remark:

The most important part of the CLT to memorize is the formula

Un = Y − µ
σ/
√

n
, where Y = 1

n

n∑
i=1

Yi .

The problems are all of a form where you start from “Un is approximately
standard normal” (for large n) and derive some conclusion. (In the
example we just did, it was about P

(
Y ≤ 6.9

)
.)

You cannot do this without the formula for Un.
The formula Un is NOT arbitrary; it is the simplest thing it could possibly
be: we start with Y and normalize it to have mean 0 and variance 1.

Exercise 7.37(a):
Let Y1, . . . ,Y5 be a random sample of size 5 from a normal population
with mean 0 and variance 1 and let Y = 1

5
∑5

i=1 Yi . What is the
distribution of W =

∑5
i=1 Y 2

i ? Why?

Answer: Using MGFs, we can show that W ∼ χ2[5].
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Exercise 7.51:

Shear strength measurements for spot welds have been found to have
standard deviation 10 pounds per square inch (psi). How many test welds
should be sampled if we want the sample mean to be within 1 psi of the
true mean with probability approximately .99?

Solution:
The above exercise tells us that σ = 10, and that we want
P
(∣∣Y − µ∣∣ ≤ 1

)
≈ 0.99. We are asked to find a suitable n for this.

We can guess, since σ = 10, that the required n is large, so the CLT
applies. To use the CLT and normal tables, we need to translate the
probability requirement of the problem to something involving Un, and
then figure out what n we need.
Start with∣∣Y − µ∣∣ ≤ 1 ⇐⇒

∣∣∣∣Y − µσ/
√

n

∣∣∣∣ ≤ 1
σ/
√

n
=⇒

∣∣∣∣∣∣
(
Y − µ
10/
√

n

)
︸ ︷︷ ︸

∣∣∣∣∣∣ ≤ 1
10/
√

n
.

By CLT, the braced expression above is standard normal for large n.
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should be sampled if we want the sample mean to be within 1 psi of the
true mean with probability approximately .99?

Solution:
The above exercise tells us that σ = 10, and that we want
P
(∣∣Y − µ∣∣ ≤ 1

)
≈ 0.99. We are asked to find a suitable n for this.

We can guess, since σ = 10, that the required n is large, so the CLT
applies. To use the CLT and normal tables, we need to translate the
probability requirement of the problem to something involving Un, and
then figure out what n we need.
Start with∣∣Y − µ∣∣ ≤ 1
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∣∣∣∣Y − µσ/

√
n
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σ/
√
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Y − µ
10/
√

n
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∣∣∣∣∣∣ ≤ 1
10/
√

n
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Solution: (continued)

Now we need to find n such that P
(
|Z | ≤ 1

10/
√

n

)
= 0.99.

For which a is the shaded
area = 0.99?

By symmetry, this is the
same as:

For which a is the shaded
area = 0.005?

This we can look up! a ≈ 2.575 from the table. So we solve for n:
1

10/
√

n
≈ 2.575 =⇒

√
n

10 ≈ 2.575 =⇒
√
n ≈ 25.75

=⇒ n ≈ (25.75)2 ≈ 663.
Thus n = 663 is good enough.
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Remark:

The CLT only requires that the samples Y1, . . . ,Yn are IID and have
σ2 <∞.

Exercise 7.53 (b):
One-hour carbon monoxide concentrations in air samples from a large
city average 12 ppm (parts per million) with standard deviation 9 ppm.
Find the probability that the average concentration in 100 randomly
selected samples will exceed 14 ppm.

In such problems, CLT applies even though Y1, . . . ,Yn are NOT normally

distributed. What is normally distributed is Un = Y − µ
σ/
√

n
.
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The Normal Approximation to the Binomial Distribution

The central limit theorem also can be used to approximate probabilities
for some discrete random variables when the exact probabilities are
tedious to calculate. One useful example involves the binomial
distribution for large values of the number of trials n.
Suppose that Y has a binomial distribution with n trials and probability
of success on any one trial denoted by p. If we want to find P(Y ≤ b),
we can use the binomial probability function to compute P(Y = y) for
each nonnegative integer y ≤ b and then sum these probabilities. Tables
are available for some values of the sample size n, but direct calculation
is cumbersome for large values of n for which tables may be unavailable.
Alternatively, we can view Y , the number of successes in n trials, as a
sum of a sample consisting of 0s and 1s; that is,

Y =
n∑

i=1
Xi , where Xi =

{
1 if the i th trial is success,
0 otherwise.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 374 / 381



The Normal Approximation to the Binomial Distribution

The central limit theorem also can be used to approximate probabilities
for some discrete random variables when the exact probabilities are
tedious to calculate.

One useful example involves the binomial
distribution for large values of the number of trials n.
Suppose that Y has a binomial distribution with n trials and probability
of success on any one trial denoted by p. If we want to find P(Y ≤ b),
we can use the binomial probability function to compute P(Y = y) for
each nonnegative integer y ≤ b and then sum these probabilities. Tables
are available for some values of the sample size n, but direct calculation
is cumbersome for large values of n for which tables may be unavailable.
Alternatively, we can view Y , the number of successes in n trials, as a
sum of a sample consisting of 0s and 1s; that is,

Y =
n∑

i=1
Xi , where Xi =

{
1 if the i th trial is success,
0 otherwise.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 374 / 381



The Normal Approximation to the Binomial Distribution

The central limit theorem also can be used to approximate probabilities
for some discrete random variables when the exact probabilities are
tedious to calculate. One useful example involves the binomial
distribution for large values of the number of trials n.

Suppose that Y has a binomial distribution with n trials and probability
of success on any one trial denoted by p. If we want to find P(Y ≤ b),
we can use the binomial probability function to compute P(Y = y) for
each nonnegative integer y ≤ b and then sum these probabilities. Tables
are available for some values of the sample size n, but direct calculation
is cumbersome for large values of n for which tables may be unavailable.
Alternatively, we can view Y , the number of successes in n trials, as a
sum of a sample consisting of 0s and 1s; that is,

Y =
n∑

i=1
Xi , where Xi =

{
1 if the i th trial is success,
0 otherwise.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 374 / 381



The Normal Approximation to the Binomial Distribution

The central limit theorem also can be used to approximate probabilities
for some discrete random variables when the exact probabilities are
tedious to calculate. One useful example involves the binomial
distribution for large values of the number of trials n.
Suppose that Y has a binomial distribution with n trials and probability
of success on any one trial denoted by p.

If we want to find P(Y ≤ b),
we can use the binomial probability function to compute P(Y = y) for
each nonnegative integer y ≤ b and then sum these probabilities. Tables
are available for some values of the sample size n, but direct calculation
is cumbersome for large values of n for which tables may be unavailable.
Alternatively, we can view Y , the number of successes in n trials, as a
sum of a sample consisting of 0s and 1s; that is,

Y =
n∑

i=1
Xi , where Xi =

{
1 if the i th trial is success,
0 otherwise.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 374 / 381



The Normal Approximation to the Binomial Distribution

The central limit theorem also can be used to approximate probabilities
for some discrete random variables when the exact probabilities are
tedious to calculate. One useful example involves the binomial
distribution for large values of the number of trials n.
Suppose that Y has a binomial distribution with n trials and probability
of success on any one trial denoted by p. If we want to find P(Y ≤ b),
we can use the binomial probability function to compute P(Y = y) for
each nonnegative integer y ≤ b and then sum these probabilities.

Tables
are available for some values of the sample size n, but direct calculation
is cumbersome for large values of n for which tables may be unavailable.
Alternatively, we can view Y , the number of successes in n trials, as a
sum of a sample consisting of 0s and 1s; that is,

Y =
n∑

i=1
Xi , where Xi =

{
1 if the i th trial is success,
0 otherwise.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 374 / 381



The Normal Approximation to the Binomial Distribution

The central limit theorem also can be used to approximate probabilities
for some discrete random variables when the exact probabilities are
tedious to calculate. One useful example involves the binomial
distribution for large values of the number of trials n.
Suppose that Y has a binomial distribution with n trials and probability
of success on any one trial denoted by p. If we want to find P(Y ≤ b),
we can use the binomial probability function to compute P(Y = y) for
each nonnegative integer y ≤ b and then sum these probabilities. Tables
are available for some values of the sample size n, but direct calculation
is cumbersome for large values of n for which tables may be unavailable.

Alternatively, we can view Y , the number of successes in n trials, as a
sum of a sample consisting of 0s and 1s; that is,

Y =
n∑

i=1
Xi , where Xi =

{
1 if the i th trial is success,
0 otherwise.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 374 / 381



The Normal Approximation to the Binomial Distribution

The central limit theorem also can be used to approximate probabilities
for some discrete random variables when the exact probabilities are
tedious to calculate. One useful example involves the binomial
distribution for large values of the number of trials n.
Suppose that Y has a binomial distribution with n trials and probability
of success on any one trial denoted by p. If we want to find P(Y ≤ b),
we can use the binomial probability function to compute P(Y = y) for
each nonnegative integer y ≤ b and then sum these probabilities. Tables
are available for some values of the sample size n, but direct calculation
is cumbersome for large values of n for which tables may be unavailable.
Alternatively, we can view Y , the number of successes in n trials, as a
sum of a sample consisting of 0s and 1s;

that is,

Y =
n∑

i=1
Xi , where Xi =

{
1 if the i th trial is success,
0 otherwise.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 374 / 381



The Normal Approximation to the Binomial Distribution

The central limit theorem also can be used to approximate probabilities
for some discrete random variables when the exact probabilities are
tedious to calculate. One useful example involves the binomial
distribution for large values of the number of trials n.
Suppose that Y has a binomial distribution with n trials and probability
of success on any one trial denoted by p. If we want to find P(Y ≤ b),
we can use the binomial probability function to compute P(Y = y) for
each nonnegative integer y ≤ b and then sum these probabilities. Tables
are available for some values of the sample size n, but direct calculation
is cumbersome for large values of n for which tables may be unavailable.
Alternatively, we can view Y , the number of successes in n trials, as a
sum of a sample consisting of 0s and 1s; that is,

Y =
n∑

i=1
Xi , where Xi =

{
1 if the i th trial is success,
0 otherwise.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 374 / 381



The random variables Xi for i = 1, . . . , n are independent (because the
trials are independent), and it is easy to show that E [Xi ] = p and
V [Xi ] = p(1− p) fori = 1, . . . , n.

Consequently, when n is large, the
sample fraction of successes,

Y
n = 1

n

n∑
i=1

Xi = X ,

possesses an approximately normal sampling distribution with mean
µX = E [Xi ] = p and variance VX = V [Xi ]

n = p(1− p)
n .

Thus, Theorem 7.4 (the central limit theorem) helps us establish that if
Y ∼ Bin(n, p) and if n is large, then Y

n has approximately the same

distribution as U ∼ N
(
p, p(1− p)

n

)
. Equivalently, for large n, we can

think of Y as having approximately the same distribution as
W ∼ N (np, np(1− p)).
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The normal approximation to binomial probabilities works well even for
moderately large n as long as p is not close to zero or one.

A useful rule
of thumb is that the normal approximation to the binomial distribution is
appropriate when

0 < p − 3
√

p(1− p)
n and p + 3

√
p(1− p)

n < 1.
Equivalently, the normal approximation is adequate if

n > 9
(
max{p, 1− p}
min{p, 1− p}

)
.

For example, suppose that Y has a binomial distribution with n = 25 and
p = 0.4 (we will see this in the example that follows). We have

max{0.4, 1− 0.4} = 0.6, min{0.4, 1− 0.4} = 0.4

=⇒ 9
(
max{p, 1− p}
min{p, 1− p}

)
= 9

(
0.6
0.4

)
= 13.5.

Since n = 25 > 13.5, the normal approximation is indeed adequate.
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Here is a comparison of the distributions Y ∼ Bin(25, 0.4) (histogram in
blue) and the normal approximation W ∼ N (10, 6) (green):

Note that
µW = np = 25(0.4) = 10,

and
σ2

W = np(1− p) = 25(0.4)(0.6) = 6.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 377 / 381



Here is a comparison of the distributions Y ∼ Bin(25, 0.4) (histogram in
blue) and the normal approximation W ∼ N (10, 6) (green):

Note that
µW = np = 25(0.4) = 10,

and
σ2

W = np(1− p) = 25(0.4)(0.6) = 6.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 377 / 381



Here is a comparison of the distributions Y ∼ Bin(25, 0.4) (histogram in
blue) and the normal approximation W ∼ N (10, 6) (green):

Note that
µW = np = 25(0.4) = 10,

and
σ2

W = np(1− p) = 25(0.4)(0.6) = 6.

Math 447 - Probability Dikran Karagueuzian SUNY-Binghamton 377 / 381



Example 7.11
Suppose that Y ∼ Bin(25, 0.4). Find the exact probabilities that Y ≤ 8
and Y = 8 and compare these to the corresponding values found by
using the normal approximation.

Solution:

The exact probability
that Y ≤ 8 is the blue
(filled) area of the
histogram shown
along:
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Solution: (continued)
We look up Table 1, Appendix 3, to find P(Y ≤ 8) = 0.274.

The exact probability that
Y = 8 is the difference
between P(Y ≤ 8) and
P(Y ≤ 7). This is the blue
(filled) strip in the picture:

From the table, we find
P(Y = 8)

=P(Y ≤ 8)− P(Y ≤ 7)
=0.274− 0.154 = 0.120.

Now our normal approximation is W ∼ N (10, 6). Looking at the picture,
we need to find P(Y ≤ 8) ≈ P(W ≤ 8.5), and
P(Y = 8) ≈ P(7.5 ≤W ≤ 8.5); the half-integers accouting for the
(obvious) correction.
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Solution: (continued)

Thus
P(W ≤ 8.5)

=P
(
W − 10√

6
≤ 8.5− 10√

6

)
=P(Z ≤ −0.61) = 0.2709.
from Table 4, Appendix 3.

Likewise,
P(7.5 ≤W ≤ 8.5)

=P
(
7.5− 10√

6
≤ W − 10√

6
≤ 8.5− 10√

6

)
=P(−1.02 ≤ Z ≤ −0.61)
=0.2709− 0.1539 = 0.1170.

Note that the approximate values (0.2709 and 0.1170) are very close to
the actual values (0.274 and 0.120) calculated earlier.
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End of Chapter 7
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