
CHAPTER 7

Infinite continued fractions

From time immemorial, the infinite has stirred men’s emotions more than

any other question. Hardly any other idea has stimulated the mind so

fruitfully . . . In a certain sense, mathematical analysis is a symphony of

the infinite.

David Hilbert (1862-1943) “On the infinite” [20].

We dabbed a little into the theory of continued fractions (that is, fractions
that continue on and on and on . . .) way back in the exercises of Section 3.4. In
this chapter we concentrate on this fascinating subject. We start in Section 7.1 by
showing that such fractions occur very naturally in long division and we give their
basic definitions. In Section 7.2, we prove some pretty dramatic formulas (this is
one reason continued fractions are so fascinating, at least to me). For example,
we’ll show that 4/π and π can be written as the continued fractions:

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 +
. . .

, π = 3 +
12

6 +
32

6 +
52

6 +
72

6 +
. . .

.

The continued fraction on the left is due to Lord Brouncker (and is the first contin-
ued fraction ever recorded) and the one on the right is due to Euler. If you think
these π formulas are cool, we’ll derive the following formulas for e as well:

e = 2 +
2

2 +
3

3 +
4

4 +
5

5 +
. . .

= 1 +
1

0 +
1

1 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
.. .

.

We’ll prove the formula on the left in Section 7.2, but you’ll have to wait for
the formula on the right until Section 7.7. In Section 7.3, we discuss elementary
properties of continued fractions. In this section we also discuss how a Greek
mathematician, Diophantus of Alexandrea (≈ 200–284 A.D.), can help you if you’re
stranded on an island with guys you can’t trust and a monkey with a healthy
appetite! In Section 7.4 we study the convergence properties of continued fractions.
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352 7. INFINITE CONTINUED FRACTIONS

Recall from our discussion on the amazing number π and its computations from
ancient times (see Section 4.10) that throughout the years, the following approxi-
mation to π came up: 3, 22/7, 333/106, and 355/113. Did you ever wonder why
these particular numbers occur? Also, did you ever wonder why our calendar is
constructed the way it is (e.g. why leap years occur)? Finally, did you ever wonder
why a piano has twelve keys (within an octave)? In Sections 7.5 and 7.6 you’ll find
out that these mysteries have to do with continued fractions! In Section 7.8 we
study special types of continued fractions having to do with square roots and in
Section 7.9 we learn why Archimedes needed around 8× 10206544 cattle in order to
“have abundant of knowledge in this science [mathematics]”!

In the very last section of Book I, Section 7.10, we look at continued fractions
and transcendental numbers. We also ready ourselves for Book II, where we shall
learn the celebrated calculus. (Isn’t it amazing how much we’ve accomplished in
Book I, all without taking a single derivative or integral!)

Chapter 7 objectives: The student will be able to . . .

• define a continued fraction, state the Wallis-Euler and fundamental recurrence
relations, and apply the continued fraction convergence theorem (Theorem 7.14).

• compute the canonical continued fraction of a given real number.
• understand the relationship between convergents of a simple continued fraction

and best approximations, and the relationship between periodic simple contin-
ued fractions and quadratic irrationals.

• solve simple diophantine equations (of linear and Pell type).

7.1. Introduction to continued fractions

In this section we introduce the basics of continued fractions and see how they
arise out of high school division and also from solving equations.

7.1.1. Continued fractions arise when dividing. A common way contin-
ued fractions arise is through “repeated divisions”.

Example 7.1. Take for instance, high school division of 68 into 157: 157
68 =

2 + 21
68 . Inverting the fraction 21

68 , we can write 157
68 as

157

68
= 2 +

1
68

21

.

Since we can further divide 68
21 = 3+ 5

21 = 3+ 1
21/5 , we can write 157

68 in the somewhat

fancy way

157

68
= 2 +

1

3 +
1

21

5

.

Since 21
5 = 4 + 1

5 , we can write

(7.1)
157

68
= 2 +

1

3 +
1

4 +
1

5

.

Since 5 is now a whole number, our repeated division process stops.
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The expression on the right in (7.1) is called a finite simple continued frac-
tion. There are many ways to denote the right-hand side, but we shall stick with
the following two:

〈2; 3, 4, 5〉 or 2 +
1

3+

1

4+

1

5
represent 2 +

1

3 +
1

4 +
1

5

.

Thus, continued fractions (that is, fractions that “continue on”) arise naturally out
of writing rational numbers in a somewhat fancy way by repeated divisions. Of
course, 157 and 68 were not special, by repeated divisions one can take any two
integers a and b with a 6= 0 and write b/a as a finite simple continued fraction; see
Problem 2. In Section 7.4, we shall prove that any real number, not necessarily
rational, can be expressed as a simple (possibly infinite) continued fraction.

7.1.2. Continued fractions arise when solving equations. Continued
fractions also arise naturally when trying to solve equations.

Example 7.2. Suppose we want to find the positive solution x to the equation
x2 − x − 2 = 0. Notice that 2 is the only positive solution. On the other hand,
writing x2 − x− 2 = 0 as x2 = x + 2 and dividing by x, we get

x = 1 +
2

x
or, since x = 2, 2 = 1 +

2

x
.

We can replace x in the denominator with x = 1 + 2/x to get

2 = 1 +
2

1 +
2

x

.

Repeating this many times, we can write

2 = 1 +
2

1 +
2

1 +
2

1 +

. . .

1 +
2

x

.

Repeating this “to infinity”, we write

“ 2 = 1 +
2

1 +
2

1 +
2

1 +
2

1 +
. . .

. ”

Quite a remarkable formula for 2! Later, (see Problem 4 in Section 7.4) we
shall see that any whole number can be written in such a way. The reason for the
quotation marks is that we have not yet defined what the right-hand object means.
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We shall define what this means in a moment, but before doing so, here’s another
neat example:

Example 7.3. Consider the slightly modified formula x2 − x − 1 = 0. Then

Φ = 1+
√

5
2 , called the golden ratio, is the only positive solution. We can rewrite

Φ2−Φ− 1 = 0 as Φ = 1 + 1
Φ . Replacing Φ in the denominator with Φ = 1 + 1

Φ , we
get

Φ = 1 +
1

1 +
1

Φ

.

Repeating this substitution process “to infinity”, we can write

(7.2) “ Φ = 1 +
1

1 +
1

1 +
1

1 +
1

1 +
. . .

,”

quite a beautiful expression! As a side remark, there are many false rumors con-
cerning the golden ratio; see [114] for the rundown.

7.1.3. Basic definitions for continued fractions. In general, a fraction
written as

(7.3) a0 +
b1

a1 +
b2

a2 +
b3

a3 +

.. .

an−1 +
bn

an

where the ak’s and bk’s are real numbers. (Of course, we are implicitly assuming
that these fractions are all well-defined, e.g. no divisions by zero are allowed. Also,
when you simplify this big fraction by combining fractions, you need to go from the
bottom up.) Notice that if bm = 0 for some m, then

(7.4) a0 +
b1

a1 +
b2

a2 +
b3

a3 +

.. .

an−1 +
bn

an

= a0 +
b1

a1 +
b2

a2 +

.. .

am−2 +
bm−1

am−1

,

since the bm = 0 will zero out everything below it. The continued fraction is called
simple if all the bk’s are 1 and the ak’s are integers with ak positive for k ≥ 1.
Instead of writing the continued fraction as we did above, which takes up a lot of
space, we shall shorten it to:

a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn

an
.
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In the simple fraction case, we shorten the notation to

a0 +
1

a1 +

1

a2 +

1

a3 +
. . .

+

1

an
= 〈a0; a1, a2, a3, . . . , an〉.

If a0 = 0, some authors write 〈a1, a2, . . . , an〉 instead of 〈0; a1, . . . an〉.
We now discuss infinite continued fractions. Let {an}, n = 0, 1, 2, . . ., and {bn},

n = 1, 2, . . ., be sequences of real numbers and suppose that

cn := a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn

an

is defined for all n. We call cn the n-th convergent of the continued fraction. If
the limit, lim cn, exists, then we say that the infinite continued fraction

(7.5) a0 +
b1

a1 +
b2

a2 +
b3

a3 +
.. .

or a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

converges and we use either of these notations to denote the limiting value lim cn.
In the simple continued fraction case (all the bn’s are 1 and the an’s are integers
with an natural for n ≥ 1), in place of (7.5) we use the notation

〈a0; a1, a2, a3, . . .〉 := lim
n→∞

〈a0; a1, a2, a3, . . . , an〉,

provided that the right-hand side exists. In particular, in Section 7.4 we shall prove
that (7.2) does hold true:

2 = 1 +
2

1+

2

1+

2

1+
. . . .

In the case when there is some bm term that vanishes, then convergence of (7.5) is
easy because (see (7.4)) for n ≥ m, we have cn = cm−1. Hence, in this case

a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . . = a0 +

b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bm−1

am−1

converges automatically (such a continued fraction is said to terminate or be
finite). However, general convergence issues are not so straightforward. We shall
deal with the subtleties of convergence in Section 7.4.

Exercises 7.1.

1. Expand the following fractions into finite simple continued fractions:

(a)
7

11
, (b) − 11

7
, (c)

3

13
, (d)

13

3
, (e) − 42

31
.

2. Prove that a real number can be written as a finite simple continued fraction if and
only if it is rational. Suggestion: for the “if” statement, use the division algorithm
(see Theorem 2.15): For a, b ∈ Z with a > 0, we have b = qa + r where q, r ∈ Z with
0 ≤ r < a; if a, b are both nonnegative, then so is q.

3. Let ξ = a0 + b1
a1 +

b2
a2 +

b3
a3 +

. . .
+

bn
an

6= 0. Prove that

1

ξ
=

1

a0 +

b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn

an
.

In particular, if ξ = 〈a0; a1, . . . , an〉 6= 0, show that 1
ξ

= 〈0; a0, a1, a2, . . . , an〉.
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4. A useful technique to study continued fraction is the following artifice of writing a
continued fraction within a continued fraction. For a continued fraction ξ = a0 +
b1
a1 +

b2
a2 +

b3
a3 + . . . +

bn
an

, if m < n, prove that

ξ = a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bm

η
, where η =

bm+1

am+1 + . . . +
bn

an
.

7.2. F Some of the most beautiful formulæ in the world II

Hold on to your seats, for you’re about to be taken on another journey through
the beautiful world of mathematical formulas!

7.2.1. Transformation of continued fractions. It will often be convenient
to transform one continued fraction to another one. For example, let ρ1, ρ2, ρ3 be
nonzero real numbers and suppose that the finite fraction

ξ = a0 +
b1

a1 +
b2

a2 +
b3

a3

,

where the ak’s and bk’s are real numbers, is defined. Then multiplying the top and
bottom of the fraction by ρ1, we get

ξ = a0 +
ρ1b1

ρ1a1 +
ρ1b2

a2 +
b3

a3

.

Multiplying the top and bottom of the fraction with ρ1b2 as numerator by ρ2 gives

ξ = a0 +
ρ1b1

ρ1a1 +
ρ1ρ2b2

ρ2a2 +
ρ2b3

a3

.

Finally, multiplying the top and bottom of the fraction with ρ2b3 as numerator by
ρ3 gives

ξ = a0 +
ρ1b1

ρ1a1 +
ρ1ρ2b2

ρ2a2 +
ρ2ρ3b3

ρ3a3

.

In summary,

a0 +
b1

a1 +

b2

a2 +

b3

a3
= a0 +

ρ1b1

ρ1a1 +

ρ1ρ2b2

ρ2a2 +

ρ2ρ3b3

ρ3a3
.

A simple induction argument proves the following.

Theorem 7.1 (Transformation rules). For any real numbers a1, a2, a3, . . .,
b1, b2, b3, . . ., and nonzero constants ρ1, ρ2, ρ3, . . ., we have

a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn

an
= a0 +

ρ1b1

ρ1a1 +

ρ1ρ2b2

ρ2a2 +

ρ2ρ3b3

ρ3a3 +
. . .

+

ρn−1ρnbn

ρnan
,



7.2. F SOME OF THE MOST BEAUTIFUL FORMULÆ IN THE WORLD II 357

in the sense when the left-hand side is defined, so is the right-hand side and this
equality holds. In particular, if the limit as n→∞ of the left-hand side exists, then
the limit of the right-hand side also exists, and

a0 +
b1

a1 +

b2

a2 +
. . .

+

bn

an +
. . . = a0 +

ρ1b1

ρ1a1 +

ρ1ρ2b2

ρ2a2 +
. . .

+

ρn−1ρnbn

ρnan +
. . . .

7.2.2. Two stupendous series and continued fractions identities. Let
α1, α2, α3, . . . be any real numbers with αk 6= 0 and αk 6= αk−1 for all k. Observe
that

1

α1
− 1

α2
=

α2 − α1

α1α2
=

1
α1α2

α2−α1

.

Since
α1α2

α2 − α1
=

α1(α2 − α1) + α2
1

α2 − α1
= α1 +

α2
1

α2 − α1
,

we get
1

α1
− 1

α2
=

1

α1 +
α2

1

α2−α1

.

This little exercise suggests the following theorem.

Theorem 7.2. If α1, α2, α3, . . . are nonzero real numbers with αk 6= αk−1 for
all k, then for any n ∈ N,

n∑

k=1

(−1)k−1

αk
=

1

α1 +
α2

1

α2 − α1 +
α2

2

α3 − α2 +

. . .

α2
n−1

αn − αn−1

.

In particular, taking n→∞, we conclude that

(7.6)

∞∑

k=1

(−1)k−1

αk
=

1

α1 +

α2
1

α2 − α1 +

α2
2

α3 − α2 +

α2
3

α4 − α3 +
. . .

as long as either (and hence both) side makes sense.

Proof. This theorem is certainly true for alternating sums with n = 1 terms.
Assume it is true for sums with n terms; we shall prove it holds for sums with n+1
terms. Observe that we can write

n+1∑

k=1

(−1)k−1

αk
=

1

α1
− 1

α2
+ · · ·+ (−1)n−1

αn
+

(−1)n

αn+1

=
1

α1
− 1

α2
+ · · ·+ (−1)n−1

(
1

αn
− 1

αn+1

)

=
1

α1
− 1

α2
+ · · ·+ (−1)n−1

(
αn+1 − αn

αnαn+1

)

=
1

α1
− 1

α2
+ · · ·+ (−1)n−1 1

αnαn+1

αn+1−αn

.
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This is now a sum of n terms. Thus, we can apply the induction hypothesis to
conclude that

(7.7)

n+1∑

k=1

(−1)k−1

αk
=

1

α1 +

α2
1

α2 − α1 +
· · ·

+

α2
n−1

αnαn+1

αn+1−αn
− αn−1

.

Since

αnαn+1

αn+1 − αn
− αn−1 =

αn(αn+1 − αn) + α2
n

αn+1 − αn
− αn−1

= αn − αn−1 +
α2

n

αn+1 − αn
,

putting this into (7.7) gives

n+1∑

k=1

(−1)k−1

αk
=

1

α1 +

α2
1

α2 − α1 +
· · ·

+

α2
n−1

αn − αn−1 +
α2

n

αn+1−αn

.

This proves our induction step and completes our proof. �

Example 7.4. Since we know that

log 2 =

∞∑

k=1

(−1)k−1

k
=

1

1
− 1

2
+

1

3
− 1

4
+ · · · ,

setting αk = k in (7.6), we can write

log 2 =
1

1+

12

1 +

22

1 +

32

1 +
. . . ,

which we can also write as the equally beautiful expression

log 2 =
1

1 +
12

1 +
22

1 +
32

1 +
42

1 +
. . .

.

See Problem 1 for a general formula for log(1 + x).

Here is another interesting identity. Let α1, α2, α3, . . . be real, nonzero, and
never equal to 1. Then observe that

1

α1
− 1

α1α2
=

α2 − 1

α1α2
=

1
α1α2

α2−1

.

Since
α1α2

α2 − 1
=

α1(α2 − 1) + α1

α2 − 1
= α1 +

α1

α2 − 1
,

we get
1

α1
− 1

α1α2
=

1

α1 + α1

α2−1

.

We can continue by induction in much the same manner as we did in the proof of
Theorem 7.2 to obtain the following result.
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Theorem 7.3. For any real sequence α1, α2, α3, . . . with αk 6= 0, 1, we have
n∑

k=1

(−1)k−1

α1 · · ·αk
=

1

α1 +
α1

α2 − 1 +
α2

α3 − 1 +

. . .

αn−1 +
αn−1

αn − 1

.

In particular, taking n→∞, we conclude that

(7.8)

∞∑

k=1

(−1)k−1

α1 · · ·αk
=

1

α1 +

α1

α2 − 1+

α2

α3 − 1+
. . .

+

αn−1

αn − 1
. . . ,

as long as either (and hence both) side makes sense.

Theorems 7.2 and 7.3 turn series to continued fractions; in Problem 9 we do
the same for infinite products.

7.2.3. Continued fractions for arctan and π. We now use the identities
just learned to derive some remarkable continued fractions.

Example 7.5. First, since

π

4
=

1

1
− 1

3
+

1

5
− 1

7
+ · · · ,

using the limit expression (7.6) in Theorem 7.2:

1

α1
− 1

α2
+

1

α3
− 1

α4
+ · · · = 1

α1 +

α2
1

α2 − α1 +

α2
2

α3 − α2 +

α2
3

α4 − α3 +
· · · ,

we can write
π

4
=

1

1 +
12

2 +
32

2 +
52

2 +
72

2 +
. . .

.

Inverting both sides (see Problem 3 in Exercises 7.1), we obtain the incredible
expansion:

(7.9)
4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 +
. . .

.

This continued fraction was the very first continued fraction ever recorded, and was
written down without proof by Lord Brouncker (1620 – 1686), the first president
of the Royal Society of London.
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Actually, we can derive (7.9) from a related expansion of the arctangent func-
tion, which is so neat that we shall derive in two ways, using Theorem 7.2 then
using Theorem 7.3.

Example 7.6. Recall that

arctan x = x− x3

3
+

x5

5
− x7

7
+ · · ·+ (−1)n−1 x2n−1

2n− 1
+ · · ·

Setting α1 = 1
x , α2 = 3

x3 , α3 = 5
x5 , and in general, αn = 2n−1

x2n−1 into the formula
(7.6) from Theorem 7.2, we get the somewhat complicated formula

arctan x =
1
1
x

+

1
x2

3
x2 − 1

x
+

32

x2

5
x5 − 3

x3 +
. . .

+

(2n−3)2

(x2n−3)2

2n−1
x2n−1 − 2n−3

x2n−3 +
. . . .

However, we can simplify this using the transformation rule from Theorem 7.1:

b1

a1 +

b2

a2 +
. . .

+

bn

an +
. . . =

ρ1b1

ρ1a1 +

ρ1ρ2b2

ρ2a2 +
. . .

+

ρn−1ρnbn

ρnan +
. . . .

(Here we drop the a0 term from that theorem.) Let ρ1 = x, ρ2 = x3, . . ., and in
general, ρn = x2n−1. Then,

1
1
x

+

1
x2

3
x2 − 1

x
+

32

x2

5
x5 − 3

x3 +

52

x2

7
x7 − 5

x5 +
. . . =

x

1+

x2

3− x2 +

32x2

5− 3x2 +

52x2

7− 5x2 +
. . . .

Thus,

arctan x =
x

1+

x2

3− x2 +

32x2

5− 3x2 +

52x2

7− 5x2 +
. . . ,

or in a fancier way:

(7.10) arctan x =
x

1 +
x2

(3− x2) +
32x2

(5− 3x2) +
52x2

(7− 5x2) +
. . .

.

In particular, setting x = 1 and inverting, we get Lord Brouncker’s formula:

4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 +
. . .

.

Example 7.7. We can also derive (7.10) using Theorem 7.3: Using once again
that

arctan x = x− x3

3
+

x5

5
− x7

7
+ · · ·+ (−1)n−1 x2n−1

2n− 1
+ · · ·

and setting α1 = 1
x , α2 = 3

x2 , α3 = 5
3x2 , α4 = 7

5x2 , · · · , αn = 2n−1
(2n−3)x2 for n ≥ 2,

into the limiting formula (7.8) from Theorem 7.3:

1

α1
− 1

α1α2
+

1

α1α2α3
− · · · = 1

α1 +

α1

α2 − 1+

α2

α3 − 1+
. . .

+

αn−1

αn − 1+
. . .



7.2. F SOME OF THE MOST BEAUTIFUL FORMULÆ IN THE WORLD II 361

we obtain

arctan x =
1
1
x

+

1
x

3
x2 − 1+

3
x2

5
3x2 − 1+

. . .
+

2n−1
(2n−3)x2

2n+1
(2n−1)x2 − 1+

. . . .

From Theorem 7.1, we know that

b1

a1 +

b2

a2 +
. . .

+

bn

an +
. . . =

ρ1b1

ρ1a1 +

ρ1ρ2b2

ρ2a2 +
. . .

+

ρn−1ρnbn

ρnan +
. . . .

In particular, setting ρ1 = x, ρ2 = x2, ρ3 = 3x2, ρ4 = 5x2, and in general,
ρn = (2n − 3)x2 for n ≥ 1 into the formula for arctan x, we obtain (as you are
invited to verify) the exact same expression (7.10)!

Example 7.8. We leave the next two beauts to you! Applying Theorem 7.2

and Theorem 7.3 to Euler’s sum π2

6 = 1
12 + 1

22 + 1
32 + · · · , in Problem 2 we ask you

to derive the formula

(7.11)
6

π2
= 02 + 12 − 14

12 + 22 − 24

22 + 32 −
34

32 + 42 − 44

42 + 52 − . . .

,

which is, after inversion, the last formula on the front cover of this book.

Example 7.9. In Problem 9 we derive Euler’s splendid formula [37, p. 89]:

(7.12)
π

2
= 1 +

1

1 +
1 · 2

1 +
2 · 3

1 +
3 · 4

1 +
. . .

.

7.2.4. Another continued fraction for π. We now derive another remark-
able formula for π, which is due to Euler [37, p. 89] (the proof we give is found in
Lange’s article [99]). Consider first the telescoping sum

∞∑

n=1

(−1)n−1

(
1

n
+

1

n + 1

)

=

(
1

1
+

1

2

)

−
(

1

2
+

1

3

)

+

(
1

3
+

1

4

)

−+ · · · = 1

Since

π

4
=

1

1
− 1

3
+

1

5
− 1

7
+ · · · = 1−

∞∑

n=1

(−1)n−1

2n + 1
,
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multiplying this expression by 4 and using the previous expression, we can write

π = 4− 4

∞∑

n=1

(−1)n−1

2n + 1
= 3 + 1− 4

∞∑

n=1

(−1)n−1

2n + 1

= 3 +

∞∑

n=1

(−1)n−1

(
1

n
+

1

n + 1

)

− 4

∞∑

n=1

(−1)n−1

2n + 1

= 3 +

∞∑

n=1

(−1)n−1

(
1

n
+

1

n + 1
− 4

2n + 1

)

= 3 + 4
∞∑

n=1

(−1)n−1

2n(2n + 1)(2n + 2)
,

where we combined fractions in going from the third to forth lines. We now apply
the limiting formula (7.6) from Theorem 7.2 with αn = 2n(2n+1)(2n+2). Observe
that

αn − αn−1 = 2n(2n + 1)(2n + 2)− 2(n− 1)(2n− 1)(2n)

= 4n
[
(2n + 1)(n + 1)− (n− 1)(2n− 1)

]

= 4n
[
2n2 + 2n + n + 1− (2n2 − n− 2n + 1)

]
= 4n(6n) = 24n2.

Now putting the αn’s into the formula

1

α1
− 1

α2
+

1

α3
− 1

α4
+ · · · = 1

α1 +

α2
1

α2 − α1 +

α2
2

α3 − α2 +

α2
3

α4 − α3 +
. . . ,

we get

4
∞∑

n=1

(−1)n−1

2n(2n + 1)(2n + 2)
= 4 ·

(
1

2 · 3 · 4+

(2 · 3 · 4)2
24 · 22 +

(4 · 5 · 6)2
24 · 32 +

. . .

)

=
1

2 · 3+

(2 · 3 · 4)2
24 · 22 +

(4 · 5 · 6)2
24 · 32 +

. . . .

Hence,

π = 3 +
1

6+

(2 · 3 · 4)2
24 · 22 +

(4 · 5 · 6)2
24 · 32 +

. . .
+

(2(n− 1)(2n− 1)(2n))2

24 · n2 +
. . . ,

which is beautiful, but we can make this even more beautiful using the transforma-
tion rule from Theorem 7.1:

b1

a1 +

b2

a2 +
. . .

+

bn

an +
. . . =

ρ1b1

ρ1a1 +

ρ1ρ2b2

ρ2a2 +
. . .

+

ρn−1ρnbn

ρnan +
. . . .

Setting ρ1 = 1 and ρn = 1
4n2 for n ≥ 2 we see that

ρn−1ρnbn

ρnan
=

1
4(n−1)2 · 1

4n2 · (2(n− 1)(2n− 1)(2n))2

1
4n2 · 24 · n2

=
(2n− 1)2

6
.

Thus,

π = 3 +
12

6 +

32

6 +

52

6 +

72

6 +
. . .

+

(2n− 1)2

6 +
. . .
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or in more elegant notation:

(7.13) π = 3 +
12

6 +
32

6 +
52

6 +
72

6 +
. . .

.

7.2.5. Continued fractions and e. For our final beautiful example, we shall
compute a continued fraction expansion for e. We begin with

1

e
= e−1 =

∞∑

n=0

(−1)n

n!
= 1− 1

1
+

1

1 · 2 −
1

1 · 2 · 3 + · · · ,

so

e− 1

e
= 1− 1

e
=

1

1
− 1

1 · 2 +
1

1 · 2 · 3 −
1

1 · 2 · 3 · 4 + · · · .

Thus, setting αk = k into the formula (7.8):

1

α1
− 1

α1α2
+

1

α1α2α3
− · · · = 1

α1 +

α1

α2 − 1+

α2

α3 − 1+
. . .

+

αn−1

αn − 1+
. . . ,

we obtain

e− 1

e
=

1

1 +
1

1 +
2

2 +
3

3 +
.. .

.

We can make in this into an expression for e as follows: First, invert and subtract
1 from both sides to get

e

e− 1
= 1 +

1

1 +
2

2 +
3

3 +
.. .

=⇒ 1

e− 1
=

1

1 +
2

2 +
3

3 +
.. .

.

Second, invert again to obtain

e− 1 = 1 +
2

2 +
3

3 +
4

4 +
5

5 +
. . .

.
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Finally, adding 1 to both sides we get the incredibly beautiful expression

(7.14) e = 2 +
2

2 +
3

3 +
4

4 +
5

5 +
. . .

,

or in shorthand:

e = 2 +
2

2+

3

3+

4

4+

5

5+
. . . .

In the exercises you will derive other amazing formulæ.

Exercises 7.2.

1. Recall that log(1+x) =
∑∞

n=0(−1)n xn+1

n+1
. Using this formula, the formula (7.6) derived

from Theorem 7.2, and also the transformation rule, prove that fabulous formula

log(1 + x) =
x

1 +
12x

(2 − 1x) +
22x

(3 − 2x) +
32x

(4 − 3x) +
. . .

.

Plug in x = 1 to derive our beautiful formula for log 2.

2. Using Euler’s sum π2

6
= 1

12 + 1
22 + 1

32 + · · · , give two proofs of the formula (7.11), one
using Theorem 7.2 and the other using Theorem 7.3. The transformation rules will
also come in handy.

3. (i) For any real numbers {αk}, prove that for any n,

n∑

k=0

αkxk = α0 +
α1x

1 +

−α2
α1

x

1 + α2
α1

x+

−α3
α2

x

1 + α3
α2

x+
. . .

+

− αn
αn−1

x

1 + αn
αn−1

x

provided, of course, that the right-hand side is defined, which we assume holds
for every n.

(ii) Deduce that if the infinite series
∑∞

n=0 αnxn converges, then

∞∑

n=0

αnxn = α0 +
α1x

1 +

−α2
α1

x

1 + α2
α1

x+

−α3
α2

x

1 + α3
α2

x+
. . .

+

− αn
αn−1

x

1 + αn
αn−1

x+
. . . .

Transforming the continued fraction on the right, prove that
∞∑

n=0

αnxn = α0 +
α1x

1 +

−α2x

α1 + α2x+

−α1α3x

α2 + α3x+
. . .

+

−αn−2αnx

αn−1 + αnx+
. . . .

4. Writing arctan x = x(1 − y
3

+ y2

5
− y3

7
+ · · · ) where y = x2, and using the previous

problem on (1 − y
3

+ y2

5
− y3

7
+ · · · ), derive the formula (7.10).

5. Let x, y > 0. Prove that

∞∑

n=0

(−1)n

x + ny
=

1

x+

x2

y +

(x + y)2

y +

(x + 2y)2

y +

(x + 3y)2

y +
. . . .

Suggestion: The formula (7.6) might help.
6. Recall the partial fraction expansion πx cot πx = 1 + 2x2∑∞

n=1
1

x2−n2 .
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(a) By breaking up 2x
x2−n2 using partial fractions, prove that

π cot πx =
1

x
− 1

1 − x
+

1

1 + x
− 1

2 − x
+

1

2 + x
− + · · · .

(b) Derive the remarkable formula

π cot πx =
1

x+

x2

1 − 2x+

(1 − x)2

2x +

(1 + x)2

1 − 2x +

(2 − x)2

2x +

(2 + x)2

1 − 2x +
. . . .

Putting x = 1/4, give a new proof of Lord Brouncker’s formula.
(c) Derive

tan πx

πx
= 1 +

x

1 − 2x+

(1 − x)2

2x +

(1 + x)2

1 − 2x +

(2 − x)2

2x +

(2 + x)2

1 − 2x +
. . . .

7. Recall that π
sin πx

= 1
x

+
∑∞

n=1
2x

n2−x2 . From this, derive the beautiful expression

sin πx

πx
= 1 − x

1+

(1 − x)2

2x +

(1 + x)2

1 − 2x +

(2 − x)2

2x +

(2 + x)2

1 − 2x +
. . . .

Suggestion: First break up 2x
n2−x2 and use an argument as you did for π cot πx to get

a continued fraction expansion for π
sin πx

. From this, deduce the continued fraction
expansion for sin πx/πx.

8. From the expansion π
4 cos πx

2
=
∑∞

n=0(−1)n (2n+1)

(2n+1)2−x2 derive the beautiful expression

cos πx
2

π
2

= x + 1 +
(x + 1)2

−2 · 1 +

(x − 1)2

−2 +

(x − 3)2

2 · 3 +

(x + 3)2

2 +

(x + 5)2

−2 · 5 +

(x − 5)2

−2 +
. . . .

9. (Cf. [89]) In this problem we turn infinite products to continued fractions.
(a) Let α1, α2, α3, . . . be a sequence of real numbers with αk 6= 0,−1. Define sequences

b1, b2, b3, . . . and a0, a1, a2, . . . by b1 = (1 + α0)α1, a0 = 1 + α0, a1 = 1, and

bn = −(1 + αn−1)
αn

αn−1
, αn = 1 − an for n = 2, 3, 4, . . . .

Prove (say by induction) that for any n ∈ N,

n∏

k=0

(1 + αk) = a0 +
b1

a1 +

b2

a2 +
. . .

+

bn

an
.

Taking n → ∞, we get a similar formula for infinite products and fractions.

(b) Using that sin πx
πx

=
∏∞

n=1

(

1− x2

n2

)

= (1−x)(1+x)
(

1− x
2

)(

1+ x
2

)(

1− x
3

)(

1+ x
3

)

· · ·
and (a), derive the continued fraction expansion

sin πx

πx
= 1 − x

1+

1 · (1 − x)

x +

1 · (1 + x)

1 − x +

2 · (2 − x)

x +

2 · (2 + x)

1 − x +
. . . .

(c) Putting x = 1/2, prove (7.12). Putting x = −1/2, derive another continued
fraction for π/2.

7.3. Recurrence relations, Diophantus’ tomb, and shipwrecked sailors

In this section we define the Wallis-Euler recurrence relations, which generate
sequences of numerators and denominators for convergents of continued fractions.
Diophantine equations is the subject of finding integer solutions to polynomial
equations. Continued fractions (through the special properties of the Wallis-Euler
recurrence relations) turn out to play a very important role in this subject.
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7.3.1. Convergents and recurrence relations. We shall call a continued
fraction

(7.15) a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn

an +
. . .

nonnegative if the an, bn’s are real numbers with an > 0, bn ≥ 0 for all n ≥ 1
(a0 can be any sign). We shall not spend a lot of time on continued fractions
when the an’s and bn’s in (7.15), for n ≥ 1, are arbitrary real numbers; it is
only for nonnegative infinite continued fractions that we develop their convergence
properties in Section 7.4. However, we shall come across continued fractions where
some of the an, bn are negative — see for instance the beautiful expression (7.52)
for cot x (and the following one for tan x)! We focus on continued fractions with
an, bn > 0 for n ≥ 1 in order to avoid some possible contradictory statements.
For instance, the convergents of the elementary example 1

1+
−1
1 +

1
1 has some weird

properties. Let us form its convergents: c1 = 1, which is OK, but

c2 =
1

1+

−1

1
=

1

1 +
− 1

1

=
1

1− 1
=

1

0
=???,

which is not OK.1 However,

c3 =
1

1+

−1

1 +

1

1
=

1

1 +
− 1

1 +
1

1

=
1

1 +
− 1

2

=
1

1

2

= 2,

which is OK again! To avoid such craziness, we shall focus on continued fractions
with an > 0 for n ≥ 1 and bn ≥ 0, but we emphasize that much of what we do in
this section and the next works in greater generality.

Let {an}∞n=0, {bn}∞n=1 be sequences of real numbers with an > 0, bn ≥ 0 for
all n ≥ 1 (there is no restriction on a0). The following sequences {pn}, {qn} are
central in the theory of continued fractions:

(7.16)
pn = anpn−1 + bnpn−2 , qn = anqn−1 + bnqn−2

p−1 = 1 , p0 = a0 , q−1 = 0 , q0 = 1.

We shall call these recurrence relations the Wallis-Euler recurrence relations
... you’ll see why they’re so central in a moment. In particular,

(7.17)
p1 = a1p0 + b1p−1 = a1a0 + b1

q1 = a1q0 + b1q−1 = a1.

We remark that qn > 0 for n = 0, 1, 2, 3, . . .. This is easily proved by induction:
Certainly, q0 = 1, q1 = a1 > 0 (recall that an > 0 for n ≥ 1); thus assuming that
qn > 0 for n = 0, . . . , n− 1, we have (recall that bn ≥ 0),

qn = anqn−1 + bnqn−2 > 0 · 0 + 0 = 0,

1Actually, in the continued fraction community, we always define a/0 = ∞ for a 6= 0 so we

can get around this division by zero predicament by simply defining it away.
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and our induction is complete. Observe that the zero-th convergent of the continued
fraction (7.15) is c0 = a0 = p0/q0 and the first convergent is

c1 = a0 +
b1

a1
=

a1a0 + b1

a1
=

p1

q1
.

The central property of the pn, qn’s is the fact that cn = pn/qn for all n.

Theorem 7.4. For any positive real number x, we have

(7.18) a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn

x
=

xpn−1 + bnpn−2

xqn−1 + bnqn−2
, n = 1, 2, 3, . . . .

(Note that the denominator is > 0 because qn > 0 for n ≥ 0.) In particular, setting
x = an and using the definition of pn, qn, we have

cn = a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn

an
=

pn

qn
, n = 0, 1, 2, 3, . . . .

Proof. We prove (7.18) by induction on the number of terms after a0. The

proof for one term after a0 is easy: a0 + b1
x = a0x+b1

x = xp0+b1p−1

xq0+q−1
, since p0 = a0,

p−1 = 1, q0 = 1, and q−1 = 0. Assume that (7.18) holds when there are n terms
after a0; we shall prove it holds for fractions with n + 1 terms after a0. To do so,
we write (see Problem 4 in Exercises 7.1 for the general technique)

a0 +
b1

a1 +

b2

a2 +
. . .

+

bn

an +

bn+1

x
= a0 +

b1

a1 +

b2

a2 +
. . .

+

bn

y
,

where

y := an +
bn+1

x
=

xan + bn+1

x
.

Therefore by our induction hypothesis, we have

a0 +
b1

a1 +

b2

a2 +
. . .

+

bn+1

x
=

ypn−1 + bnpn−2

yqn−1 + bnqn−2
=

(
xan + bn+1

x

)

pn−1 + bnpn−2

(
xan + bn+1

x

)

qn−1 + bnqn−2

=
xanpn−1 + bn+1pn−1 + xbnpn−2

xanqn−1 + bn+1qn−1 + xbnqn−2

=
x(anpn−1 + bnpn−2) + bn+1pn−1

x(anqn−1 + bnqn−2) + bn+1qn−1

=
xpn + bn+1pn−1

xqn + bn+1qn−1
,

which completes our induction step and finishes our proof. �

In the next theorem, we give various useful identities that the pn, qn satisfy.

Theorem 7.5 (Fundamental recurrence relations). For all n ≥ 1, the
following identities hold:

pnqn−1 − pn−1qn = (−1)n−1b1b2 · · · bn

pnqn−2 − pn−2qn = (−1)nanb1b2 · · · bn−1
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and (where the formula for cn − cn−2 is only valid for n ≥ 2)

cn − cn−1 =
(−1)n−1b1b2 · · · bn

qn qn−1
, cn − cn−2 =

(−1)nanb1b2 · · · bn−1

qn qn−2
.

Proof. To prove that pnqn−1 − pn−1qn = (−1)n−1b1b2 · · · bn for n = 1, 2, . . .,
we proceed by induction. For n = 1, the left-hand side is (see (7.17))

p1q0 − p0q1 = (a1a0 + b1) · 1− a0 · a1 = b1,

which is the right-hand side when n = 1. Assume our equality holds for n; we prove
it holds for n + 1. By our Wallis-Euler recurrence relations, we have

pn+1qn − pnqn+1 =
(
an+1pn + bn+1pn−1

)
qn − pn

(
an+1qn + bn+1qn−1

)

= bn+1pn−1qn − pnbn+1qn−1

= −bn+1

(
pnqn−1 − pn−1qn

)

= −bn+1 · (−1)n−1b1b2 · · · bn = (−1)nb1b2 · · · bnbn+1,

which completes our induction step. To prove the second equality, we use the
Wallis-Euler recurrence relations and the equality just proved:

pnqn−2 − pn−2qn =
(
anpn−1 + bnpn−2

)
qn−2 − pn−2

(
anqn−1 + bnqn−2

)

= anpn−1qn−2 − pn−2anqn−1

= an

(
pn−1qn−2 − pn−2qn−1

)

= an · (−1)n−2b1b2 · · · bn−1 = (−1)nanb1b2 · · · bn−1.

Finally, the equations for cn − cn−1 and cn − cn−2 follow from dividing

pnqn−1 − pn−1qn = (−1)n−1b1b2 · · · bn

pnqn−2 − pn−2qn = (−1)n−1anb1b2 · · · bn−1

by qn qn−1 and qn qn−2, respectively. �

For simple continued fractions, the Wallis-Euler relations (7.16) and (7.17) and
the fundamental recurrence relations take the following particularly simple forms:

Corollary 7.6 (Simple fundamental recurrence relations). For simple
continued fractions, for all n ≥ 1, if

pn = anpn−1 + pn−2 , qn = anqn−1 + qn−2

p0 = a0 , p1 = a0a1 + 1 , q0 = 1 , q1 = a1,

then cn = pn/qn for all n ≥ 0, and for any x > 0,

(7.19) 〈a0; a1, a2, a3, . . . , an, x〉 =
xpn−1 + pn−2

xqn−1 + qn−2
, n = 1, 2, 3, . . . .

Moreover, for all n ≥ 1, the following identities hold:

pnqn−1 − pn−1qn = (−1)n−1

pnqn−2 − pn−2qn = (−1)nan

and

cn − cn−1 =
(−1)n−1

qn qn−1
, cn − cn−2 =

(−1)nan

qn qn−2
,
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where cn − cn−2 is only valid for n ≥ 2.

We also have the following interesting result.

Corollary 7.7. All the pn, qn for a simple continued fraction are relatively
prime; that is, cn = pn/qn is automatically in lowest terms.

Proof. The fact that pn, qn are in lowest terms follows from the fact that

pnqn−1 − pn−1qn = (−1)n−1,

so if an integer happens to divide divide both pn and qn, then it divides pnqn−1 −
pn−1qn also, so it must divide (−1)n−1 = ±1 which is impossible unless the number
was ±1. �

7.3.2. F Diophantine equations and sailors, coconuts, and monkeys.
From Section 7.1, we know that any rational number can be written as a finite
simple continued fraction. Also, any finite simple continued fraction is certainly a
rational number because it is made up of additions and divisions of rational numbers
and the rational numbers are closed under such operations. (For proofs of these
statements see Problem 2 in Exercises 7.1.) Now as we showed at the beginning of
Section 7.1, we can write

157

68
= 2 +

1

3 +
1

4 +
1

5

= 〈2; 3, 4, 5〉,

which has an odd number of terms after the integer part 2. Observe that we can
write this in another way:

157

68
= 2 +

1

3 +
1

4 +
1

4 +
1

1

= 〈2; 3, 4, 4, 1〉,

which has an even number of terms after the integer part. This example is typical:
Any finite simple continued fraction can be written with an even or odd number
of terms (by modifying the last term by 1). We summarize these remarks in the
following theorem, which we shall use in Theorem 7.9.

Theorem 7.8. A real number can be expressed as a finite simple continued
fraction if and only if it is rational, in which case, the rational number can be
expressed as a continued fraction with either an even or an odd number of terms.

The proof of this theorem shall be left to you. We now come to the subject
of diophantine equations, which are polynomial equations we wish to find integer
solutions. We shall study very elementary diophantine equations in this section,
the linear ones. Before doing so, it might of interest to know that diophantine
equations is named after Diophantus of Alexandrea, a Greek mathematician who
lived around 250 A.D. He is famous for at least two things: His book Arithmetica,
which studies equations that we now call diophantine equations in his honor, and
for the following riddle, which was supposedly written on his tombstone:
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This tomb hold Diophantus Ah, what a marvel! And the tomb
tells scientifically the measure of his life. God vouchsafed that he
should be a boy for the sixth part of his life; when a twelfth was
added, his cheeks acquired a beard; He kindled for him the light of
marriage after a seventh, and in the fifth year after his marriage
He granted him a son. Alas! late-begotten and miserable child,
when he had reached the measure of half his father’s life, the
chill grave took him. After consoling his grief by this science of
numbers for four years, he reached the end of his life. [124].

Try to find how old Diophantus was when he died using elementary algebra.
(Let x = his age when he died; then you should end up with trying to solve the
equation x = 1

6x + 1
12x + 1

7x + 5 + 1
2x + 4, obtaining x = 84.) Here is an easy

way to find his age: Unravelling the above fancy language, and picking out two
facts, we know that 1/12-th of his life was in youth and 1/7-th was as a bachelor.
In particular, his age must divide 7 and 12. The only integer that does this, and
which is within the human lifespan, is 7 ·12 = 84. In particular, he spent 84/6 = 14
years as a child, 84/12 = 7 as a youth, 84/7 = 12 years as a bachelor. He married
at 14 + 7 + 12 = 33, at 33 + 5 = 38, his son was born, who later died at the age
of 84/2 = 42 years old, when Diophantus was 80. Finally, after 4 years doing the
“science of numbers”, Diophantus died at the ripe old age of 84.

After taking a moment to wipe away our tears, let us consider the following.

Theorem 7.9. If a, b ∈ N are relatively prime, then for any c ∈ Z, the equation

ax− by = c

has an infinite number of integer solutions (x, y). Moreover, if (x0, y0) is any one
integral solution of the equation with c = 1, then for general c ∈ Z, all solutions are
of the form

x = cx0 + bt , y = cy0 + at , t ∈ Z.

Proof. In Problem 7 we ask you to prove this theorem using Problem 5 in
Exercises 2.4; but we shall use continued fractions just for fun. We first solve the
equation ax− by = 1. To do so, we write a/b as a finite simple continued fraction:
a/b = 〈a0; a1, a2, . . . , an〉 and by Theorem 7.8 we can choose n to be odd. Then a/b
is equal to the n-th convergent pn/qn, which implies that pn = a and qn = b. Also,
by our relations in Corollary 7.6, we know that

pnqn−1 − qnpn−1 = (−1)n−1 = 1,

where we used that n is odd. Since pn and qn are relatively prime and a/b = pn/qn,
we must have pn = a and qn = b. Therefore, aqn−1 − bpn−1 = 1, so

(7.20) (x0, y0) = (qn−1, pn−1)

solves ax0 − by0 = 1. Multiplying ax0 − by0 = 1 by c we get

a(cx0)− b(cy0) = c.

Then ax− by = c holds if and only if (by replacing c with a(cx0)− b(cy0))

a(x− cx0) = b(y − cy0).
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This shows that a divides b(y − cy0), which can be possible if and only if a divides
y − cy0 since a and b are relatively prime. Thus, y − cy0 = at for some t ∈ Z.
Plugging y − cy0 = at into the equation a(x− cx0) = b(y − cy0), we get

a(x− cx0) = b · (at) = abt.

Cancelling a, we get x− cx0 = bt and our proof is now complete. �

We remark that we need a and b need to be relatively prime; for example, the
equation 2x− 4y = 1 has no integer solutions (because the left hand side is always
even, so can never equal 1). We also remark that the proof of Theorem 7.9; in
particular, the formula (7.20), also shows us how to find (x0, y0): Just write a/b as
a simple continued fraction with an odd number n terms after the integer part of
a/b and compute the (n− 1)-st convergent to get (x0, y0) = (qn−1, pn−1).

Example 7.10. Consider the diophantine equation

157x− 68y = 12.

We already know that the continued fraction expansion of a/b = 157
68 with an odd

n = 3 is 157
68 = 〈2; 3, 4, 5〉 = 〈a0; a1, a2, a3〉. Thus,

c2 = 2 +
1

3 +
1

4

= 2 +
4

13
=

30

13
.

Therefore, (13, 30) is one solution of 157x− 68y = 1, which we should check just to
be sure:

157 · 13− 68 · 30 = 2041− 2040 = 1.

Since cx0 = 12·13 = 156 and cy0 = 12·30 = 360, the general solution of 157x−68y =
12 is

x = 156 + 68t , y = 360 + 157t, t ∈ Z.

Example 7.11. We now come to a fun puzzle that involves diophantine equa-
tions; for more cool coconut puzzles, see [62, 63], [173], [163], and Problem 5. Five
sailors get shipwrecked on an island where there is only a coconut tree and a very
slim monkey. The sailors gathered all the coconuts into a gigantic pile and went to
sleep. At midnight, one sailor woke up, and because he didn’t trust his mates, he
divided the coconuts into five equal piles, but with one coconut left over. He throws
the extra one to the monkey, hides his pile, puts the remaining coconuts back into
a pile, and goes to sleep. At one o’clock, the second sailor woke up, and because
he was untrusting of his mates, he divided the coconuts into five equal piles, but
again with one coconut left over. He throws the extra one to the monkey, hides his
pile, puts the remaining coconuts back into a pile, and goes to sleep. This exact
same scenario continues throughout the night with the other three sailors. In the
morning, all the sailors woke up, pretending as if nothing happened and divided
the now minuscule pile of coconuts into five equal piles, and they find yet again one
coconut left over, which they throw to the now very overweight monkey. Question:
What is the smallest possible number of coconuts in the original pile?

Let x = the original number of coconuts. Remember that sailor #1 divided x
into five parts, but with one left over. This means that if y1 is the number that he
took, then x = 5y1 + 1 and he left 4 · y1 coconuts. In other words, he took

1

5
(x− 1) coconuts, leaving 4 · 1

5
(x− 1) =

4

5
(x− 1) coconuts.
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Similarly, if y2 is the number of coconuts that the sailor #2 took, then 4
5 (x− 1) =

5y2 + 1 and he left 4 · y2 coconuts. That is, the second sailor took

1

5
·
(

4

5
(x− 1)− 1

)

=
4x− 9

25
coconuts, leaving 4 · 4x− 9

25
=

16x− 36

25
coconuts.

Repeating this argument, we find that sailors #3, #4, and #5 left

64x− 244

125
,

256x− 1476

625
,

1024x− 8404

3125

coconuts, respectively. At the end, the sailors divided this last amount of coconuts
into five piles, with one coconut left over. Thus, if y is the number of coconuts in
each pile, then we must have

1024x− 8404

3125
= 5y + 1 =⇒ 1024x− 15625y = 11529.

The equation 1024x − 15625y = 11529 is just a diophantine equation since we
want integers x, y solving this equation. Moreover, 1024 = 210 and 15625 = 56

are relatively prime, so we can solve this equation by Theorem 7.9. First, we solve
1024x− 15625y = 1, which we solve by writing 1024/15625 as a continued fraction
(this takes some algebra) and forcing n to be odd (in this case n = 9):

1024

15625
= 〈0; 15, 3, 1, 6, 2, 1, 3, 2, 1〉.

Second, we take the (n− 1)-st convergent:

c8 = 〈0; 15, 3, 1, 6, 2, 1, 3, 2〉 =
711

10849
.

Thus, (x0, y0) = (10849, 711). Since cx0 = 11529 · 10849 = 125078121 and cy0 =
11529 · 711 = 8197119, the integer solutions to 1024x− 15625y = 11529 are

(7.21) x = 125078121 + 15625t , y = 8197119 + 1024t , t ∈ Z.

This of course gives us infinitely many solutions. However, we want the smallest
nonnegative solutions since x and y represent numbers of coconuts; thus, we need

x = 125078121 + 15625t ≥ 0 =⇒ t ≥ −125078121

15625
= −8004.999744 . . . ,

and

y = 8197119 + 1024t ≥ 0 =⇒ t ≥ −8197119

1024
= −8004.9990234 . . . .

Thus, taking t = −8004 in (7.21), we finally arrive at x = 15621 and y = 1023. In
conclusion, the smallest number of coconuts in the original piles is 15621 coconuts.
By the way, you can solve this coconut problem without continued fractions using
nothing more than basic high school algebra; try it!

Exercises 7.3.

1. Find the general integral solutions of

(a) 7x − 11y = 1 , (b) 13x − 3y = 5 , (c) 13x − 15y = 100.

2. If all the a0, a2, . . . , an > 0 (which guarantees that p0 = a0 > 0), prove that

pn

pn−1
= 〈an; an−1, an−2, . . . , a2, a1, a0〉 and

qn

qn−1
= 〈an; an−1, an−2, . . . , a2, a1〉

for n = 1, 2, . . .. Suggestion: Observe that pk
pk−1

=
akpk−1+pk−2

pk−1
= ak + 1

pk−1
pk−2

.
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3. In this problem, we relate the Fibonacci numbers to continued fractions. Recall that
the Fibonacci sequence {Fn} is defined as F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for
all n ≥ 2. Let pn/qn = 〈a0; a1, . . . , an〉 where all the ak’s are equal to 1.
(a) Prove that pn = Fn+2 and qn = Fn+1 for all n = −1, 0, 1, 2, . . .. Suggestion: Use

the Wallis-Euler recurrence relations.
(b) From facts known about convergents, prove that Fn and Fn+1 are relatively prime

and derive the following famous identity:

Fn−1Fn+1 − F 2
n = (−1)n (Cassini or Simpson’s identity).

4. Imitating the proof of Theorem 7.9, show that a solution of ax− by = −1 can be found
by writing a/b as a simple continued fraction with an even number n terms after the
integer part of a/b and finding the (n− 1)-th convergent. Apply this method to find a
solution of 157x − 68y = −1.

5. (Coconut problems) Here are some more coconut problems:
(a) Solve the coconut problem assuming the same antics as in the text, except for one

thing: there are no coconuts left over for the monkey at the end. That is, what is
the smallest possible number of coconuts in the original pile given that after the
sailors divided the coconuts in the morning, there are no coconuts left over?

(b) Solve the coconut problem assuming the same antics as in the text except that
during the night each sailor divided the pile into five equal piles with none left
over; however, after he puts the remaining coconuts back into a pile, the monkey
(being a thief himself) steals one coconut from the pile (before the next sailor wakes
up). In the morning, there is still one coconut left over for the monkey.

(c) Solve the coconut problem when there are only three sailors to begin with, otherwise
everything is the same as in the text (e.g. one coconut left over at the end). Solve
this same coconut problem when there are no coconuts left over at the end.

(d) Solve the coconut problem when there are seven sailors, otherwise everything is
the same as in the text. (Warning: Set aside an evening for long computations!)

6. Let α = 〈a0; a1, a2, . . . , am〉, β = 〈b0; b1, . . . , bn〉 with m, n ≥ 0 and the ak, bk’s integers
with am, bn > 1 (such finite continued fractions are called regular). Prove that if
α = β, then ak = bk for all k = 0, 1, 2, . . .. In other words, distinct regular finite simple
continued fractions define different rational numbers.

7. Prove Theorem 7.9 using Problem 5 in Exercises 2.4.

7.4. Convergence theorems for infinite continued fractions

Certainly the continued fraction 〈1; 1, 1, 1, 1, . . .〉 (if it converges), should be a
very special number — it is, it turns out to be the golden ratio! In this section
we shall investigate the delicate issues surrounding convergence of infinite contin-
ued fractions (see Theorem 7.14, the continued fraction convergence theorem); in
particular, we prove that any simple continued fraction converges. We also show
how to write any real number as a simple continued fraction via the canonical
continued fraction algorithm. Finally, we prove that a real number is irrational
if and only if its simple continued fraction expansion is infinite.

7.4.1. Monotonicity properties of convergents. Consider a nonnegative
infinite continued fraction

a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn

an +
. . . ,

where recall that nonnegative means the an, bn’s are real numbers with an > 0, bn ≥
0 for all n ≥ 1, and there is no restriction on a0. The Wallis-Euler recurrence
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relations (7.16) are

pn = anpn−1 + bnpn−2 , qn = anqn−1 + bnqn−2

p−1 = 1 , p0 = a0 , q−1 = 0 , q0 = 1.

Then (cf. (7.17))

p1 = a1p0 + b1p−1 = a1a0 + b1 , q1 = a1q0 + b1q−1 = a1,

and all the qn’s are positive (see discussion below (7.17)). By Theorem 7.4 we have
cn = pn/qn for all n and by Theorem 7.5, for all n ≥ 1 the fundamental recurrence
relations are

pnqn−1 − pn−1qn = (−1)n−1b1b2 · · · bn

pnqn−2 − pn−2qn = (−1)nanb1b2 · · · bn−1

and

cn − cn−1 =
(−1)n−1b1b2 · · · bn

qn qn−1
, cn − cn−2 =

(−1)nanb1b2 · · · bn−1

qn qn−2
,

where cn − cn−2 is only valid for n ≥ 2. Using these fundamental recurrence
relations, we shall prove the following monotonicity properties of the cn’s, which is
important in the study of the convergence properties of the cn’s.

Theorem 7.10. Assume that bn > 0 for each n. Then the convergents {cn}
satisfy the inequalities: For all n ∈ N,

c0 < c2 < c4 < · · · < c2n < c2n−1 < · · · < c5 < c3 < c1.

That is, the even convergents form a strictly increasing sequence while the odd
convergent form a strictly decreasing sequence.

Proof. Replacing n with 2n in the fundamental recurrence relation for cn −
cn−2, we see that

c2n − c2n−2 =
(−1)2n−2a2nb1b2 · · · b2n−1

q2n q2n−1
=

a2nb1b2 · · · b2n−1

q2n q2n−1
> 0.

This shows that c2n−2 < c2n for all n ≥ 1 and hence, c0 < c2 < c4 < · · · . Replacing
n with 2n− 1 in the fundamental relation for cn − cn−2 can be used to prove that
the odd convergents form a strictly decreasing sequence. Replacing n with 2n in
the fundamental recurrence relation for cn − cn−1, we see that

(7.22) c2n−c2n−1 =
(−1)2n−1b1b2 · · · b2n

q2n q2n−1
= −b1b2 · · · b2n

q2n q2n−1
< 0 =⇒ c2n < c2n−1.

�

If the continued fraction is actually finite; that is, if b`+1 = 0 for some `, then
this theorem still holds, but we need to make sure that 2n ≤ `. By the monotone
criterion for sequences, we have

Corollary 7.11. The limits of the even and odd convergents exist, and

c0 < c2 < c4 < · · · < lim c2n ≤ lim c2n−1 < · · · < c5 < c3 < c1.
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7.4.2. Convergence results for continued fractions. As a consequence of
the previous corollary, it follows that lim cn exists if and only if lim c2n = lim c2n−1,
which holds if and only if

(7.23) c2n − c2n−1 =
−b1b2 · · · b2n

q2n q2n−1
→ 0 as n→∞.

In the following theorem, we give one condition under which this is satisfied.

Theorem 7.12. Let {an}∞n=0, {bn}∞n=1 be sequences such that an, bn > 0 for
n ≥ 1 and

∞∑

n=1

anan+1

bn+1
=∞.

Then (7.23) holds, so the continued fraction ξ := a0 + b1
a1 +

b2
a2 +

b3
a3 +

b4
a4 + . . . con-

verges. Moreover, for any even j and odd k, we have

c0 < c2 < c4 < · · · < cj < · · · < ξ < · · · < ck < · · · < c5 < c3 < c1.

Proof. Observe that for any n ≥ 1, we have qn = anqn−1 + bnqn−2 ≥ anqn−1

since bn, qn−2 ≥ 0. Replacing n by n− 1, for n ≥ 2 we have

qn = anqn−1 + bnqn−2 ≥ an · (an−1qn−2) + bnqn−2 = qn−2(anan−1 + bn),

so
qn ≥ qn−2(anan−1 + bn).

Applying this formula over and over again, we find that for any n ≥ 1,

q2n ≥ q2n−2(a2na2n−1 + b2n)

≥ q2n−4(a2n−2a2n−3 + b2n−2) · (a2na2n−1 + b2n)

≥
...

≥ q0(a2a1 + b2)(a4a3 + b4) · · · (a2na2n−1 + b2n).

A similar argument shows that for any n ≥ 2,

q2n−1 ≥ q1(a3a2 + b3)(a5a4 + b5) · · · (a2n−1a2n−2 + b2n−1).

Thus, for any n ≥ 2, we have

q2nq2n−1 ≥ q0q1(a2a1 + b2)(a3a2 + b3) · · · (a2n−1a2n−2 + b2n−1)(a2na2n−1 + b2n).

Factoring out all the bk’s we conclude that

q2nq2n−1 ≥ q0q1b2 · · · b2n · · ·
(

1 +
a2a1

b2

)(

1 +
a3a2

b3

)

· · ·
(

1 +
a2na2n−1

b2n

)

,

which shows that

(7.24)
b1b2 · · · b2n

q2n q2n−1
≤ b1

q0q1
· 1
∏2n−1

k=1

(

1 + akak+1

bk+1

) .

Now recall that (see Theorem 6.2) a series
∑∞

k=1 αk of positive real numbers con-
verges if and only if the infinite product

∏∞
k=1(1 + αk) converges. Thus, since we

are given that
∑∞

k=1
akak+1

bk+1
=∞, we have

∏∞
k=1

(

1 + akak+1

bk+1

)

=∞ as well, so the

right-hand side of (7.24) vanishes as n → ∞. The fact that for even j and odd k,
we have c0 < c2 < c4 < · · · < cj < · · · < ξ < · · · < ck < · · · < c5 < c3 < c1 follows
from Corollary 7.11. This completes our proof. �
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For another convergence theorem, see Problems 6 and 9. An important exam-
ple for which this theorem applies is to simple continued fractions: For a simple
continued fraction 〈a0; a1, a2, a3, . . .〉, all the bn’s equal 1, so

∞∑

n=1

anan+1

bn+1
=

∞∑

n=1

anan+1 =∞,

since all the an’s are positive integers. Thus,

Corollary 7.13. Infinite simple continued fractions always converge and if ξ
is the limit of such a fraction, then the convergents {cn} satisfy

c0 < c2 < c4 < · · · < c2n < · · · < ξ < · · · < c2n−1 < c5 < c3 < c1.

Example 7.12. In particular, the very special fraction Φ := 〈1; 1, 1, 1, . . .〉
converges. To what you ask? Observe that

Φ = 1 +
1

1 +
1

1 +
1

. . .

= 1 +
1

Φ
=⇒ Φ = 1 +

1

Φ
.

We can also get this formula from convergents: The n-th convergent of Φ is

cn = 1 +
1

1 +
1

1 +

.. .

1 +
1

1

= 1 +
1

cn−1
.

Thus, if we set Φ = lim cn, which we know exists, then taking n→∞ on both sides
of cn = 1 + 1

cn−1
, we get Φ = 1 + 1/Φ just as before. Thus, Φ2 − Φ− 1 = 0, which

after solving for Φ we get

Φ =
1 +
√

5

2
,

the golden ratio.

As a unrelated side note, we remark that Φ can be used to get a fairly accurate
(and well-known) approximation to π:

π ≈ 6

5
Φ2 = 3.1416 . . . .

Example 7.13. The continued fraction ξ := 3 + 4
6+

4
6+

4
6+

4
6 . . . was studied

by Rafael Bombelli (1526–1572) and was one of the first continued fractions ever to

be studied. Since
∑∞

n=1
anan+1

bn+1
=
∑∞

n=1
62

4 =∞, this continued fraction converges.

By the same reasoning, the continued fraction η := 6 + 4
6+

4
6+

4
6 . . . also converges.

Moreover, ξ = η − 3 and

η = 6 +
4

6 +
4

6 +
4

. . .

= 6 +
1

η
=⇒ η = 6 +

1

η
=⇒ η2 − 6η − 1 = 0.
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Solving this quadratic equation for ξ, we find that η = 3+
√

13. Hence, ξ = η−3 =√
13. Isn’t this fun!

7.4.3. The canonical continued fraction algorithm and the continued
fraction convergence theorem. Now what if we want to construct the continued
fraction expansion of a real number? We already know how to construct such an
expansion for rational numbers, so let us review this quickly; the same method will
work for irrational numbers. Consider again our friend 157

68 = 〈2; 3, 4, 5〉, and let us

recall how we found its continued fraction expansion. First, we wrote ξ0 := 157
68 as

ξ0 = 2 +
1

ξ1
, where ξ1 =

68

21
> 1.

In particular,

a0 = 2 = bξ0c,
where recall thatbxc, where x is a real number, denotes the largest integer ≤ x.
Second, we wrote ξ1 = 68

21 as

ξ1 = 3 +
1

ξ2
, where ξ2 =

21

5
> 1.

In particular,

a1 = 3 = bξ1c.
Third, we wrote

ξ2 =
21

5
= 4 +

1

ξ3
, where ξ3 = 5 > 1.

In particular,

a2 = 4 = bξ2c.
Finally, a3 = bξ3c = ξ3 cannot be broken up any further so we stop here. Hence,

157

68
= ξ0 = 2 +

1

ξ1
= 2 +

1

3 +
1

ξ2

= 2 +
1

3 +
1

4 +
1

ξ3

= 2 +
1

3 +
1

4 +
1

5

.

We’ve just found the canonical (simple) continued fraction of 157/68.
Notice that we end with the number 5, which is greater than 1; this will always
happen whenever we do the above procedure for a noninteger rational number (such
continued fractions were called regular in Problem 6 of Exercises 7.3). We can do
the same exact procedure for irrational numbers! Let ξ be an irrational number.
First, we set ξ0 = ξ and define a0 := bξ0c ∈ Z. Then, 0 < ξ0 − a0 < 1 (note that
ξ0 6= a0 since ξ0 is irrational), so we can write

ξ0 = a0 +
1

ξ1
, where ξ1 :=

1

ξ0 − a0
> 1,

where we used that 0 < ξ0 − a0. Note that ξ1 is irrational because if not, then ξ0

would be rational contrary to assumption. Second, we define a1 := bξ1c ∈ N. Then,
0 < ξ1 − a1 < 1, so we can write

ξ1 = a1 +
1

ξ2
, where ξ2 :=

1

ξ1 − a1
> 1.
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Note that ξ2 is irrational. Third, we define a2 := bξ2c ∈ N. Then, 0 < ξ2 − a2 < 1,
so we can write

ξ2 = a2 +
1

ξ3
, where ξ3 :=

1

ξ2 − a2
> 1.

Note that ξ3 is irrational. We can continue this procedure to “infinity” creating
a sequence {ξn}∞n=0 of real numbers with ξn > 0 for n ≥ 1 called the complete
quotients of ξ, and a sequence {an}∞n=0 of integers with an > 0 for n ≥ 1 called
the partial quotients of ξ, such that

ξn = an +
1

ξn+1
, n = 0, 1, 2, 3, . . . .

Thus,

(7.25) ξ = ξ0 = a0 +
1

ξ1
= a0 +

1

a1 +
1

ξ2

= · · · “ = ” a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
.. .

.

We emphasize that we have actually not proved that ξ is equal to the infinite con-
tinued fraction on the far right (hence, the quotation marks)! But, as a consequence
of the following theorem, this equality follows; then the continued fraction in (7.25)
is called the canonical (simple) continued fraction expansion of ξ.

Theorem 7.14 (Continued fraction convergence theorem). Let ξ0, ξ1,
ξ2, . . . be any sequence of real numbers with ξn > 0 for n ≥ 1 and suppose that
these numbers are related by

ξn = an +
bn+1

ξn+1
, n = 0, 1, 2, . . . ,

for sequences of real numbers {an}∞n=0, {bn}∞n=1 with an, bn > 0 for n ≥ 1 and which
satisfy

∑∞
n=1

anan+1

bn+1
=∞. Then ξ0 is equal to the continued fraction

ξ0 = a0 +
b1

a1 +

b2

a2 +

b3

a3 +

b4

a4 +

b5

a5 +
. . . .

In particular, for any real number ξ, the canonical continued fraction expansion
(7.25) converges to ξ.

Proof. By Theorem 7.12, the continued fraction a0 + b1
a1 +

b2
a2 +

b3
a3 + . . . con-

verges. Let {ck = pk/qk} denote the convergents of this infinite continued fraction
and let ε > 0. Then by Theorem 7.12, there is an N such that

n > N =⇒ |cn − cn−1| =
b1b2 · · · bn

qn qn−1
< ε.

Fix n > N and consider the finite continued fraction obtained as in (7.25) by
writing out ξ0 to the n-th term:

ξ0 = a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bn−1

an−1 +

bn

ξn
.
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Let {c′k = p′k/q′k} denote the convergents of this finite continued fraction. Then
observe that pk = p′k and qk = q′k for k ≤ n − 1 and c′n = ξ0. Therefore, by our
fundamental recurrence relations, we have

|ξ0 − cn−1| = |c′n − c′n−1| ≤
b1b2 · · · bn

q′n q′n−1

=
b1b2 · · · bn

q′n qn−1
.

By the Wallis-Euler relations, we have

q′n = ξnq′n−1 + bnq′n−2 =

(

an +
bn+1

ξn+1

)

qn−1 + bnqn−2 > anqn−1 + bnqn−2 = qn.

Hence,

|ξ0 − cn−1| ≤
b1b2 · · · bn

q′n qn−1
<

b1b2 · · · bn

qn qn−1
< ε.

Since ε > 0 was arbitrary, it follows that ξ0 = lim cn−1 = ξ. �

Example 7.14. Consider ξ0 =
√

3 = 1.73205 . . .. In this case, a0 := bξ0c = 1.
Thus,

ξ1 :=
1

ξ0 − a0
=

1√
3− 1

=
1 +
√

3

2
= 1.36602 . . . =⇒ a1 := bξ1c = 1.

Therefore,

ξ2 :=
1

ξ1 − a1
=

1

1 +
√

3

2
− 1

= 1 +
√

3 = 2.73205 . . . =⇒ a2 := bξ2c = 2.

Hence,

ξ3 :=
1

ξ2 − a2
=

1√
3− 1

=
1 +
√

3

2
= 1.36602 . . . =⇒ a3 := bξ3c = 1.

Here we notice that ξ3 = ξ1 and a3 = a1. Therefore,

ξ4 :=
1

ξ3 − a3
=

1

ξ1 − a1
= ξ2 = 1 +

√
3 =⇒ a4 := bξ4c = bξ2c = 2.

At this point, we see that we will get the repeating pattern 1, 2, 1, 2, . . ., so we
conclude that √

3 = 〈1; 1, 2, 1, 2, 1, 2, . . .〉 = 〈1; 1, 2〉,
where we indicate that the 1, 2 pattern repeats by putting a bar over them.

Example 7.15. Here is a neat example concerning the Fibonacci and Lucas
numbers; for other fascinating topics on these numbers, see Knott’s fun website [93].

Let us find the continued fraction expansion of the irrational number ξ0 = Φ/
√

5

where Φ is the golden ratio Φ = 1+
√

5
2 :

ξ0 =
Φ√
5

=
1 +
√

5

2
√

5
= 0.72360679 . . . =⇒ a0 := bξ0c = 0.

Thus,

ξ1 :=
1

ξ0 − a0
=

1

ξ0
=

2
√

5

1 +
√

5
= 1.3819660 . . . =⇒ a1 := bξ1c = 1.
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Therefore,

ξ2 :=
1

ξ1 − a1
=

1

2
√

5

1 +
√

5
− 1

=
1 +
√

5√
5− 1

= 2.6180339 . . . =⇒ a2 := bξ2c = 2.

Hence,

ξ3 :=
1

ξ2 − a2
=

1

1 +
√

5√
5− 1

− 2

=

√
5− 1

3−
√

5
= 1.2360679 . . . =⇒ a3 := bξ3c = 1.

Thus,

ξ4 :=
1

ξ3 − a3
=

1√
5− 1

3−
√

5
− 1

=
3−
√

5

2
√

5− 4
=

1 +
√

5

2
= 1.6180339 . . . ;

that is, ξ4 = Φ, and so, a4 := bξ4c = 1. Let us do this one more time:

ξ5 :=
1

ξ4 − a4
=

1

1 +
√

5

2
− 1

=
2√

5− 1
=

1 +
√

5

2
= Φ,

and so, a5 = a4 = 1. Continuing on this process, we will get ξn = Φ and an = 1 for
the rest of the n’s. In conclusion, we have

Φ√
5

= 〈0; 1, 2, 1, 1, 1, 1, . . .〉 = 〈0; 1, 2, 1〉.

The convergents of this continued fraction are fascinating. Recall that the Fibonacci
sequence {Fn}, named after Leonardo Pisano Fibonacci (1170–1250), is defined as
F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2, which gives the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

The Lucas numbers {Ln}, named after François Lucas (1842–1891), are defined
by

L0 := 2 , L1 = 1 , Ln = Ln−1 + Ln−2 , n = 2, 3, 4, . . . ,

and which give the sequence

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .

If you work out the convergents of Φ√
5

= 〈0; 1, 2, 1, 1, 1, 1, . . .〉 what you get is the

fascinating result:

(7.26)

Φ√
5

= 〈0; 1, 2, 1〉 has convergents

0

2
,
1

1
,
2

3
,
3

4
,
5

7
,

8

11
,
13

18
,
21

29
,
34

47
,
55

76
,

89

123
, . . . =

Fibonacci numbers

Lucas numbers
;

of course, we do miss the other 1 in the Fibonacci sequence. For more fascinating
facts on Fibonacci numbers see Problem 7. Finally, we remark that the canonical
simple fraction expansion of a real number is unique, see Problem 8.
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7.4.4. The numbers π and e. We now discuss the continued fraction expan-
sions for the famous numbers π and e. Consider π first:

ξ0 = π = 3.141592653 . . . =⇒ a0 := bξ0c = 3.

Thus,

ξ1 :=
1

π − 3
=

1

0.141592653 . . .
= 7.062513305 . . . =⇒ a1 := bξ1c = 7.

Therefore,

ξ2 :=
1

ξ1 − a1
=

1

0.062513305 . . .
= 15.99659440 . . . =⇒ a2 := bξ2c = 15.

Hence,

ξ3 :=
1

ξ2 − a2
=

1

0.996594407 . . .
= 1.00341723 . . . =⇒ a3 := bξ3c = 1.

Let us do this one more time:

ξ4 :=
1

ξ3 − a3
=

1

0.003417231 . . .
= 292.6345908 . . . =⇒ a4 := bξ4c = 292.

Continuing this process (at Davis’ Broadway cafe and after 314 free refills), we get

(7.27) π = 〈3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, . . .〉.
Unfortunately (or perhaps fortunately) there is no known pattern that the partial
quotients follow! The first few convergents for π = 3.141592653 . . . are

c0 = 3 , c1 =
22

7
= 3.142857142 . . . , c2 =

333

106
= 3.141509433 . . .

c4 =
355

113
= 3.141592920 . . . , c5 =

103993

33102
= 3.141592653 . . .

In stark contrast to π, Euler’s number e has a shockingly simple pattern, which
we ask you to work out in Problem 2:

e = 〈2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .〉
We will prove that this pattern continues in Section 7.7!

7.4.5. Irrationality. We now discuss when continued fractions represent ir-
rational numbers (cf. [120]).

Theorem 7.15. Let {an}∞n=0, {bn}∞n=1 be sequences rational numbers such that
an, bn > 0 for n ≥ 1, 0 < bn ≤ an for all n sufficiently large, and

∑∞
n=1

anan+1

bn+1
=

∞. Then the real number

ξ = a0 +
b1

a1 +

b2

a2 +

b3

a3 +

b4

a4 +

b5

a5 +
. . . is irrational.

Proof. First of all, the continued fraction defining ξ converges by Theorem
7.12. Suppose that 0 < bn ≤ an for all n ≥ m + 1 with m > 0. Observe that if we
define

η = am +
bm+1

am+1 +

bm+2

am+2 +

bm+3

am+3 +
. . . ,

which also converges by Theorem 7.12, then η > am > 0 and we can write

ξ = a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bm

η
.
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By Theorem 7.4, we know that

ξ = a0 +
b1

a1 +

b2

a2 +

b3

a3 +
. . .

+

bm

η
=

ηpm + bmpm−1

ηqm + bmqm−1
.

Solving the last equation for η, we get

ξ =
ηpm + bmpm−1

ηqm + bmqm−1
⇐⇒ η =

ξbmqm−1 − bmpm−1

pm − ξqm
.

Note that since η > am, we have ξ 6= pm/qm. Since all the an, bn’s are rational,
it follows that ξ is irrational if and only if η is irrational. Thus, all we have to do
is prove that η is irrational. Since am is rational, all we have to do is prove that
bm+1

am+1 +
bm+2

am+2 +
bm+3

am+3 + . . . is irrational, where 0 < bn ≤ an for all n ≥ m + 1. In

conclusion, we might as well assume from the start that

ξ =
b1

a1 +

b2

a2 +

b3

a3 +

b4

a4 +

b5

a5 +
. . .

where 0 < bn ≤ an for all n. We shall do this for the rest of the proof. Assume, by

way of contradiction, that ξ is rational. Define ξn := bn

an +
bn+1

an+1 +
bn+2

an+2 + . . .. Then

for each n = 1, 2, . . ., we have

(7.28) ξn =
bn

an + ξn+1
=⇒ ξn+1 =

bn

ξn
− an.

By assumption, we have 0 < bn ≤ an for all n. It follows that ξn > 0 for all n and
therefore

ξn =
bn

an + ξn+1
<

bn

an
≤ 1,

therefore 0 < ξn < 1 for all n. Since ξ0 = ξ, which is rational by assumption, by
the second equality in (7.28) and induction it follows that ξn is rational for all n.
Since 0 < ξn < 1 for all n, we can therefore write ξn = sn/tn where 0 < sn < tn
for all n with sn and tn relatively prime integers. Now from the second equality in
(7.28) we see that

sn+1

tn+1
= ξn+1 =

bn

ξn
− an =

bntn
sn
− an =

bntn − ansn

sn
.

Hence,

sn sn+1 = (bntn − ansn)tn+1.

Thus, tn+1|sn sn+1. By assumption, sn+1 and tn+1 are relatively prime, so tn+1

must divide sn. In particular, tn+1 < sn. However, sn < tn by assumption, so
tn+1 < tn. In summary, {tn} is a sequence of positive integers satisfying

t1 > t2 > t3 > · · · > tn > tn+1 > · · · > 0,

which of course is an absurdity because we would eventually reach zero! �

Example 7.16. (Irrationality of e, Proof III) Since we already know that
(see (7.14))

e = 2 +
2

2+

3

3+

4

4+

5

5+
. . . ,

we certainly have bn ≤ an for all n, hence e is irrational!

As another application of this theorem, we get
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Corollary 7.16. Any infinite simple continued fraction represents an irra-
tional number. In particular, a real number is irrational if and only if it can be
represented by an infinite simple continued fraction.

Indeed, for a simple continued fraction we have bn = 1 for all n, so 0 < bn ≤ an

for all n ≥ 1 holds.

Exercises 7.4.

1. (a) Use the simple continued fraction algorithm to the find the expansions of

(a)
√

2 , (b)
1 −

√
8

2
, (c)

√
19 , (d) 3.14159 , (e)

√
7.

(b) Find the value of the continued fraction expansions

(a) 4 +
2

8+

2

8+

2

8+
. . . , (b) 〈3〉 = 〈3; 3, 3, 3, 3, 3, . . .〉.

The continued fraction in (a) was studied by Pietro Antonio Cataldi (1548–1626)
and is one of the earliest infinite continued fractions on record.

2. In Section 7.7, we will prove the conjectures you make in (a) and (b) below.
(a) Using a calculator, we find that e ≈ 2.718281828. Verify that 2.718281828 =

〈2, 1, 2, 1, 1, 4, 1, 1, 6, . . .〉. From this, conjecture a formula for an, n = 0, 1, 2, 3, . . .,
in the canonical continued fraction expansion for e.

(b) Using a calculator, we find that e+1
e−1

≈ 2.1639534137. Find a0, a1, a2, a3 in the
canonical continued fraction expansion for 2.1639534137 and conjecture a formula
for an, n = 0, 1, 2, 3, . . ., in the canonical continued fraction expansion for e+1

e−1
.

3. Let n ∈ N. Prove that
√

n2 + 1 = 〈n; 2n〉 by using the simple continued fraction

algorithm on
√

n2 + 1. Using the same technique, find the canonical expansion of√
n2 + 2. (See Problem 5 below for other proofs.)

4. In this problem we show that any positive real number can be written as two different
infinite continued fractions. Let a be a positive real number. Prove that

a = 1 +
k

1 +
k

1 +
k

1 +
. . .

=
`

1 +
`

1 +
`

1 +
. . .

,

where k = a2 − a and ` = a2 + a. Suggestion: Link the limits of continued fractions on
the right to the quadratic equations x2 − x − k = 0 and x2 + x − ` = 0, respectively.
Find neat infinite continued fractions for 1, 2, and 3.

5. Let x be any positive real number and suppose that x2 − ax − b = 0 where a, b are
positive. Prove that

x = a +
b

a+

b

a+

b

a+

b

a+

b

a+
. . . .

Using this, prove that

√

α2 + β = α +
β

2α+

β

2α+

β

2α+

β

2α+
. . . .

6. (a) Prove that a continued fraction a0 + b1
a1 +

b2
a2 +

b3
a3 + . . . converges if and only if

c0 +
∞∑

n=1

(−1)n−1b1b2 · · · bn

qn qn−1

converges, in which case, this sum is exactly a0 + b1
a1 +

b2
a2 +

b3
a3 + . . .. Suggestion:

Consider the telescoping sum cn = c0 + (c1 − c0) + (c2 − c1) + · · ·+ (cn − cn−1). In
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particular, for a simple continued fraction ξ = 〈a0; a1, a2, a3, . . .〉, we have

ξ = 1 +
∞∑

n=1

(−1)n−1

qn qn−1
.

(b) Assume that ξ = a0 + b1
a1 +

b2
a2 +

b3
a3 + . . . converges. Prove that

ξ = c0 +
∞∑

n=2

(−1)nanb1b2 · · · bn−1

qn qn−2
.

In particular, for a simple continued fraction ξ = 〈a0; a1, a2, a3, . . .〉, we have

ξ = 1 +
∞∑

n=2

(−1)nan

qn qn−2
.

7. Let {cn} be the convergents of Φ = 〈1; 1, 1, 1, 1, 1, 1, . . .〉.
(1) Prove that for n ≥ 1, we have

Fn+1

Fn
= cn−1. (That is, pn = Fn+2 and qn = Fn+1.)

Conclude that

Φ = lim
n→∞

Fn+1

Fn
,

a beautiful (but nontrivial) fact!
(2) Using the previous problem, prove the incredibly beautiful formulas

Φ =
∞∑

n=1

(−1)n−1

FnFn+1
and Φ−1 =

∞∑

n=2

(−1)n

FnFn+2
.

8. Let α = 〈a0; a1, a2, . . .〉, β = 〈b0; b1, b2, . . .〉 be infinite simple continued fractions. Prove
that if α = β, then ak = bk for all k = 0, 1, 2, . . ., which shows that the canonical simple
fraction expansion of an irrational real number is unique. See Problem 6 in Exercises
7.3 for the rational case.

9. A continued fraction a0 + 1
a1 +

1
a2 +

1
a3 +

1
a4 + . . . where the an are real numbers with

an > 0 for n ≥ 1 is said to be unary. In this problem we prove that a unary continued
fraction converges if and only if

∑
an = ∞. Henceforth, let a0 + 1

a1 +
1

a2 +
1

a3 + . . . be
unary.

(i) Prove that qn ≤∏n
k=1(1 + ak).

(ii) Using the inequality derived in (9i), prove that if the unary continued fraction
converges, then

∑
an = ∞.

(iii) Prove that

q2n ≥ 1 + a1(a2 + a4 + · · · + a2n) , q2n−1 ≥ a1 + a3 + · · · + a2n−1,

where the first inequality holds for n ≥ 1 and the second for n ≥ 2.
(iv) Using the inequalities derived in (9iii), prove that if

∑
an = ∞, then the unary

continued fraction converges.

7.5. Diophantine approximations and the mystery of π solved!

For practical purposes, it is necessary to approximate irrational numbers by
rational numbers. Also, if a rational number has a very large denominator, e.g.

1234567
121110987654321 , then it is hard to work with, so for practical purposes it would
be nice to have a “good” approximation to such a rational number by a rational
number with a more manageable denominator. Diophantine approximations is the
subject of finding “good” or even “best” rational approximations to real numbers.
Continued fractions turn out to play a very important role in this subject, to which
this section is devoted. We start with a journey concerning the mysterious fraction
representations of π.
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7.5.1. The mystery of π and good and best approximations. Here
we review some approximations to π = 3.14159265 . . . that have been discovered
throughout the centuries (see Section 4.10 for a thorough study):

(1) 3 in the Holy Bible circa 1000 B.C. by the Hebrews; See Book of I Kings,
Chapter 7, verse 23, and Book of II Chronicles, Chapter 4, verse 2:

And he made a molten sea, ten cubits from the one brim to the other:
it was round all about, and his height was five cubits: and a line of
thirty cubits did compass it about. I Kings 7:23.

(2) 22/7 = 3.14285714 . . . (correct to two decimal places) by Archimedes of Syra-
cuse (287–212) circa 250 B.C.

(3) 333/106 = 3.14150943 . . . (correct to four decimal places), a lower bound found
by Adriaan Anthoniszoon (1527–1607) circa 1600 A.D.

(4) 355/113 = 3.14159292 . . . (correct to six decimal places) by Tsu Chung-Chi
(429–501) circa 500 A.D.

Hmmm. . . these numbers certainly seem familiar! These numbers are exactly
the first four convergents of the continued fraction expansion of π that we worked
out in Subsection 7.4.4! From this example, it seems like approximating real num-
bers by rational numbers is intimately related to continued fractions; this is indeed
the case as we shall see. To start our adventure in approximations, we start with
the concepts of “good” and “best” approximations.

A rational number p/q is called a good approximation to a real number ξ if2

for all rational
a

b
6= p

q
with 1 ≤ b ≤ q, we have

∣
∣
∣ξ − p

q

∣
∣
∣ <

∣
∣
∣ξ − a

b

∣
∣
∣;

in other words, we cannot get closer to the real number ξ with a different rational
number having a denominator ≤ q.

Example 7.17. 4/1 is not a good approximation to π because 3/1, which has
an equal denominator, is closer to π:

∣
∣
∣π − 3

1

∣
∣
∣ = 0.141592 . . . <

∣
∣
∣π − 4

1

∣
∣
∣ = 0.858407 . . . .

Example 7.18. As another example, 7/2 is not a good approximation to π
because 3/1, which has a smaller denominator than 7/2, is closer to π:

∣
∣
∣π − 3

1

∣
∣
∣ = 0.141592 . . . <

∣
∣
∣π − 7

2

∣
∣
∣ = 0.358407 . . . .

This example shows that you wouldn’t want to approximate π with 7/2 be-
cause you can approximate it with the “simpler” number 3/1 that has a smaller
denominator.

2Warning: Some authors define good approximation as: p
q

is a good approximation to ξ

if for all rational a
b

with 1 ≤ b < q, we have
∣
∣ξ − p

q

∣
∣ <

∣
∣ξ − a

b

∣
∣. This definition, although only

slightly different from ours, makes some proofs considerably easier. Moreover, with this definition,

1, 000, 000/1 is a good approximation to π (why?)! (In fact, any integer, no matter how big, is

a good approximation to π.) On the other hand, with our definition, the only integer that is a
good approximation to π is 3. This is why we like our definition. Also, some authors define best

approximation as: p
q

is a best approximation to ξ if for all rational a
b

with 1 ≤ b < q, we have

|qξ − p| < |bξ − a|; with this definition of “best,” one can shorten the proof of Theorem 7.20 —

but then one must live with the fact that 1, 000, 000/1 is a best approximation to π.
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Example 7.19. On the other hand, 13/4 is a good approximation to π. This
is because ∣

∣
∣π − 13

4

∣
∣
∣ = 0.108407 . . . ,

and there are no fractions closer to π with denominator 4, and the closest distinct
fractions with the smaller denominators 1, 2, and 3 are 3/1, 7/2, and 10/3, which
satisfy
∣
∣
∣π − 3

1

∣
∣
∣ = 0.141592 . . . ,

∣
∣
∣π − 7

2

∣
∣
∣ = 0.358407 . . . ,

∣
∣
∣π − 10

3

∣
∣
∣ = 0.191740 . . . .

Thus,

for all rational
a

b
6= 13

4
with 1 ≤ b ≤ 4, we have

∣
∣
∣π − 13

4

∣
∣
∣ <

∣
∣
∣π − a

b

∣
∣
∣.

Now one can argue: Is 13/4 really that great of an approximation to π? For
although 3/1 is not as close to π, it is certainly much easier to work with than
13/4 because of the larger denominator 4 — moreover, we have 13/4 = 3.25, so
we didn’t even gain a single decimal place of accuracy in going from 3.00 to 3.25!
These are definitely valid arguments. One can also see the validity of this argument
by combining fractions in the inequality in the definition of good approximation:
p/q is a good approximation to ξ if

for all rational
a

b
6= p

q
with 1 ≤ b ≤ q, we have

|qξ − p|
q

<
|bξ − a|

b
,

where we used that q, b > 0. Here, we can see that |qξ−p|
q < |bξ−a|

b may hold not

because p/q is dramatically much closer to ξ than is a/b but simply because q is
a lot larger than b (like in the case 13/4 and 3/1 where 4 is much larger than 1).
To try and correct this somewhat misleading notion of “good” we introduce the
concept of a “best” approximation by clearing the denominators.

A rational number p/q is called a best approximation to a real number ξ if

for all rational
a

b
6= p

q
with 1 ≤ b ≤ q, we have

∣
∣qξ − p

∣
∣ <

∣
∣bξ − a

∣
∣.

Example 7.20. We can see that p/q = 13/4 is not a best approximation to π
because with a/b = 3/1, we have 1 ≤ 1 ≤ 4 yet

∣
∣4 · π − 13

∣
∣ = 0.433629 . . . 6<

∣
∣1 · π − 3

∣
∣ = 0.141592 . . . .

Thus, 13/4 is a good approximation to π but is far from a best approximation.

In the following proposition, we show that any best approximation is a good
one.

Proposition 7.17. A best approximation is a good one, but not vice versa.

Proof. We already gave an example showing that a good approximation may
not be a best one, so let p/q be a best approximation to ξ; we shall prove that p/q is
a good one too. Let a/b 6= p/q be rational with 1 ≤ b ≤ q. Then |qξ − p| < |b− ξa|
since p/q is a best approximation, and also, 1

q ≤ 1
b since b ≤ q, hence

∣
∣
∣ξ − p

q

∣
∣
∣ =
|qξ − p|

q
<
|bξ − a|

q
≤ |bξ − a|

b
=
∣
∣
∣ξ − a

b

∣
∣
∣ =⇒

∣
∣
∣ξ − p

q

∣
∣
∣ <

∣
∣
∣ξ − a

b

∣
∣
∣.

This shows that p/q is a good approximation. �
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In the following subsection, we shall prove the best approximation theorem,
Theorem 7.20, which states that

(Best approximation theorem) Every best approximation of a
real number (rational or irrational) is a convergent of its canoni-
cal continued fraction expansion and conversely, each of the con-
vergents c1, c2, c3, . . . is a best approximation.

Unfortunately, the proof of this theorem is probably one of the hardest/longest
ones we’ve had the pleasure of meeting so far in our journey through this book; I
don’t know how to make the proof significantly easier without changing the defi-
nition of “best” as described in a footnote a couple pages back.3 We suggest that
you skip the proofs of Lemma 7.19 and Theorem 7.20 at a first reading; the proof
of Theorem 7.18 is not bad and the readings in between the proofs are illustrative.

7.5.2. Approximations, convergents, and the “most irrational” of all
irrational numbers. The objective of this subsection is to understand how con-
vergents approximate real numbers. In the following theorem, we show that the
convergents of the simple continued fraction of a real number ξ get increasingly
closer to ξ. (See Problem 4 for the general case of nonsimple continued fractions.)

Theorem 7.18 (Fundamental approximation theorem). Let ξ be an ir-
rational number and let {cn = pn/qn} be the convergents of its canonical continued
fraction. Then the following inequalities hold:

∣
∣ξ − cn

∣
∣ <

1

qnqn+1
,
∣
∣ξ − cn+1

∣
∣ <

∣
∣ξ − cn

∣
∣,

∣
∣qn+1ξ − pn+1

∣
∣ <

∣
∣qnξ − pn

∣
∣.

If ξ is a rational number and the convergent cn+1 is defined (that is, if ξ 6= cn),
then these inequalities still hold.

Proof. We prove this theorem for ξ irrational; the rational case is proved
using a similar argument, which we leave to you if you’re interested. The proof of
this theorem is very simple. We just need the inequalities

(7.29) cn < cn+2 < ξ < cn+1 or cn+1 < ξ < cn+2 < cn,

depending on whether n is even or odd, respectively, and the fundamental recur-
rence relations (see Corollary 7.6):

(7.30) cn+1 − cn =
(−1)n

qn qn+1
, cn+2 − cn =

(−1)nan+2

qn qn+2
.

Now the first inequality of our theorem follows easily:

∣
∣ξ − cn

∣
∣

by (7.29)
<

∣
∣cn+1 − cn

∣
∣

by (7.30)
=

∣
∣
∣

(−1)n

qn qn+1

∣
∣
∣ =

1

qn qn+1
.

3Unfortunately what is little recognized is that the most worthwhile scientific books are those

in which the author clearly indicates what he does not know; for an author most hurts his readers

by concealing difficulties. Evariste Galois (1811–1832). [142].
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We now prove that
∣
∣qn+1ξ− pn+1

∣
∣ <

∣
∣qnξ− pn

∣
∣. To prove this, we work on the left

and right-hand sides separately. For the left-hand side, we have
∣
∣qn+1ξ − pn+1

∣
∣ = qn+1

∣
∣
∣ξ − pn+1

qn+1

∣
∣
∣ = qn+1

∣
∣ξ − cn+1

∣
∣ < qn+1

∣
∣cn+2 − cn+1

∣
∣ by (7.29)

= qn+1
1

qn+1 qn+2
by (7.30)

=
1

qn+2
.

Hence, 1
qn+2

>
∣
∣qn+1ξ − pn+1

∣
∣. Now,

∣
∣qnξ − pn

∣
∣ = qn

∣
∣
∣ξ − pn

qn

∣
∣
∣ = qn

∣
∣ξ − cn

∣
∣ > qn

∣
∣cn+2 − cn

∣
∣ by (7.29)

= qn
an+2

qn qn+2
by (7.30)

=
an+2

qn+2
≥ 1

qn+2
>
∣
∣qn+1ξ − pn+1

∣
∣.

This proves our third inequality. Finally, using what we just proved, and that

qn+1 = an+1qn + qn−1 ≥ qn + qn−1 > qn =⇒ 1

qn+1
<

1

qn
,

we see that
∣
∣ξ − cn+1

∣
∣ =

∣
∣
∣ξ − pn+1

qn+1

∣
∣
∣ =

1

qn+1

∣
∣qn+1ξ − pn+1

∣
∣

<
1

qn+1

∣
∣qnξ − pn

∣
∣

<
1

qn

∣
∣qnξ − pn

∣
∣ =

∣
∣
∣ξ − pn

qn

∣
∣
∣ =

∣
∣ξ − cn

∣
∣.

�

It is important to only use the canonical expansion when ξ is rational. This is
because the statement that

∣
∣qn+1ξ − pn+1

∣
∣ <

∣
∣qnξ − pn

∣
∣ may not not be true if we

don’t use the canonical expansion.

Example 7.21. Consider 5/3, which has the canonical expansion:

5

3
= 〈1; 1, 2〉 = 1 +

1

1 +
1

2

.

We can write this as the noncanonical expansion by breaking up the 2:

ξ = 〈1; 1, 1, 1〉 = 1 +
1

1 +
1

1 +
1

1

=
5

3
.

The convergents for ξ are c0 = 1/1, c2 = 2/1, c3 = 3/2, and ξ = c4 = 5/3. In this
case,

∣
∣q3ξ − p3

∣
∣ =

∣
∣
∣2 · 5

3
− 3
∣
∣
∣ =

1

3
=
∣
∣
∣1 · 5

3
− 2
∣
∣
∣ =

∣
∣q2ξ − p2

∣
∣,

so for this example,
∣
∣q2ξ − p2

∣
∣ 6<

∣
∣q2ξ − p2

∣
∣.
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We now discuss the “most irrational” of all irrational numbers. From the best
approximation theorem (Theorem 7.20 we’ll prove in a moment) we know that the
best approximations of a real number ξ are convergents and from the fundamental
approximation theorem 7.18, we have the error estimate

(7.31)
∣
∣ξ − cn

∣
∣ <

1

qnqn+1
=⇒

∣
∣qnξ − pn

∣
∣ <

1

qn+1
.

This shows you that the larger the qn’s are, the better the best approximations
are. Since the qn’s are determined by the recurrence relation qn = anqn−1 + qn−2,
we see that the larger the an’s are, the larger the qn’s are. In summary, ξ can be
approximated very “good” by rational numbers when it has large an’s and very
“bad” by rational numbers when it has small an’s.

Example 7.22. Here is a “good” example: Recall from (7.27) the continued
fraction for π: π = 〈3; 7, 15, 1, 292, 1, 1, 1, 2, 1, . . .〉, which has convergents c0 = 3,
c1 = 22

7 , c2 = 333
106 , c3 = 355

113 , c4 = 103993
33102 , . . .. Because of the large number

a4 = 292, we see from (7.31) that we can approximate π very nicely with c3: Using
the left-hand equation in (7.31), we see that

∣
∣π − c3

∣
∣ <

1

q3q4
=

1

113 · 33102 = 0.000000267 . . . ,

which implies that c3 = 355
113 approximates π to within six decimal places! (Just to

check, note that π = 3.14159265 . . . and 355
113 = 3.14159292 . . ..) It’s amazing how

many decimal places of accuracy we can get with just taking the c3 convergent!

Example 7.23. (The “most irrational” number) Here is a “bad” example:
From our discussion after (7.31), we saw that the smaller the an’s are, the worse
it can be approximated by rationals. Of course, since 1 is the smallest natural
number, we can consider the golden ratio

Φ =
1 +
√

5

2
= 〈1; 1, 1, 1, 1, 1, 1, 1, . . .〉 = 1.6180339887 . . .

as being the “worst” of all irrational numbers that can be approximated by rational
numbers. Indeed, we saw that we could get six decimal places of π by just taking
c3; for Φ we need c18! (Just to check, we find that c17 = 4181

2584 = 1.6180340557 . . .

— not quite six decimals — and c18 = 6765
4181 = 1.618033963 . . . — got the sixth

one. Also notice the large denominator 4181 just to get six decimals.) Therefore, Φ
wins the prize for the “most irrational” number in that it’s the “farthest” from the
rationals! We continue our discussion on “most irrational” in Subsection 7.10.3.

We now show that best approximations are exactly convergents; this is one of
the most important properties of continued fractions. In the following lemma we
begin by showing that best approximations are convergents and in the next theorem
we prove the converse.

Lemma 7.19. Every best approximation of a real number (rational or irrational)
is a convergent of the simple continued fraction expansion of the real number.

Proof. Let p/q be a best approximation of a real number ξ. Just so that
we don’t have to think about terminating continued fractions (the rational num-
bers) let’s assume that ξ is irrational; the case when ξ is rational is handled in
a similar manner. We need to show that p/q equals one of these convergents
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p0/q0, p1/q1, p2/q2, . . . of the continued fraction expansion of ξ = 〈a0; a1, a2, . . .〉.
For sake of contradiction, assume that p/q is not one of the convergents; we shall
derive a contradiction. Recall that the convergents of ξ satisfy

(7.32)
a0

1
=

p0

q0
<

p2

q2
<

p4

q4
< · · · < ξ < · · · < p5

q5
<

p3

q3
<

p1

q1
.

Step 1: We first prove that p/q must lie between the two extremities of this
list:

a0

1
=

p0

q0
<

p

q
<

p1

q1

Suppose this is not true. Then p/q < p0/q0 or p1/q1 < p/q (there cannot be
equalities here because p/q is by assumption not equal to a convergent). Suppose
that p/q < p0/q0. Then from (7.32), we see that

p

q
< a0 < ξ.

This shows that |ξ − a0| < |ξ − p/q|, which implies that

|1 · ξ − a0| ≤ q · |ξ − a0| < q · |ξ − p/q| = |qξ − p|.
Since 1 ≤ 1 ≤ q, this contradicts that p/q is a best approximation to ξ, therefore
p/q < p0/q0 cannot hold. On the other hand, suppose that p1/q1 < p/q. Then
from (7.32), we see that

ξ <
p1

q1
<

p

q
.

This shows that qξ < qp1/q1 < p, and subtracting p from everything, we get

qξ − p < q
p1

q1
− p < 0,

which implies that

0 <
|qp1 − pq1|

q1
=
∣
∣
∣
qp1

q1
− p
∣
∣
∣ <

∣
∣qξ − p

∣
∣.

In particular, |qp1 − pq1|, which is an integer, is not zero, so |qp1 − pq1| ≥ 1. Thus,

1

q1
<
∣
∣qξ − p

∣
∣.

Now recall that q1 = a1 and a1 := bξ1c < ξ1 where we write ξ = a0 + 1
ξ1

, so

|ξ − a0

1
| = 1

ξ1
<

1

q1
<
∣
∣qξ − p

∣
∣.

This contradicts that p/q is a best approximation to ξ and completes the proof of
Step 1. We now move to

Step 2: We now complete the proof. By Step 1, we have p0/q0 < p/q < p1/q1,
so by the inequalities (7.32), we see that

(7.33)
pn

qn
<

p

q
<

pn+2

qn+2
< ξ <

pn+1

qn+1
or

pn+1

qn+1
< ξ <

pn+2

qn+2
<

p

q
<

pn

qn
,

depending on whether p/q is to the left or right of ξ. In either case, the inequalities
(7.33) show that

|pqn − pnq|
qqn

=
∣
∣
∣
p

q
− pn

qn

∣
∣
∣ <

∣
∣
∣
pn+1

qn+1
− pn

qn

∣
∣
∣ =

∣
∣
∣cn+1 − cn

∣
∣
∣ =

1

qnqn+1
,
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where we used the fundamental recurrence relation at the end. Since p/q 6= pn/qn,
the integer |pqn − pnq| must be ≥ 1, so we actually have

(7.34)
1

qqn
<

1

qnqn+1
=⇒ qn+1 < q.

The inequalities (7.33) also imply that

|pqn+2 − pn+2q|
qqn+2

=
∣
∣
∣
p

q
− pn

qn

∣
∣
∣ <

∣
∣
∣ξ − p

q

∣
∣
∣.

Since p/q 6= pn+2/qn+2, the integer |pqn+2 − pn+2q| must be ≥ 1, so we actually
have

1

qqn+2
<
∣
∣
∣ξ − p

q

∣
∣
∣ =⇒ 1

qn+2
<
∣
∣qξ − p

∣
∣.

Also, by the fundamental approximation theorem, Theorem 7.18, we have

|qn+1ξ − pn+1| = qn+1

∣
∣
∣ξ − pn+1

qn+1

∣
∣
∣ ≤ qn+1 ·

1

qn+1qn+2
=

1

qn+2
,

therefore

|qn+1ξ − pn+1| <
∣
∣qξ − p

∣
∣.

However, this inequality plus the fact that qn+1 < q from (7.34) shows that p/q is
not a best approximation to ξ. This contradiction completes Step 2 and finishes
our proof. �

We now prove the converse.

Theorem 7.20 (Best approximation theorem). Every best approximation
of a real number (rational or irrational) is a convergent of its canonical continued
fraction expansion and conversely, each of the convergents c1, c2, c3, . . . is a best
approximation.

Proof. We already showed that every best approximation is a convergent, so
we just need to show that each convergent c1, c2, c3, . . . is a best approximation.
Let ξ be a real number with convergents {cn = pn/qn}.

We prove that pn/qn is a best approximation using induction. We start with
the n = 1 case. (This is the “easy” part of the proof.) We prove that p1/q1 is a
best approximation by contradiction. If p1/q1 is not a best approximation, then
by definition of best approximation, there must exist another fraction a/b 6= p1/q1

with 1 ≤ b ≤ q1 and

|bξ − a| ≤ |q1ξ − p1|.
Using this inequality we’ll derive a contradiction. Note that this inequality implies,
in particular, that in the case that ξ happens to be rational, ξ1 6= p1/q1. We derive
a contradiction by simply working with the definition of the canonical expansion:

ξ = a0 +
1

ξ1
, where ξ1 > 1 and a1 := bξ1c

and the definitions of q1 and p1:

(7.35) q1 = a1 = bξ1c and p1 = a0a1 + 1 = a0q1 + 1.

Therefore, the inequality |bξ − a| ≤ |q1ξ − p1| can be written as
∣
∣
∣b
(

a0 +
1

ξ1

)

− a
∣
∣
∣ ≤

∣
∣
∣q1

(

a0 +
1

ξ1

)

−
(
a0q1 + 1

)
∣
∣
∣.
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After rearrangements and cancellations, this takes the form

(7.36)
∣
∣
∣ba0 +

b

ξ1
− a
∣
∣
∣ ≤

∣
∣
∣
q1

ξ1
− 1
∣
∣
∣ =⇒

∣
∣
∣a− ba0 −

b

ξ1

∣
∣
∣ ≤

∣
∣
∣1− q1

ξ1

∣
∣
∣.

Since (see (7.35)) 0 < q1 = bξ1c ≤ ξ1 it follows that 0 < q1/ξ1 ≤ 1, so |1−q1/ξ1| < 1.
Hence, by (7.36), we have

∣
∣
∣a− ba0 −

b

ξ1

∣
∣
∣ < 1 =⇒ b

ξ1
− 1 < a− ba0 < 1 +

b

ξ1
.

By assumption, 1 ≤ b ≤ q1 = bξ1c, so 0 < b/ξ1 ≤ 1, and hence −1 < a − ba0 < 2.
Thus, as a − ba0 is an integer, this integer must be either 0 or 1. If a − ba0 = 0,
then from (7.36), we have

∣
∣
∣

b

ξ1

∣
∣
∣ ≤

∣
∣
∣1− q1

ξ1

∣
∣
∣ =⇒ b ≤

∣
∣ξ1 − q1

∣
∣ = ξ1 − bξ1c < 1,

which shows that b < 1, an impossibility because 1 ≤ b. On the other hand, if
a− ba0 = 1, then again by (7.36), we have

∣
∣
∣1− b

ξ1

∣
∣
∣ ≤

∣
∣
∣1− q1

ξ1

∣
∣
∣ =⇒

∣
∣ξ1 − b

∣
∣ ≤

∣
∣ξ1 − q1

∣
∣ =⇒ ξ1 − b ≤ ξ1 − q1,

where we used that ξ1 − q1 = ξ1 − bξ1c ≥ 0 and b ≤ q1 so that ξ1 − b ≥ 0 as well.
Cancelling off the ξ1’s, we see that q1 ≤ b. Since b ≤ q1, we must therefore have
b = q1. Then the equality a− ba0 = 1 shows that (see (7.35))

a = a0b + 1 = a0q1 + 1 = p1.

Thus, a/b = p1/q1, another contradiction since we assumed from the start that
a/b 6= p1/q1. We have thus finished proving the base case.

Assume now that pn/qn with n ≥ 1 is a best approximation; we shall prove
that pn+1/qn+1 is a best approximation. (This is the “harder” part of this proof.)
We may assume that ξ 6= pn+1/qn+1, for otherwise pn+1/qn+1 is automatically a
best approximation. From Theorem 7.18 we know that

(7.37) |yξ − x| < |qnξ − pn| for x = pn+1 and y = qn+1.

The idea for this part of the proof is simple but very time consuming: We minimize
the left-hand side of this inequality over all rational x/y with 1 ≤ y ≤ qn+1, then
prove that the minimizing x/y is a best approximation, and finally, prove that
x/y = pn+1/qn+1. To minimize the left-hand side of (7.37), we first let q be the
smallest denominator y of all rational numbers x/y with y > 0 such that

(7.38) |yξ − x| < |qnξ − pn|.
(Such a q exists by well-ordering. To see this, just let A ⊆ N consist of all denom-
inators y > 0 of rational numbers x/y such that (7.38) holds. By (7.37) we know
that qn+1 ∈ A so A 6= ∅. By well-ordering, the set A has a smallest element; this
element is q.) Since q is the smallest denominator y satisfying (7.38) for all x/y
with y > 0, by (7.37) we must have q ≤ qn+1. Now let p be the natural number x
that makes |qξ − x| the smallest. In particular,

|qξ − p| < |qnξ − pn|.
Note that p/q is reduced, for if p = jx and q = jy with j ≥ 2 for some x, y, then
y < q and |yξ − x| ≤ j|yξ − x| = |qξ − p| < |qnξ − pn|, but this contradicts the
definition of q as the smallest positive y satisfying (7.38). Also note that since
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|qξ − p| < |qnξ − pn| and pn/qn is a best approximation by hypothesis, we must
have qn < q. In summary, in addition to the definitions of q and p, we also have
qn < q ≤ qn+1 and p/q is reduced.

We claim that p/q is a best approximation to ξ. Let us assume, just for a
moment, that we have proved this. Then from Lemma 7.19 we know that p/q must
be a convergent. In this case, p/q = pk/qk for some k. Since p/q is reduced and
so is pk/qk we must have p = pk and q = qk. On the other hand, we know that
qn < q ≤ qn+1, so k must be n + 1. This shows that p/q = pn+1/qn+1 and our
proof is finished, once we show that p/q is a best approximation.

For sake of contradiction, assume that p/q is not a best approximation. Then
there must exist a rational a/b 6= p/q such that 1 ≤ b ≤ q and

(7.39)
∣
∣bξ − a

∣
∣ ≤

∣
∣qξ − p

∣
∣.

Since |qξ − p| < |qnξ − pn| it follows that a/b satisfies |bξ − a| < |qnξ − pn|. Now
q is, by definition, the smallest positive denominator y in a rational x/y satisfying
|yξ − x| < |qnξ − pn|, so we must have q ≤ b. However, b ≤ q by assumption, so we
actually have q = b, and thus, putting b = q in (7.39), we obtain

(7.40)
∣
∣qξ − a

∣
∣ ≤

∣
∣qξ − p

∣
∣.

Now p, by definition, makes |qξ−x| the smallest over all x, so in particular, |qξ−p| ≤
|qξ − a|. Thus, by (7.40), we have

∣
∣qξ − a

∣
∣ =

∣
∣qξ − p

∣
∣.

Squaring both sides, we get

q2ξ2 − 2qξa + a2 = q2ξ2 − 2qξp + p2 =⇒ 2q(p− a) = p2 − a2

=⇒ 2qξ(p− a) = (p + a)(p− a) =⇒ ξ =
p + a

2q
.

Here we can divide by p−a because a/b 6= p/q by assumption, and b = q, so a 6= p.
In particular, |a− p| ≥ 1 (since a 6= p so |a− p| is a positive integer), therefore

(7.41)
∣
∣qξ − p

∣
∣ =

∣
∣
∣
p + a

2q
− p
∣
∣
∣ =

∣
∣
∣
a− p

2

∣
∣
∣ ≥ 1

2
.

We claim that ξ = (p+a)/2q is reduced. Indeed, if the numerator and denominator
had a common factor m ≥ 2, then we could write ξ = k/` where p + a = mk and
2q = m`. In particular, by (7.41), we would then have

(7.42)
∣
∣`ξ − k

∣
∣ =

∣
∣
∣`
(k

`

)

− k
∣
∣
∣ = 0 <

1

2
=⇒

∣
∣`ξ − k

∣
∣ <

∣
∣qξ − p

∣
∣.

We can have two choices m = 2 or m > 2. If m = 2, then 2q = 2`, so q = `, and
therefore substituting ` = q in (7.42), we have |qξ − k| < |qξ − p|. However, this
contradicts the definition of p as the minimizer of |qξ−x| over all x. If m > 2, then
2` < m` = 2q implies that ` < q. Now in view of the fact that |`ξ− k| < |qξ− p| in
(7.42) and that |qξ − p| < |qnξ − pn|, we have |`ξ − k| < |qnξ − pn|. However, the
inequality ` < q contradicts the definition of q as the smallest positive denominator
y in a rational x/y satisfying |yξ−x| < |qnξ−pn|. Thus, in summary, the assumption
that p/q is not a best approximation leads us to the conclusion that ξ = (p+ a)/2q
is reduced.

Now writing ξ = (p + a)/2q into its canonical continued fraction expansion, if
pN/qN denotes its last convergent, then we have N > n + 1 and ξ = pN

qN
, where
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p + a = pN and 2q = qN = aNqN−1 + qN−2 with aN ≥ 2 because the expansion is
canonical. Thus, by Theorem 7.18 and the inequality (7.41), we have

∣
∣qN−1ξ − pN−1

∣
∣ = qN−1

∣
∣
∣ξ − pN−1

qN−1

∣
∣
∣ < qN−1 ·

1

qN−1qN
=

1

qN
=

1

2q
≤ 1

2
≤
∣
∣qξ − p

∣
∣.

In particular, since |qξ − p| < |qnξ − pn| we have |qN−1ξ − pN−1| < |qnξ − pn|.
However, since aN ≥ 2 we have

2qN−1 ≤ aNqN−1 < aNqN−1 + qN−2 = qN = 2q =⇒ qN−1 < q.

But this contradicts the definition of q as the smallest positive denominator y in a
rational x/y satisfying |yξ − x| < |qnξ − pn|. This last contradiction shows that it
is impossible that ξ = (p + a)/2q is reduced, and hence, p/q must have been a best
approximation to ξ; this finally completes our proof. �

Note that we left out c0 in the statement of the theorem; this was intentional.

Example 7.24. Consider
√

3 = 1.73205080 . . .. The best integer approximation
to
√

3 is 2. In Subsection 7.4.3 we found that
√

3 = 〈1; 1, 2〉. Thus, c0 = 1, which
is not a best approximation. However, c1 = 1 + 1

1 = 2 is a best approximation.

7.5.3. Dirichlet’s approximation theorem. Using Theorem 7.20, we prove
the following famous fact.

Theorem 7.21 (Dirichlet’s approximation theorem). Amongst two con-
secutive convergents pn/qn, pn+1/qn+1 with n ≥ 0 of the canonical continued frac-
tion expansion to a real number (rational or irrational) ξ, one of them satisfies

(7.43)
∣
∣
∣ξ − p

q

∣
∣
∣ <

1

2q2
.

Conversely, if a rational number p/q satisfies (7.43), then it is a convergent.

Proof. We begin by proving that a rational number satisfying (7.43) must be
a convergent, then we show that convergents satisfy (7.43).

Step 1: Assume that p/q satisfies (7.43). To prove that it must be a convergent,
we just need to show that it is a best approximation. To this end, assume that
a/b 6= p/q and that

∣
∣bξ − a

∣
∣ ≤

∣
∣qξ − p

∣
∣;

we must show that q < b. To prove this, we note that (7.43) implies that
∣
∣
∣ξ − a

b

∣
∣
∣ =

1

b

∣
∣bξ − a

∣
∣ ≤ 1

b

∣
∣qξ − p

∣
∣ <

1

b
· 1

2q
=

1

2bq
.

This inequality plus (7.43) give
∣
∣
∣
aq − bp

bq

∣
∣
∣ =

∣
∣
∣
a

b
− p

q

∣
∣
∣ =

∣
∣
∣
a

b
− ξ + ξ − p

q

∣
∣
∣ ≤

∣
∣
∣
a

b
− ξ
∣
∣
∣+
∣
∣
∣ξ − p

q

∣
∣
∣ <

1

2bq
+

1

2q2
.

Since a/b 6= p/q, |aq − bp| is a positive integer, that is, 1 ≤ |aq − bp|, therefore

1

bq
<

1

2bq
+

1

2q2
=⇒ 1

2bq
<

1

2q2
=⇒ q < b.

We now show that one of two consecutive convergents satisfies (7.43). Let pn/qn

and pn+1/qn+1, n ≥ 0, be two consecutive convergents.
Step 2: Assume first that qn = qn+1. Since qn+1 = an+1qn + qn−1 we see that

qn = qn+1 if and only if n = 0 (because qn−1 = 0 if and only if n = 0) and a1 = 1,
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in which case, q1 = q0 = 1, p0 = a0, and p1 = a0a1 +1 = a0 +1. Since p0/q0 = a0/1
and p1/q1 = (a0 + 1)/1, we have to show that

∣
∣ξ − a0

∣
∣ <

1

2
or

∣
∣ξ − (a0 + 1)

∣
∣ <

1

2
.

But one of these must hold because a0 = bξc, so

a0 ≤ ξ < a0 + 1.

Note that the special situation where ξ is exactly half-way between a0 and a0 + 1,
that is, ξ = a0 + 1/2 = 〈a0, 2〉, is not possible under our current assumptions
because in this special situation, q1 = 2 6= 1 = q0.

Step 3: Assume now that qn 6= qn+1. Consider two consecutive convergents
cn and cn+1. We know that either

cn < ξ < cn+1 or cn+1 < ξ < cn,

depending on whether n is even or odd. For concreteness, assume that n is even;
the odd case is entirely similar. Then from cn < ξ < cn+1 and the fundamental
recurrence relation cn+1 − cn = 1/qnqn+1, we see that

∣
∣ξ − cn

∣
∣+
∣
∣cn+1 − ξ

∣
∣ = (ξ − cn) + (cn+1 − ξ) = cn+1 − cn =

1

qnqn+1
.

Now observe that since qn 6= qn+1, we have

0 <
1

2

( 1

qn
− 1

qn+1

)2

=
1

2q2
n

+
1

2q2
n+1

− 1

qn qn+1
=⇒ 1

qnqn+1
<

1

2q2
n

+
1

2q2
n+1

,

so

(7.44)
∣
∣ξ − cn

∣
∣+
∣
∣ξ − cn+1

∣
∣ <

1

2q2
n

+
1

2q2
n+1

.

It follows that |ξ− cn| < 1/2q2
n or

∣
∣ξ− cn+1

∣
∣ < 1/2qn+1, otherwise (7.44) would fail

to hold. This completes our proof. �

Exercises 7.5.

1. In this problem we find all the good approximations to 2/7. First, to see things better,
let’s write down the some fractions with denominators less than 7:

0

1
<

1

6
<

1

5
<

1

4
<

2

7
<

1

3
<

2

5
<

1

2
.

By examining the absolute values
∣
∣ξ − a

b

∣
∣ for the fractions listed, show that the good

approximations to 2/7 are 0/1, 1/2, 1/3, 1/4, and of course, 2/7. Now let’s find which
of the good approximations are best without using the best approximation theorem.
To do so, compute the absolute values

∣
∣
∣1 · 2

7
− 0
∣
∣
∣ ,

∣
∣
∣2 · 2

7
− 1
∣
∣
∣ ,

∣
∣
∣3 · 2

7
− 1
∣
∣
∣ ,

∣
∣
∣4 · 2

7
− 1
∣
∣
∣

and from these numbers, determine which of the good approximations are best. Using
a similar method, find the good and best approximations to 3/7, 3/5, 8/5, and 2/9.

2. Prove that a real number ξ is rational if and only if there are infinitely many rational
numbers p/q satisfying

∣
∣
∣ξ − p

q

∣
∣
∣ <

1

q2
.

3. In this problem we find very beautiful approximations to π.
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(a) Using the canonical continued fraction algorithm, prove that

π4 = 97.40909103400242 . . . = 〈97, 2, 2, 3, 1, 16539, 1, . . .〉.
(Warning: If your calculator doesn’t have enough decimal places of accuracy, you’ll
probably get a different value for 16539.)

(b) Compute c4 = 2143
22

and therefore, π ≈
(

2143
22

)1/4

. Note that π = 3.141592653 . . .

while (2143/22)1/4 = 3.141592652, quite accurate! This approximation is due to
Srinivasa Ramanujan (1887–1920) [21, p. 160].4 As explained on Weinstein’s
website [183], we can write this approximation in pandigital form, that is, using
all digits 0, 1, . . . , 9 exactly once :

π ≈
(2143

22

)1/4

=

√
√

0 + 34 +
192

78 − 56
.

(c) By determining certain convergents of the continued fraction expansions of π2, π3,
and π5, derive the equally fascinating results:

π ≈
√

10 ,
(227

23

)1/2

, 311/3 ,
(4930

159

)1/3

, 3061/5 ,
(77729

254

)1/5

.

The approximation π ≈
√

10 = 3.162 . . . was known in Mesopotamia thousands of
years before Christ [130]!

4. If cn = a0 + b1
a1 + . . . +

bn
an

and ξ = a0 + b1
a1 +

b2
a2 + . . ., where an ≥ 1 for n ≥ 1, bn > 0,

and
∑∞

n=1

anan+1

bn+1
= ∞, prove that for any n = 0, 1, 2, . . ., we have

∣
∣ξ−cn+1

∣
∣ <

∣
∣ξ−cn

∣
∣

and
∣
∣qn+1ξ − pn+1

∣
∣ <

∣
∣qnξ − pn

∣
∣ (cf. Theorem 7.18).

7.6. F Continued fractions and calendars, and math and music

We now do some fun stuff with continued fractions and their applications to
calendars and pianos! In the exercises, you’ll see how Christian Huygens (1629–
1695), a Dutch physicist, made his model of the solar system (cf. [115]).

7.6.1. Calendars. Calendar making is an amazing subject; see Tøndering’s
(free!) book [171] for a fascinating look at calendars. A year, technically a tropical
year, is the time it takes from one vernal equinox to the next. Recall that there are
two equinoxes, which is basically (there is a more technical definition) the time when
night and day have the same length. The vernal equinox occurs around March 21,
the first day of spring, and the autumnal equinox occurs around September 23, the
first day of fall. A year is approximately 365.24219 days. As you might guess, not
being a whole number of days makes it quite difficult to make accurate calenders,
and for this reason, the art of calendar making has been around since the beginning.
Here are some approximations to a year that you might know about:

(1) 365 days, the ancient Egyptians and others.
(2) 365 1

4 days, Julius Caesar (100 B.C.–44 B.C.), 46 B.C., giving rise to the
Julian calendar.

(3) 365 97
400 days, Pope Gregory XIII (1502–1585), 1585, giving rise to the Gre-

gorian calendar, the calendar that is now the most widely-used calendar.

4An equation means nothing to me unless it expresses a thought of God. Srinivasa Ramanu-

jan (1887–1920).
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See Problem 1 for Persian calenders and their link to continued fractions. Let us
analyze these more thoroughly. First, the ancient calendar consisting of 365 days
is the basic calendar. Since a true year is 365.24219 days, an ancient year has

0.24219 less days than a true year.

Thus, after 4 years, with an ancient calendar you’ll lose

4× .24219 = 0.9687 days ≈ 1 day.

After 125 years, with an ancient calendar you’ll lose

125× .24219 = 30.27375 days ≈ 1 month.

So, instead of having spring around March 21, you’ll have it in February! After 500
years, with an ancient calendar you’ll lose

500× .24219 = 121.095 days ≈ 4 months.

So, instead of having spring around March 21, you’ll have it in November! As you
can see, this is getting quite ridiculous.

In the Julian calendar, there are an average of 365 1
4 days in a Julian year. The

fraction 1
4 is played out as we all know: We add one day to the ancient calendar

every four years giving us a “leap year”, that is, a year with 366 days. Thus, just
as we said, a Julian calendar year gives the estimate

4× 365 + 1 days

4 years
= 365

1

4

days

year
.

The Julian year has

365.25− 365.24219 = 0.00781 more days than a true year.

So, for instance, after 125 years, with a Julian calendar you’ll gain

125× .00781 = 0.97625 days ≈ 1 day.

Not bad. After 500 years, with a Julian calendar you’ll gain

500× .00781 = 3.905 days ≈ 4 days.

Again, not bad! But, still, four days gained is still four days gained.
In the Gregorian calendar, there are an average of 365 97

400 days, that is, we add
ninety seven days to the ancient calendar every four hundred years. These extra
days are added as follows: Every four years we add one extra day, a “leap year” just
like in the Julian calendar — however, this gives us 100 extra days in 400 years; so
to offset this, we do not have a leap year for the century marks except 400, 800,
1200, 1600, 2000, 2400, . . . multiples of 400. For example, consider the years

1604, 1608, . . . , 1696, 1700, 1704, . . . , 1796, 1800, 1804, . . . , 1896,

1900, 1904, . . . , 1996, 2000.

Each of these years is a leap year except the three years 1700, 1800, and 1900 (but
note that the year 2000 was a leap year since it is a multiple of 400, as you can
verify on your old calendar). Hence, in the four hundred years from the end of 1600
to the end of 2000, we added only 97 total days since we didn’t add extra days in
1700, 1800, and 1900. So, just as we said, a Gregorian calendar gives the estimate

400× 365 + 97

400
= 365

97

400

days

year
.
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Since 365 97
400 = 365.2425, the Gregorian year has

365.2425− 365.24219 = 0.00031 more days than a true year.

For instance, after 500 years, with a Gregorian calendar you’ll gain

500× 0.00031 = 0.155 days ≈ 0 days!

Now let’s link calendars with continued fractions. Here is the continued fraction
expansion of the tropical year:

365.24219 = 〈365; 4, 7, 1, 3, 24, 6, 2, 2〉.
This has convergents:

c0 = 365 , c1 = 365
1

4
, c2 = 365

7

29
, c3 = 365

8

33
, c4 = 365

31

128
, . . . .

Here, we see that c0 is the ancient calendar and c1 is the Julian calendar, but where
is the Gregorian calendar? It’s not on this list, but it’s almost c3 since

8

33
=

8

33
· 12
12

=
96

396
≈ 97

400
.

However, it turns out that c3 = 365 8
33 is exactly the average number of days in the

Persian calendar introduced by the mathematician, astronomer, and poet Omar
Khayyam (1048 –1131)! See Problem 1 for the modern Persian calendar!

7.6.2. Pianos. We now move from calendars to pianos. For more on the
interaction between continued fractions and pianos, see [49], [104], [12], [72], [7],
[155]. Let’s start by giving a short lesson on music based on Euler’s letter to
a German princess [30] (see also [82]). When, say a piano wire or guitar string
vibrates, it causes the air molecules around it to vibrate and these air molecules
cause neighboring molecules to vibrate and finally, these molecules bounce against
our ears, and we have the sensation of “sound”. The rapidness of the vibrations,
in number of vibrations per second, is called frequency. Let’s say that we hear
two notes with two different frequencies. In general, these frequencies mix together
and don’t produce a pleasing sound, but according to Euler, when the ratio of their
frequencies happens to equal certain ratios of integers, then we hear a pleasant
sound!5 Fascinating isn’t it? We’ll call the ratio of the frequencies an interval
between the notes or the frequencies. For example, consider two notes, one with
frequency f1 and the other with frequency f2 such that

f2

f1
=

2

1
⇐⇒ f2 = 2f1 (octave);

in other words, the interval between the first and second note is 2, which is to say,
f2 is just twice f1. This special interval is called an octave. It turns out that
when two notes an octave apart are played at the same time, they sound beautiful
together! Another interval that is corresponds to a beautiful sound is called the
fifth, which is when the ratio is 3/2:

f2

f1
=

3

2
⇐⇒ f2 =

3

2
f1 (fifth).

5Musica est exercitium arithmeticae occultum nescientis se numerare animi The pleasure

we obtain from music comes from counting, but counting unconsciously. Music is nothing but

unconscious arithmetic. From a letter to Goldbach, 27 April 1712, quoted in [153].
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. . . etc.

f0

f1

f2

f3

f4 f5

f6

f7

f8

f9

f10

f11 f12

f13

f14

f15

f16

Figure 7.1. The k-th key, starting from k = 0, is labeled by its
frequency fk.

Other intervals (which remember just refer to ratios) that have names are

4/3 (fourth) 9/8 (major tone) 25/24 (chromatic semitone),
5/4 (major third) 10/9 (lesser tone) 81/80 (comma of Didymus),
6/5 (minor thirds) 16/15 (diatonic semitone).

However, it is probably of universal agreement that the octave and the fifth make
the prettiest sounds. Ratios such as 7/6, 8/7, 11/10, 12/11, . . . don’t seem to agree
with our ears.

Now let’s take a quick look at two facts concerning the piano. We all know
what a piano keyboard looks like; see Figure 7.1. Let us label the (fundamental)
frequencies of the piano keys, counting both white and black, by f0, f1, f2, f3, . . .
starting from the far left key on the keyboard.6 The first fact is that keys which
are twelve keys apart are exactly an octave apart! For instance, f0 and, jumping
twelve keys to the right, f12 are an octave apart, f7 and f19 are an octave apart,
etc. For this reason, a piano scale really has just twelve basic frequencies, say
f0, . . . , f11, since by doubling these frequencies we get the twelve frequencies above,
f12, . . . , f23, and by doubling these we get f24, . . . , f35, etc. The second fact is that
a piano is evenly tempered, which means that the intervals between adjacent
keys is constant. Let this constant be c. Then,

fn+1

fn
= c =⇒ fn+1 = cfn

for all n. In particular,

(7.45) fn+k = cfn+k−1 = c(cfn+k−2) = c2fn+k−2 = · · · = ckfn.

Since fn+12 = 2fn (because fn and fn+12 are an octave apart), it follows that with
k = 12, we get

2fn = c12fn =⇒ 2 = c12 =⇒ c = 21/12.

Thus, the interval between adjacent keys is 21/12.
A question that might come to mind is: What is so special about the number

twelve for a piano scale? Why not eleven or fifteen? Answer: It has to do with
continued fractions! To see why, let us imagine that we have an evenly tempered
piano with q basic frequencies, that is, keys that are q apart have frequencies
differing by an octave. Question: Which q’s make the best pianos? (Note: We
better come up with q = 12 as one of the “best” ones!) By a very similar argument
as we did above, we can see that the interval between adjacent keys is 21/q. Now
we have to ask: What makes a good piano? Well, our piano by design has octaves,

6A piano wire also gives off overtones but we focus here just on the fundamental frequency.

Also, some of what we say here is not quite true for the keys near the ends of the keyboard because

they don’t vibrate well due of their stiffness leading to the phenomenon called inharmonicity.
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but we would also like our piano to have fifths, the other beautiful interval. Let us
label the keys of our piano as in Figure 7.1. Then we would like to have a p such
that the interval between any frequency fn and fn+p is a fifth, that is,

fn+p

fn
=

3

2
.

By the formula (7.45), which we can use in the present set-up as long as we put
c = 21/q, we have fn+p = (21/q)pfn = 2p/qfn. Thus, we want

2p/q =
3

2
=⇒ p

q
=

log(3/2)

log 2
.

This is, unfortunately, impossible because p/q is rational yet log(3/2)
log 2 is irrational

(cf. Subsection 2.6.5)! Thus, it is impossible for our piano (even if q = 12 like our
everyday piano) to have a fifth. However, hope is not lost because although our
piano can never have a perfect fifth, it can certainly have an approximate fifth: We

just need to find good rational approximations to the irrational number log(3/2)
log 2 .

This we know how to do using continued fractions. One can show that

log(3/2)

log 2
= 〈1, 1, 2, 2, 3, 1, . . .〉,

which has convergents

0,
1

1
,
1

2
,
3

5
,

7

12
,
24

41
,
31

53
,
179

306
, . . . .

Lo and behold, we see a twelve! In particular, by the best approximation theorem

(Theorem 7.20), we know that 7/12 approximates log(3/2)
log 2 better than any rational

number with a small denominator than twelve, which is to say, we cannot find a
piano scale with fewer than twelve basic key that will give a better approxima-
tion to a fifth. This is why our everyday piano has twelve keys! In summary,
1, 2, 5, 12, 41, 53, 306, . . . are the q’s that make the “best” pianos. What about the
other numbers in this list? Supposedly [104], in 40 B.C. King-Fang, a scholar of the
Han dynasty, found the fraction 24/41, although to my knowledge, there has never
been an instrument built with a scale of q = 41; however, King-Fang also found
the fraction 31/53, and in this case, the q = 53 scale was advocated by Gerhardus
Mercator (1512–1594) circa 1650 and was actually implemented by Robert Halford
Macdowall Bosanquet (1841–1912) in his instrument Enharmonic Harmonium [27]!

We have focused on the interval of a fifth. What about other intervals? ... see
Problem 2.

Exercises 7.6.

1. (Persian calendar) As of 2000, the modern calendar in Iran and Afghanistan has an
average of 365 683

2820
days per year. The persian calendar introduced by Omar Khayyam

(1048–1131) had an average of 365 8
33

days per year. Khayyam amazingly calcu-
lated the year to be 365.24219858156 days. Find the continued fraction expansion
of 365.24219858156 and if {cn} are its convergents, show that c0 is the ancient calen-
dar, c1 is the Julian calendar, c3 is the calendar introduced by Khayyam, and c7 is the
modern Persian calendar!

2. Find the q’s that will make a piano with the “best” approximations to a minor third.
(Just as we found the q’s that will make a piano with the “best” approximations to
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fifth.) Do you see why many musicians, e.g. Aristoxenus, Kornerup, Ariel, Yasser, who
enjoyed minor thirds, liked q = 19 musical scales? , , ,

3. (A solar system model) Christiaan Huygens (1629–1695) made a model scale of the
solar system. In his day, it was thought that it took Saturn 29.43 years to make it once
around the sun; that is,

period of Saturn

period of Earth
= 29.43.

To make a realistic model of the solar system, Huygens needed to make gears for the
model Saturn and the model Earth whose number of teeth had a ratio close to 29.43.
Find the continued fraction expansion of 29.43 and see why Huygens chose the number
of teeth to be 206 and 7, respectively. For more on the use of continued fractions to
solve gear problems, see [115].

7.7. The elementary functions and the irrationality of ep/q

In this section we derive some beautiful and classical continued fraction expan-
sions for coth x, tanh x, and ex. The book [96, Sec. 11.7] has a very nice presentation
of this material.

7.7.1. The hypergeometric function. For complex a 6= 0,−1,−2, . . ., the
function

F (a, z) := 1 +
1

a
z +

1

a(a + 1)

z2

2!
+

1

a(a + 1)(a + 2)

z3

3!
+ · · · , z ∈ C,

is called a (simplified) hypergeometric function or more precisely, the conflu-
ent hypergeometric limit function. Using the ratio test, it is straightforward
to check that F (a, z) converges for all z ∈ C. If for any a ∈ C, we define the
pochhammer symbol, introduced by Leo August Pochhammer (1841–1920)

(a)n :=

{

1 n = 0

a(a + 1)(a + 2) · · · (a + n− 1) n = 1, 2, 3, . . . ,

then we can write the hypergeometric function in shorthand notation:

F (a, z) =

∞∑

n=0

1

(a)n

zn

n!
.

Actually, the true hypergeometric function is defined by (cf. Subsection 5.3.4)

F (a, b, c, z) =
∞∑

n=0

(a)n

(b)n(c)n

zn

n!
,

but we won’t need this function. Many familiar functions can be written in terms
of these hypergeometric functions. For instance, consider

Proposition 7.22. We have

F

(
1

2
,
z2

4

)

= cosh z , z F

(
3

2
,
z2

4

)

= sinh z.

Proof. The proof of these identities are the same: We simply check that both
sides have the same series expansions. For example, let us check the second identity;

the identity for cosh is proved similarly. The function z F
(

3
2 , z2

4

)

is just

z ·
∞∑

n=0

1

(3/2)n

(z2/22)n

n!
=

∞∑

n=0

1

(3/2)n

z2n+1

22n n!
,
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and recall that

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!
.

Thus, we just have to show that (3/2)n 22n n! = (2n+1)! for each n. Certainly this
holds for n = 0. For n ≥ 1, we have

(3/2)n 22n n! =
3

2

(
3

2
+ 1

)(
3

2
+ 2

)

· · ·
(

3

2
+ n− 1

)

· 22nn!

=
3

2
· 5
2
· 7
2
· · · 2n + 1

2
· 22nn!

= 3 · 5 · 7 · · · (2n + 1) · 2nn!

Since 2nn! = 2n · 1 · 2 · 3 · · ·n = 2 · 4 · 6 · · · 2n, we have

3 · 5 · 7 · · · 2n + 1 · 2nn! = 3 · 5 · 7 · · · (2n + 1) · 2 · 4 · 6 · · · 2n
= 2 · 3 · 4 · 5 · 6 · 7 · · · 2n · (2n + 1) = (2n + 1)!

and our proof is complete. �

The hypergeometric function also satisfies an interesting, and useful as we’ll
see in a moment, recurrence relation.

Proposition 7.23. The hypergeometric function satisfies the following recur-
rence relation:

F (a, z) = F (a + 1, z) +
z

a(a + 1)
F (a + 2, z).

Proof. The proof of this identity proceeds in the same way as in the previous
proposition: We simply check that both sides have the same series expansions. We
can write

F (a + 1, z) +
z

a(a + 1)
F (a + 2, z) =

∞∑

n=0

1

(a + 1)n

zn

n!
+

∞∑

n=0

1

a(a + 1)(a + 2)n

zn+1

n!
.

The constant term on the right is 1, which is the constant term on the left. For
n ≥ 1, coefficient of zn on the right is

1

(a + 1)n n!
+

1

a(a + 1)(a + 2)n−1 (n− 1)!

=
1

(a + 1) · · · (a + 1 + n− 1)n!
+

1

a(a + 1) · · · (a + 2 + (n− 1)− 1) (n− 1)!

=
1

(a + 1) · · · (a + n)n!
+

1

a(a + 1) · · · (a + n) (n− 1)!

=
1

(a + 1) · · · (a + n) (n− 1)!
·
(

1

n
+

1

a

)

=
1

(a + 1) · · · (a + n) (n− 1)!

(
a + n

a · n

)

=
1

a(a + 1) · · · (a + n− 1)n(n− 1)!
=

1

(a)n n!
,

which is exactly the coefficient of zn for F (a, z). �



7.7. THE ELEMENTARY FUNCTIONS AND THE IRRATIONALITY OF ep/q 403

7.7.2. Continued fraction expansion of the hyperbolic cotangent. It
turns out that Propositions 7.22 and 7.23 can be combined to give a fairly simple
proof of the continued fraction expansion of the hyperbolic cotangent.

Theorem 7.24. For any real x, we have

coth x =
1

x
+

x

3 +
x2

5 +
x2

7 +
x2

9 +
. . .

.

Proof. With z = x > 0, we have F (a, x) > 0 for any a > 0 by definition of
the hypergeometric function. In particular, for a > 0, F (a + 1, x) > 0, so we can
divide by this in Proposition 7.23, obtaining the recurrence relation

F (a, x)

F (a + 1, x)
= 1 +

x

a(a + 1)

F (a + 2, x)

F (a + 1, x)
,

which we can write as

aF (a, x)

F (a + 1, x)
= a +

x

(a + 1)F (a + 1, x)

F (a + 2, x)

.

Replacing a with a + n with n = 0, 1, 2, 3, . . ., we get

(a + n)F (a + n, x)

F (a + n + 1, x)
= a + n +

x

(a + n + 1)F (a + n + 1, x)

F (a + n + 2, x)

;

that is, if we define

ξn(a, x) :=
(a + n)F (a + n, x)

F (a + n + 1, x)
, an := a + n , bn := x,

then

(7.46) ξn(a, x) = an +
bn+1

ξn+1(a, x)
, n = 0, 1, 2, 3, . . . .

Since
∞∑

n=1

anan+1

bn
=

∞∑

n=1

(a + n)(a + n + 1)

x
=∞,

by the continued fraction convergence theorem (Theorem 7.14), we know that

aF (a, x)

F (a + 1, x)
= ξ0(a, x) = a +

x

a + 1+

x

a + 2+

x

a + 3+

x

a + 4+

x

a + 5+
. . . .

Since F
(
1/2, x2/4

)
= cosh x and xF

(
3/2, x2/4

)
= sinh x by Proposition 7.22,

when we set a = 1/2 and replace x with x2/4 into the previous continued fraction,
we find

x cosh x

2 sinh x
=

x

2
coth x =

1

2
+

x2/4

3/2 +

x2/4

5/2 +

x2/4

7/2 +

x2/4

9/2 +
. . . ,
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or after multiplication by 2 and dividing by x, we get

coth x =
1

x
+

x/2

3/2+

x2/4

5/2 +

x2/4

7/2 +

x2/4

9/2 +
. . . ,

Finally, using the transformation rule (Theorem 7.1)

a0 +
b1

a1 +

b2

a2 +
. . .

+

bn

an +
. . . = a0 +

ρ1b1

ρ1a1 +

ρ1ρ2b2

ρ2a2 +
. . .

+

ρn−1ρnbn

ρnan +
. . .

with ρn = 2 for all n, we get

coth x =
1

x
+

x

3+

x2

5 +

x2

7 +

x2

9 +
. . . ,

exactly what we set out to prove. �

Given any x, we certainly have 0 < bn = x2 < 2n + 1 = an for all n sufficiently
large, so by Theorem 7.15, it follows that when x is rational, coth x is irrational, or
writing it out, for x rational,

coth x =
ex + e−x

ex − e−x
=

e2x + 1

e2x − 1

is irrational. It follows that for x rational, e2x must be irrational too, for otherwise
coth x would be rational contrary to assumption. Replacing x with x/2 and calling
this r, we get the following neat corollary.

Theorem 7.25. er is irrational for any rational r.

By the way, as did Johann Heinrich Lambert (1728–1777) originally did back
in 1761 [29, p. 463], you can also use continued fractions to prove that π is irra-
tional, see [97], [120]. As another easy corollary, we can get the continued fraction
expansion for tanh x. To do so, multiply the continued fraction for coth x by x:

x coth x = b , where b = 1 +
x2

3 +

x2

5 +

x2

7 +

x2

9 +
. . . .

Thus, tanh x = x
b , or replacing b with its continued fraction, we get

tanh x =
x

1 +
x2

3 +
x2

5 +
x2

7 +
. . .

.

We derive one more beautiful expression that we’ll need later. As before, we have

coth x =
ex + e−x

ex − e−x
=

e2x + 1

e2x − 1
=

1

x
+

x

3+

x2

5 +

x2

7 +

x2

9 +
. . . .

Replacing x with 1/x, we obtain

e2/x + 1

e2/x − 1
= x +

1/x

3 +

1/x2

5 +

1/x2

7 +

1/x2

9 +
. . . .
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Finally, using the now familiar transformation rule, after a little algebra we get

(7.47)
e2/x + 1

e2/x − 1
= x +

1

3x +
1

5x +
1

7x +
.. .

.

7.7.3. Continued fraction expansion of the exponential. We can now
get the famous continued fraction expansion for ex, which was first discovered by
(as you might have guessed) Euler. To start, we observe that

coth(x/2) =
ex/2 + e−x/2

ex/2 + e−x/2
=

1 + e−x

1− e−x
=⇒ e−x =

coth(x/2)− 1

1 + coth(x/2)
,

where we solved the equation on the left for e−x. Thus,

e−x =
coth(x/2)− 1

1 + coth(x/2)
=

1 + coth(x/2)− 2

1 + coth(x/2)
= 1− 2

1 + coth(x/2)
,

so taking reciprocals, we get

ex =
1

1− 2

1 + coth(x/2)

,

By Theorem 7.24, we have

1 + coth(x/2) = 1 +
2

x
+

x/2

3 +

x2/4

5 +
. . . =

x + 2

x
+

x/2

3 +

x2/4

5 +

x2/4

7 +
. . . ,

so

ex =
1

1+

−2
x+2

x
+

x/2

3 +

x2/4

5 +

x2/4

7 +
. . .

or using the transformation rule (Theorem 7.1)

b1

a1 +

b2

a2 +
. . .

+

bn

an +
. . . =

ρ1b1

ρ1a1 +

ρ1ρ2b2

ρ2a2 +
. . .

+

ρn−1ρnbn

ρnan +
. . .

with ρ1 = 1, ρ2 = x, and ρn = 2 for all n ≥ 3, we get

ex =
1

1+

−2x

x + 2+

x2

6 +

x2

10+

x2

14+
. . . .

Thus, we have derived Euler’s celebrated continued fraction expansion for ex:

Theorem 7.26. For any real x, we have

ex =
1

1−
2x

x + 2 +
x2

6 +
x2

10 +
x2

14 +
. . .

.
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In particular, if we let x = 1, we obtain

e =
1

1− 2

3 +
1

6 +
1

10 +
1

14 +
. . .

.

Although beautiful, we can get an even more beautiful continued fraction expansion
for e, which is a simple continued fraction.

7.7.4. The simple continued fraction expansion of e. If we expand the
decimal number 2.718281828 into a simple continued fraction, we get (see Problem
2 in Exercises 7.4)

2.718281828 = 〈2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1〉.
For this reason, we should be able to conjecture that e should be

(7.48) e = 〈2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . .〉.

This is true, and it was first proved by (as you might have guessed) Euler. Here,

a0 = 2 , a1 = 1 , a2 = 2 , a3 = 1 , a4 = 1 , a5 = 4 , a6 = 1 , a7 = 1,

and in general, for all n ∈ N, a3n−1 = 2n and a3n = a3n+1 = 1. Since

2 = 1 +
1

0 +
1

1

,

we can write (7.48) in a prettier way that shows the full pattern:

(7.49) e = 〈1; 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . .〉,

or the somewhat more shockingly pretty

(7.50) e = 1 +
1

0 +
1

1 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
. . .

.

To prove this incredible formula, denote the convergents of the right-hand con-
tinued fraction in (7.48) by rk/sk. Since we have such simple relations a3n−1 = 2n
and a3n = a3n+1 = 1 for all n ∈ N, one might think that it is quite easy to compute
formulas for r3n+1 and s3n+1, and this thought is indeed the case.
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Lemma 7.27. For all n ≥ 2, we have

r3n+1 = 2(2n + 1)r3(n−1)+1 + r3(n−2)+1

s3n+1 = 2(2n + 1)s3(n−1)+1 + s3(n−2)+1

Proof. Both formulas are proved in similar ways, so we shall focus on the
formula for r3n+1. First, we apply our Wallis-Euler recursive formulas:

r3n+1 = r3n + r3n−1 =
(
r3n−1 + r3n−2

)
+ r3n−1 = 2r3n−1 + r3n−2.

We again apply the Wallis-Euler recursive formula on r3n−1:

r3n+1 = 2
(

2nr3n−2 + r3n−3

)

+ r3n−2

=
(

2(2n) + 1
)

r3n−2 + 2r3n−3

=
(

2(2n) + 1
)

r3n−2 + r3n−3 + r3n−3.(7.51)

Again applying the Wallis-Euler recursive formula on the last term, we get

r3n+1 =
(

2(2n) + 1
)

r3n−2 + r3n−3 +
(

r3n−4 + r3n−5

)

=
(

2(2n) + 1
)

r3n−2 +
(

r3n−3 + r3n−4

)

+ r3n−5.

Since r3n−2 = r3n−3 + r3n−4 by our Wallis-Euler recursive formulas, we finally get

r3n+1 =
(

2(2n) + 1
)

r3n−2 + r3n−2 + r3n−5

=
(

2(2n) + 2
)

r3n−2 + r3n−5

= 2
(

(2n) + 1
)

r3(n−1)+1 + r3(n−2)+1.

�

Now putting x = 1 in (7.47), let us look at

e + 1

e− 1
= 〈2; 6, 10, 14, 18, . . .〉.

that is, if the right-hand side is 〈α0;α1, . . .〉, then αn = 2(2n + 1) for all n =
0, 1, 2, . . .. If pn/qn are the convergents of this continued fraction, then we see that

pn = 2(2n + 1)pn−1 + pn−2 and qn = 2(2n + 1)qn−1 + qn−2,

which are similar to the relations in our lemma! Thus, it is not surprising in one
bit that the r3n+1’s and s3n+1’s are related to the pn’s and qn’s. The exact relation
is given in the following lemma.

Lemma 7.28. For all n = 0, 1, 2, . . ., we have

r3n+1 = pn + qn and s3n+1 = pn − qn.

Proof. As with the previous lemma, we shall only prove the formula for r3n+1.
We proceed by induction: First, for n = 0, we have

r1 := a0a1 + 1 = 2 · 1 + 1 = 3,

while p0 := 2 and q0 := 1, so r1 = p0 + q0. If n = 1, then by the formula (7.51), we
see that

r3·1+1 = (2(2) + 1)r1 + 2r0 = 5 · 3 + 2 · 2 = 19.
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On the other hand,

p1 := α0α1 + 1 = 2 · 6 + 1 = 13 , q1 := α1 = 6,

so r3·1+1 = p1 + q1.
Assume now that r3k+1 = pk + qk for all 0 ≤ k ≤ n− 1 where n ≥ 2; we shall

prove that it holds for k = n (this is an example of “strong induction”; see Section
2.2). But, by the Wallis-Euler recursive formulas, we have

r3n+1 = 2(2n + 1)r3(n−1)+1 + r3(n−2)+1

= 2(2n + 1)(pn−1 + qn−2) + (pn−2 + qn−2)

= 2(2n + 1)pn−1 + pn−2 + 2(2n + 1)qn−2 + qn−2

= pn + qn.

�

Finally, we can now prove the continued fraction expansion for e:

〈2; 1, 1, 4, 1, 1, . . .〉 = lim
rn

sn
= lim

r3n+1

s3n+1
= lim

pn + qn

pn − qn

= lim
pn/qn + 1

pn/qn − 1
=

e+1
e−1 + 1
e+1
e−1 − 1

=
e

e−1
1

e−1

= e.

See Section 11.5 for Hermite’s proof (cf. [133]). In the problems, we derive,
along with other things, the following beautiful continued fraction for cot x:

(7.52) cot x =
1

x
+

x

3− x2

5−
x2

7− x2

9− . . .

.

From this continued fraction, we can derive the beautiful companion result for tan x:

tan x =
x

1− x2

3−
x2

5− x2

7− . . .

.

Exercises 7.7.

1. For all n = 1, 2, . . ., let an > 0, bn ≥ 0, with an ≥ bn + 1. We shall prove that the
following continued fraction converges:

(7.53)
b1

a1 +

−b2

a2 +

−b3

a3 +

−b4

a4 +
. . . .

Note that for the continued fraction we are studying, a0 = 0. Replacing bn with −bn

with n ≥ 2 in the Wallis-Euler recurrence relations (7.16) and (7.17) we get

pn = anpn−1 − bnpn−2 , qn = anqn−1 − bnqn−2, n = 2, 3, 4, . . .

p0 = 0 , p1 = b1 , q0 = 1 , q1 = a1.
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(i) Prove (via induction for instance) that qn ≥ qn−1 for all n = 1, 2, . . .. In partic-
ular, since q0 = 1, we have qn ≥ 1 for all n, so the convergents cn = pn/qn of
(7.53) are defined.

(ii) Verify that q1 − p1 ≥ 1 = q0 − p0. Now prove by induction that qn − pn ≥
qn−1 − pn−1 for all n = 1, 2, . . .. In particular, since q0 − p0 = 1, we have
qn − pn ≥ 1 for all n. Diving by qn conclude that 0 ≤ cn ≤ 1 for all n = 1, 2, . . ..

(iii) Using the fundamental recurrence relations for cn−cn−1, prove that cn−cn−1 ≥ 0
for all n = 1, 2, . . .. Combining this with (1ii) shows that 0 ≤ c1 ≤ c2 ≤ c3 ≤ · · · ≤
1; that is, {cn} is a bounded monotone sequence and hence converges. Thus, the
continued fraction (7.53) converges.

2. For all n = 1, 2, . . ., let an > 0, bn ≥ 0, with an ≥ bn + 1. From the previous problem,
it follows that given any a0 ∈ R, the continued fraction a0 − b1

a1 +
−b2
a2 +

−b3
a3 +

−b4
a4 +

. . .

converges. We now prove a variant of the continued fraction convergence theorem
(Theorem 7.14): Let ξ0, ξ1, ξ2, . . . be any sequence of real numbers with ξn > 0 for
n ≥ 1 and suppose that these numbers are related by

ξn = an +
−bn+1

ξn+1
, n = 0, 1, 2, . . . .

Then ξ0 is equal to the continued fraction

ξ0 = a0 −
b1

a1 +

−b2

a2 +

−b3

a3 +

−b4

a4 +

−b5

a5 +
. . . .

Prove this statement following (almost verbatim!) the proof of Theorem 7.14.
3. We are now ready to derive the beautiful cotangent continued fraction (7.52).

(i) Let a > 0. Then as we derived the identity (7.46) found in Theorem 7.24, prove
that if we define

ηn(a, x) :=
(a + n)F (a + n,−x)

F (a + n + 1,−x)
, an = a + n , bn = x, n = 0, 1, 2, . . . ,

then

ηn(a, x) = an +
−bn+1

ηn+1(a, x)
, n = 0, 1, 2, 3, . . . .

(ii) Using Problem 2, prove that for x ≥ 0 sufficiently small, we have

(7.54)
aF (a,−x)

F (a + 1,−x)
= η0(a, x) = a − x

a + 1+

−x

a + 2+

−x

a + 3+

−x

a + 4+

−x

a + 5+
. . . .

(iii) Prove that (cf. the proof of Proposition 7.22)

F

(
1

2
,−x2

4

)

= cos x , z F

(
3

2
,−x2

4

)

= sin x.

(iv) Now put a = 1/2 and replace x with −x2/4 in (7.54) to derive the beautiful
cotangent expansion (7.52). Finally, relax and contemplate this fine formula!

4. (Irrationality of log r) Using Theorem 7.25, prove that if r > 0 is rational with r 6= 1,
then log r is irrational. In particular, one of our favorite constants, log 2, is irrational.

7.8. Quadratic irrationals and periodic continued fractions

We already know (Section 3.8) that a real number has a periodic decimal ex-
pansion if and only if the number is rational. One can ask the same thing about
continued fractions: What types of real numbers have periodic continued fractions?
The answer, as you will see in this section, are those real numbers called quadratic
irrationals.
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7.8.1. Periodic continued fractions. The object of this section is to char-
acterize continued fractions that “repeat”.

Example 7.25. We have already encountered the beautiful continued fraction

1 +
√

5

2
= 〈1; 1, 1, 1, 1, 1, 1, 1, 1, . . .〉.

We usually write the right-hand side as 〈1〉 to emphasize that the 1 repeats.

Example 7.26. Another continued fraction that repeats is
√

8 = 〈2; 1, 4, 1, 4, 1, 4, 1, 4, . . .〉,
where we have an infinite repeating block of 1, 4. We usually write the right-hand
side as

√
8 = 〈2; 1, 4〉.

Example 7.27. Yet one more continued fraction that repeats is
√

19 = 〈4; 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, . . .〉,
where we have an infinite repeating block of 2, 1, 3, 1, 2, 8. We usually write the
right-hand side as

√
19 = 〈4; 2, 1, 3, 1, 2, 8〉.

Notice that the above repeating continued fractions are continued fractions for
expressions with square roots.

Example 7.28. Consider now the expression:

ξ = 〈3; 2, 1, 2, 1, 2, 1, 2, 1, . . .〉 = 〈3; 2, 1〉.
If η = 〈2; 1, 2, 1, 2, 1, 2, . . .〉, then ξ = 3 + 1

η , and

η = 2 +
1

1 +
1

2 +
1

1 + · · ·

= 2 +
1

1 +
1

η

.

Solving for η we find that η = 1 +
√

3. Hence,

ξ = 3 +
1

η
= 3 +

1

1 +
√

3
= 3 +

√
3− 1

2
=

5 +
√

3

6
,

yet another square root expression.

Consider the infinite repeating continued fraction

ξ = 〈a0; a1, . . . , a`−1, b0, b1, . . . , bm−1, b0, b1, . . . , bm−1, b0, b1, . . . , bm−1, . . .〉(7.55)

= 〈a0; a1, . . . , a`−1, b0, b1, . . . , bm−1〉,
where the bar denotes that the block of numbers b0, b1, . . . , bm−1 repeats forever.
Such a continued fraction is said to be periodic. When writing a continued fraction
in this way we assume that there is no shorter repeating block and that the repeating
block cannot start at an earlier position. For example, we would never write

〈2; 1, 2, 4, 3, 4, 3, 4, 3, 4, . . .〉 as 〈2; 1, 2, 4, 3, 4, 3, 4〉;
we simply write it as 〈2; 1, 2, 4, 3〉. The integer m is called the period of the
continued fraction. An equivalent way to define a periodic continued fraction is as
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an infinite simple continued fraction ξ = 〈a0; a1, a2, . . .〉 such that for some m and
`, we have

(7.56) an = am+n for all n = `, ` + 1, ` + 2, . . ..

The examples above suggest that infinite periodic simple continued fractions are
intimately related to expressions with square roots; in fact, these expressions are
called quadratic irrationals as we shall see in a moment.

7.8.2. Quadratic irrationals. A quadratic irrational is, exactly as its
name suggests, an irrational real number that is a solution of a quadratic equa-
tion with integer coefficients. Using the quadratic equation, we leave you to show
that a quadratic irrational ξ can be written in the form

(7.57) ξ = r + s
√

b

where r, s are rational numbers and b > 0 is an integer that is not a perfect square
(for if b were a perfect square, then

√
b would be an integer so the right-hand side

of ξ would be rational, contradicting that ξ is irrational). Conversely, given any
real number of the form (7.57), one can check that ξ is a root of the equation

x2 − 2r x + (r2 − s2b) = 0.

Multiplying both sides of this equation by the common denominator of the rational
numbers 2r and r2 − s2b, we can make the polynomial on the left have integer
coefficients. Thus, a real number is a quadratic irrational if and only if it is of the
form (7.57). As we shall see in Theorem 7.29 below, it would be helpful to write
quadratic irrationals in a certain way. Let ξ take the form in (7.57) with r = m/n
and s = p/q where we may assume that n, q > 0. Then with the help of some
mathematical gymnastics, we see that

ξ =
m

n
+

p
√

b

q
=

mq + np
√

b

nq
=

mq +
√

bn2p2

nq
=

mnq2 +
√

bn4p2q2

n2q2
.

Notice that if we set α = mnq2, β = n2q2 and d = bn4p2q2, then d − α2 =
bn4p2q2 −m2n2q4 = (bn2p2 −m2q2)(n2q2) is divisible by β = n2q2. Therefore, we
can write any quadratic irrational in the form

ξ =
α +
√

d

β
, α, β, d ∈ Z, d > 0 is not a perfect square, and β

∣
∣(d− α2).

Using this expression as the starting point, we prove the following nice theorem
that gives formulas for the convergents of the continued fraction expansion of ξ.

Theorem 7.29. The canonical simple continued fraction expansion of a qua-
dratic irrational ξ has the complete quotients {ξn} (with ξ0 = ξ) and partial quo-
tients {an} determined by

ξn =
αn +

√
d

βn
, an = bξnc,

where αn and βn are integers with βn > 0 defined by the recursive sequences

α0 = α , β0 = β , αn+1 = anβn − αn , βn+1 =
d− α2

n+1

βn
;

moreover, βn|(d− α2
n) for all n.
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Proof. We first show that all the αn’s and βn’s defined above are integers
with βn never zero and βn|(d − α2

n). This is automatic with n = 0. Assume this
is true for n. Then αn+1 = anβn − αn is an integer. To see that βn+1 is also an
integer, observe that

βn+1 =
d− α2

n+1

βn
=

d− (anβn − αn)2

βn
=

d− a2
nβ2

n − 2anβnαn − α2
n

βn

=
d− α2

n

βn
+ 2anαn − a2

nβn.

By induction hypothesis, (d− α2
n)/βn is an integer and so is 2anαn − a2

nβn. Thus,
βn+1 is an integer too. Moreover, βn+1 6= 0, because if βn+1 = 0, then we must
have d−α2

n+1 = 0, which shows that d is a perfect square contrary to our condition
on d. Finally, since βn is an integer and

βn+1 =
d− α2

n+1

βn
=⇒ βn =

d− α2
n+1

βn+1
,

βn+1 must divide d− α2
n+1.

Lastly, it remains to prove that the ξn’s are the complete quotients of ξ (this
automatically proves that the an’s are the partial quotients because an = bξnc by
definition). To do so, we simply use the formula for ξn:

ξn − an =
αn +

√
d

βn
− αn+1 + αn

βn
=

√
d− αn+1

βn

where in the middle equality we solved αn+1 = anβn − αn for an. Rationalizing
and using the definition of βn+1 and ξn+1, we obtain

ξn − an =
d− α2

n+1

βn(
√

d + αn+1)
=

βn+1√
d + αn+1

=
1

ξn+1
=⇒ ξn = an +

1

ξn+1
.

This shows that the ξn’s are the complete quotients of ξ (why?). �

7.8.3. Quadratic irrationals and periodic continued fractions. After
one preliminary result, we shall prove that an infinite simple continued fraction is
a quadratic irrational if and only if it is periodic. Define

Z[
√

d] := {a + b
√

d ; a, b ∈ Z}
and

Q[
√

d] := {a + b
√

d ; a, b ∈ Q}.
Given ξ = a + b

√
d in either Z[

√
d] or Q[

√
d], we define its conjugate by

ξ := a− b
√

d.

Lemma 7.30. Z[
√

d] is a commutative ring and Q[
√

d] is a field, and conjugation

preserves the algebraic properties; for example, if α, β ∈ Q[
√

d], then

α± β = α± β, α · β = α · β, and α/β = α/β.

Proof. To prove that Z[
√

d] is a commutative ring we just need to prove

that it has the same algebraic properties as the integers in that Z[
√

d] is closed
under addition, subtraction, and multiplication — for more on this definition see
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our discussion in Subsection 2.3.1. For example, to see that Z[
√

d] is closed under

multiplication, let α = a + b
√

d and β = a′ + b′
√

d be elements of Z[
√

d]; then,

(7.58) αβ = (a + b
√

d)(a′ + b′
√

d) = aa′ + bb′d + (ab′ + a′b)
√

d,

which is also in Z[
√

d]. Similarly, one can show that Z[
√

d] satisfies all the other
properties of a commutative ring.

To prove that Q[
√

d] is a field we need to prove that it has the same alge-

braic properties as the rational numbers in that Q[
√

d] is closed under addition,
multiplication, subtraction, and division (by nonzero elements) — for more on this

definition see our discussion in Subsection 2.6.1. For example, to see that Q[
√

d] is

closed under taking reciprocals, observe that if α = a + b
√

d ∈ Q[
√

d] is not zero,
then

1

α
=

1

a + b
√

d
· a− b

√
d

a− b
√

d
=

a− b
√

d

a2 − b2d
=

a

a2 − b2d
− b

a2 − b2d

√
d

Note that a2 − b2d 6= 0 since being zero would imply that
√

d = a/b is rational,

which by assumption we know is not. Similarly, one can show that Q[
√

d] satisfies
all the other properties of a field.

Finally, we need to prove that conjugation preserves the algebraic properties.
For example, let’s prove the equality α · β = α · β, leaving the other properties to
you. If α = a + b

√
d and β = a′ + b′

√
d, then according to (7.58), we have

αβ = aa′ + bb′d− (ab′ + a′b)
√

d

But

αβ = (a− b
√

d)(a′ − b′
√

d) = aa′ + bb′d− (ab′ + a′b)
√

d,

which equals αβ. �

The following theorem was first proved by Joseph-Louis Lagrange (1736–1813).

Theorem 7.31. An infinite simple continued fraction is a quadratic irrational
if and only if it is periodic.

Proof. We first prove the “if” part then the “only if” part.
Step 1: Let ξ = 〈a0; a1, . . . , a`−1, b0, . . . , bm〉 be periodic and define

η := 〈b0; b1, . . . , bm, b0, b1, . . . , bm, b0, b1, . . . , bm, . . .〉 = 〈b0; b1, . . . , bm, η〉,
so that ξ = 〈a0, a1, . . . , a`−1, η〉. Since η = 〈b0; b1, . . . , bm, η〉, by Theorem 7.4, we
have

η =
ηsm−1 + sm−2

ηtm−1 + tm−2
,

where sn/tn are the convergents for η. Multiplying both sides by ηtm−1 + tm−2, we
see that

η2tm−1 + ηtm−2 = ηsm−1 + sm−2 =⇒ a η2 + b η + c = 0,

where a = tm−1, b = tm−2 − sm−1, and c = −sm−2. Hence, η is a quadratic
irrational. Now using that ξ = 〈a0, a1, . . . , a`−1, η〉 and Theorem 7.4, we obtain

ξ =
ηpm−1 + pm−2

ηqm−1 + qm−2
,
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where pn/qn are the convergents for ξ. Since η is a quadratic irrational, it follows

that ξ is a quadratic irrational since Q[
√

d] is a field from Theorem 7.30. Thus, we
have proved that periodic simple continued fractions are quadratic irrationals.

Step 2: Now let ξ = 〈a0; a1, a2, . . .〉 be a quadratic irrational; we shall prove
that its continued fraction expansion is periodic. The trick to prove Step 2 is
to first show that the integers αn and βn of the complete quotients of ξ found in
Theorem 7.29 are bounded. To implement this idea, let ξn be the n-th complete
quotient of ξ. Then we can write ξ = 〈a0; a1, a2, . . . , an−1, ξn〉, so by Theorem 7.4
we have

ξ =
ξnpn−1 + pn−2

ξnqn−1 + qn−2
.

Solving for ξn, after a little algebra, we find that

−ξn =
qn−2

qn−1

(
ξ − cn−2

ξ − cn−1

)

.

Since conjugation preserves the algebraic operations by our lemma, we see that

(7.59) −ξn =
qn−2

qn−1

(
ξ − cn−2

ξ − cn−1

)

,

If ξ = (α +
√

d)/β, then ξ − ξ = 2
√

d/β 6= 0. Therefore, since ck → ξ as k →∞, it
follows that as n→∞,

(
ξ − cn−2

ξ − cn−1

)

→
(

ξ − ξ

ξ − ξ

)

= 1.

In particular, there is a natural number N such that for n > N , (ξ − cn−2)/(ξ −
cn−1) > 0. Thus, as qk > 0 for k ≥ 0, according to (7.59), for n > N , we have

−ξn > 0. Hence, writing ξn, which is positive for n ≥ 1, as ξn = (αn +
√

d)/βn

shown in Theorem 7.29, it follows that for n > N ,

0 = 0 + 0 < ξn + (−ξn) = 2

√
d

βn
.

So, for n > N , we have βn > 0. Now solving the identity βn+1 =
d−α2

n+1

βn
in

Theorem 7.29 for d we see that

βnβn+1 + α2
n+1 = d.

For n > N , both βn and βn+1 are positive, which implies that βn and |αn| cannot
be too large; for instance, for n > N , we must have 0 < βn ≤ d and 0 ≤ |αn| ≤ d.
(For if either βn or |αn| were greater than d, then βnβn+1 + α2

n+1 would be strictly
larger than d, an impossibility since the sum is supposed to equal d.) In particular,
if A is the finite set

A = {(j, k) ∈ Z× Z ; −d ≤ j ≤ d , 1 ≤ k ≤ d},

then for the infinitely many n > N , the pair (αn, βn) is in the finite set A. By the
pigeonhole principle, there must be distinct i, j > N such that (αj , βj) = (αk, βk).
Assume that j > k and let m := j − k. Then j = m + k, so

αk = αm+k and βk = βk+m.
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Since ak = bξkc and am+k = bξm+kc, by Theorem 7.29 we have

ξk =
αk +

√
d

βk
=

αm+k +
√

d

βm+k
= ξm+k =⇒ ak = bξkc = bξm+kc = am+k.

Thus, using our formulas for αk+1 and βk+1 from Theorem 7.29, we see that

αk+1 = akβk − αk = am+kβm+k − αm+k = αm+k+1,

and

βk+1 =
d− α2

k+1

βk
=

d− α2
m+k+1

βm+k
= βm+k+1.

Thus,

ξk+1 =
αk+1 +

√
d

βk+1
=

αm+k+1 +
√

d

βm+k+1
= ξm+k+1

=⇒ ak+1 = bξk+1c = bξm+k+1c = am+k+1.

Continuing this process by induction shows that an = am+n for all n = k, k+1, k+
2, k + 3, . . .. Thus, by the definition of periodicity in (7.56), we see that ξ has a
periodic simple continued fraction. �

A periodic continued fraction is called purely periodic if it is of the form
ξ = 〈a0; a1, . . . , am−1〉.

Example 7.29. The simplest example of such a fraction is the golden ratio:

Φ =
1 +
√

5

2
= 〈1〉 = 〈1; 1, 1, 1, 1, 1, . . .〉.

Observe that Φ has the following properties:

Φ > 1 and Φ =
1−
√

5

2
= −0.618 . . . =⇒ Φ > 1 and − 1 < Φ < 0.

In the following theorem, Evariste Galois’7 (1811–1832) first publication (at the
age of 17), we characterize purely periodic expansions as those quadratic irrationals
having these same properties. (Don’t believe everything to read about the legendary
Galois; see [144]. See [167] for an introduction to Galois’ famous theory.)

Theorem 7.32. A quadratic irrational ξ is purely periodic if and only if

ξ > 1 and − 1 < ξ < 0.

Proof. Assume that ξ = 〈a0; . . . , am−1, a0, a1, . . . , am−1, . . .〉 is purely peri-
odic; we shall prove that ξ > 1 and −1 < ξ < 0. Recall that in general, for any
simple continued fraction, 〈b0; b1, b2, . . .〉 all the bn’s are positive after b0. Thus, as
a0 appears again (and again, and again, . . .) after the first a0 in ξ, it follows that

7[From the preface to his final manuscript (Evariste died from a pistol duel at the age of

20)] Since the beginning of the century, computational procedures have become so complicated that

any progress by those means has become impossible, without the elegance which modern mathe-
maticians have brought to bear on their research, and by means of which the spirit comprehends

quickly and in one step a great many computations. It is clear that elegance, so vaunted and so
aptly named, can have no other purpose. ... Go to the roots, of these calculations! Group the

operations. Classify them according to their complexities rather than their appearances! This, I

believe, is the mission of future mathematicians. This is the road on which I am embarking in

this work. Evariste Galois (1811–1832).
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a0 ≥ 1. Hence, ξ = a0 + 1
ξ1

> 1. Now applying Theorem 7.4 to 〈a0; . . . , am−1, ξ〉,
we get

ξ =
ξpm−1 + pm−2

ξqm−1 + qm−2
,

where pn/qn are the convergents for ξ. Multiplying both sides by ξqm−1 + qm−2,
we obtain

ξ2qm−1 + ξqm−2 = ξpm−1 + pm−2 =⇒ f(ξ) = 0,

where f(x) = qm−1x
2 + (qm−2 − pm−1)x − pm−2 is a quadratic polynomial. In

particular, ξ is a root of f . Taking conjugates, we see that

qm−1ξ
2+(qm−2−pm−1)ξ−pm−2 = 0 =⇒ qm−1ξ

2
+(qm−2−pm−1)ξ−pm−2 = 0,

therefore ξ is the other root of f . Now ξ > 1, thus pn > 0, pn < pn+1, and
qn < qn+1 for all n, so

f(−1) = (qm−1 − qm−2) + (pm−1 − pm−2) > 0 and f(0) = c = −pm−2 < 0.

By the intermediate value theorem f(x) = 0 for some −1 < x < 0. Since ξ is the
other root of f we have −1 < ξ < 0.

Assume now that ξ is a quadratic irrational with ξ > 1 and −1 < ξ < 0; we
shall prove that ξ is purely periodic. To do so, we first prove that if {ξn} are the
complete quotients of ξ, then −1 < ξn < 0 for all n. Since ξ0 = ξ, this is already
true for n = 0 by assumption. Assume this holds for n; then,

ξn = an +
1

ξn+1
=⇒ 1

ξn+1

= ξn − an < −an ≤ −1 =⇒ 1

ξn+1

< −1.

The inequality 1
ξn+1

< −1 shows that −1 < ξn+1 < 0 and completes the induction.

Now we already know that ξ is periodic, so let us assume sake of contradiction that
ξ is not purely periodic, that is, ξ = 〈a0; a1, . . . , a`−1, a`, . . . , a`+m−1〉 where ` ≥ 1.
Then a`−1 6= a`+m−1 for otherwise we could start the repeating block at a`−1, so

(7.60) ξ`−1 = a`−1 + 〈a`, . . . , a`+m−1〉 6= a`+m−1 + 〈a`, . . . , a`+m−1〉 = ξ`+m−1

Observe that this expression shows that ξ`−1 − ξ`+m−1 = a`−1 − a`+m−1 is an
integer. In particular, taking conjugates, we see that

ξ`−1 − ξ`+m−1 = a`−1 − a`+m−1 = ξ`−1 − ξ`+m−1.

Now we already proved that −1 < ξ`−1 < 0, and −1 < ξ`+m−1 < 0 which we write

as 0 < −ξ`+m−1 < 1. Thus,

0− 1 < ξ`−1 + (−ξ`+m−1) < 0 + 1 =⇒ −1 < ξ`−1 − ξ`+m−1 < 1,

since ξ`−1− ξ`+m−1 = ξ`−1− ξ`+m−1. However, we noted that ξ`−1− ξ`+m−1 is an
integer, and since the only integer strictly between −1 and 1 is 0, it must be that
ξ`−1 = ξ`+m−1. However, this contradicts (7.60), and our proof is complete. �

7.8.4. Square roots and periodic continued fractions. Recall that
√

19 = 〈4; 2, 1, 3, 1, 2, 8〉;
if you didn’t notice the beautiful symmetry before, observe that we can write this
as
√

19 = 〈a0; a1, a2, a3, a2, a1, 2a0〉 where the repeating block has a symmetric part
and an ending part twice a0. It turns that any square root has this nice symmetry
property. To prove this fact, we first prove the following.
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Lemma 7.33. If ξ = 〈a0; a1, . . . , am−1〉 is purely periodic, then −1/ξ is also
purely periodic of the reversed form: −1/ξ = 〈am−1; am−2, . . . , a0〉.

Proof. Writing out the complete quotients ξ, ξ1, ξ2, . . . , ξm−1 of

ξ = 〈a0; a1, . . . , am−1〉 = 〈a0; a1, . . . , am−1, ξ〉
we obtain

ξ = a0 +
1

ξ1
, ξ1 = a1 +

1

ξ2
, . . . , ξm−2 = am−2 +

1

ξm−1
, ξm−1 = am−1 +

1

ξ
.

Taking conjugates of all of these and listing them in reverse order, we find that

−1

ξ
= am−1 − ξm−1 ,

−1

ξm−1

= am−2 − ξm−2 , . . . ,
−1

ξ2

= a1 − ξ1 ,
−1

ξ1

= a0 − ξ.

Let us define η0 := −1/ξ, η1 = −1/ξm−1, η2 = −1/ξm−2, . . . , ηm−1 = −1/ξ1. Then
we can write the previous displayed equalities as

η0 = am−1 +
1

η1
, η1 = am−2 +

1

η2
, . . . , ηm−2 = a1 +

1

ηm−1
, ηm−1 = a0 +

1

η0
;

in other words, η0 is just the continued fraction:

η0 = 〈am−1; am−2, . . . , a1, a0, η0〉 = 〈am−1; am−2, . . . , a1, a0〉.
Since η0 = −1/ξ, our proof is complete. �

Recall that the continued fraction expansion for
√

d has the complete quotients
ξn and partial quotients an determined by

ξn =
αn +

√
d

βn
, an = bξnc,

where the αn, βn’s are integers given in Theorem 7.29. We are now ready to prove
Adrien-Marie Legendre’s (1752–1833) famous result.

Theorem 7.34. The simple continued fraction of
√

d has the form
√

d = 〈a0; a1, a2, a3, . . . , a3, a2, a1, 2a0〉.
Moreover, βn 6= −1 for all n, and βn = +1 if and only if n is a multiple of the
period of

√
d.

Proof. Starting the continued fraction algorithm for
√

d, we obtain
√

d =
a0 + 1

ξ1
, where ξ1 > 1. Since 1

ξ1
= −a0 +

√
d, we have

(7.61) − 1

ξ1

= −
(
− a0 −

√
d
)

= a0 +
√

d > 1,

so we must have −1 < ξ1 < 0. Since both ξ1 > 1 and −1 < ξ1 < 0, by Galois’
Theorem 7.32, we know that ξ1 is purely periodic: ξ1 = 〈a1; a2, . . . , am〉. Thus,

√
d = a0 +

1

ξ1
= 〈a0; ξ1〉 = 〈a0; a1; a2, . . . , am〉.

On the other hand, from (7.61) and from Lemma 7.33, we see that

〈2a0; a1, a2, . . . , am, a1, a2, . . . , am, . . .〉 = a0 +
√

d = − 1

ξ1

= 〈am; . . . , a1〉

= 〈am, am−1, am−2, . . . , a1, am, am−1, am−2, . . . , a1, . . .〉.
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Comparing the left and right-hand sides, we see that am = 2a0, am−1 = a1, am−2 =
a2, am−3 = a3, and so forth, therefore,

√
d = 〈a0; a1, a2, . . . , am〉 = 〈a0; a1, a2, a3, . . . , a3, a2, a1, 2a0〉.

We now prove that βn never equals −1, and βn = +1 if and only if n is a
multiple of the period m. By the form of the continued fraction expansion of

√
d

we just derived, observe that for any n > 0, the n-th complete quotient ξn for
√

d
is purely periodic. In particular, by Galois’ Theorem 7.32 we know that

(7.62) n > 1 =⇒ ξn > 1 and − 1 < ξn < 0.

Now for sake of contradiction, assume that βn = −1. Since β0 = +1 by definition
(see Theorem 7.29), we must have n > 0. Then the formula ξn = (αn +

√
d)/βn

with βn = −1 and (7.62) imply that

1 < ξn = −αn −
√

d =⇒ αn < −1−
√

d =⇒ αn < 0.

On the other hand, (7.62) also implies that

−1 < ξn = −αn +
√

d < 0 =⇒
√

d < αn =⇒ 0 < αn.

Since αn < 0 and αn > 0 cannot possibly hold, it follows that βn = −1 is impossible.
We now prove that βn = +1 if and only if n is a multiple of the period m.

Assume first that βn = 1. Then ξn = αn +
√

d. By (7.62) we see that

−1 < ξn = αn −
√

d < 0 =⇒
√

d− 1 < αn <
√

d.

Since αn is an integer, and the only integer strictly between
√

d − 1 and
√

d is
a0 = b

√
dc, it follows that αn = a0, so ξn = a0 +

√
d. Now recalling the expansion√

d = 〈a0; a1, a2, . . . , am〉 and the fact that 2a0 = am, it follows that

a0 +
√

d = 〈2a0, a1, a2, . . . , am−1, am, a1, a2, . . . , am−1, am, . . .〉
= 〈am; a1, a2, . . . , am−1〉;(7.63)

thus ξn = 〈am; a1, a2, . . . , am−1〉. On the other hand, ξn is by definition the n-th
convergent of √

d = 〈a0; a1, a2, . . . , am, a1, a2, . . . , am, . . .〉,
so writing n = mj + ` where j = 0, 1, 2, . . . and 1 ≤ ` ≤ m, going out n slots after
a0, we see that

ξn = 〈a`; a`+1, a`+2, . . . , am, a1, . . . , a`−1〉.
Comparing this with ξn = 〈am; a1, a2, . . . , am−1〉, we must have ` = m, so n =
mj + m = m(j + 1) is a multiple of m.

Assume now that n is a multiple of m; say n = mk. Then going out n = mk
slots to the right of a0 in the continued fraction expansion of

√
d we get ξn =

〈am; a1, a2, . . . , am−1〉. Thus, ξn = a0 +
√

d by (7.63). Since ξn = (αn +
√

d)/βn

also, it follows that βn = 1 and our proof is complete. �

Exercises 7.8.

1. Find the canonical continued fraction expansions for

(a)
√

29 , (b)
1 +

√
13

2
, (c)

2 +
√

5

3
.

2. Find the values of the following continued fractions:

(a) 〈3; 2, 6〉 , (b) 〈1; 2, 3〉 , (c) 〈1; 2, 3〉 , (d) 〈2; 5, 1, 3, 5〉.
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3. Let m, n ∈ N. Find the quadratic irrational numbers represented by

(a) 〈n〉 = 〈n; n, n, n, . . .〉 , (b) 〈n; 1〉 , (c) 〈n; n + 1〉 , (d) 〈m; n〉.

7.9. Archimedes’ crazy cattle conundrum and diophantine equations

Archimedes of Syracuse (287–212) was known to think in preposterous propor-
tions. In The Sand Reckoner [123, p. 420], a fun story written by Archimedes, he
concluded that if he could fill the universe with grains of sand, there would be (less
than) 8 × 1063 grains! According to Pappus of Alexandria (290–350), at one time
Archimedes said (see [46, p. 15]) “Give me a place to stand on, and I will move the
earth!” In the following we shall look at a cattle problem proposed by Archimedes,
whose solution involves approximately 8× 10206544 cattle! If you feel moooooooved
to read more on Achimedes’ cattle, see [121], [177], [17], [186], and [105].

7.9.1. Archimedes’ crazy cattle conundrum. Here is a poem written by
Archimedes to students at Alexandria in a letter to Eratosthenes of Cyrene (276
BC–194 BC). (The following is adapted from [76], as written in [17].)

Compute, O stranger! the number of cattle of Helios, which once
grazed on the plains of Sicily, divided according to their color, to
wit:
(1) White bulls = 1

2 black bulls + 1
3 black bulls + yellow bulls

(2) Black bulls = 1
4 spotted bulls + 1

5 spotted bulls + yellow bulls

(3) spotted bulls = 1
6 white bulls + 1

7 white bulls + yellow bulls

(4) White cows = 1
3 black herd + 1

4 black herd (here, “herd” =
bulls + cows)

(5) Black cows = 1
4 spotted herd + 1

5 spotted herd

(6) Dappled cows = 1
5 yellow herd + 1

6 yellow herd

(7) Yellow cows = 1
6 white herd + 1

7 white herd
He who can answer the above is no novice in numbers. Never-

theless he is not yet skilled in wise calculations! But come consider
also all the following numerical relations between the Oxen of the
Sun:
(8) If the white bulls were combined with the black bulls they

would be in a figure equal in depth and breadth and the
far stretching plains of Sicily would be covered by the square
formed by them.

(9) Should the yellow and spotted bulls were collected in one
place, they would stand, if they ranged themselves one after
another, completing the form of an equilateral triangle.
If thou discover the solution of this at the same time; if thou

grasp it with thy brain; and give correctly all the numbers; O
Stranger! go and exult as conqueror; be assured that thou art by
all means proved to have abundant of knowledge in this science.

To solve this puzzle, we need to turn it into mathematics! Let W,X, Y, Z denote
the number of white, black, yellow, and spotted bulls, respectively, and w, x, y, z
for the number of white, black, yellow, and spotted cows, respectively.

The the conditions (1) – (7) can be written as

(1) W =
(1

2
+

1

3

)

X + Y (2) X =
(1

4
+

1

5

)

Z + Y
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1 2 3 4
cattle form a square cattle form a triangle

Figure 7.2. With the dots as bulls, on the left, the number of
bulls is a square number (42 in this case) and the number of bulls
on the right is a triangular number (1 + 2 + 3 + 4 in this case).

(3) Z =
(1

6
+

1

7

)

W + Y (4) w =
(1

3
+

1

4

)

(X + x)

(5) x =
(1

4
+

1

5

)

(Z + z) (6) z =
(1

5
+

1

6

)

(Y + y)

(7) y =
(1

6
+

1

7

)

(W + w).

Now how do we interpret (8) and (9)? We will interpret (8) as meaning that
the number of white and black bulls should be a square number (a perfect square);
see the left picture in Figure 7.2. A triangular number is a number of the form

1 + 2 + 3 + 4 + · · ·+ n =
n(n + 1)

2
,

for some n. Then we will interpret (9) as meaning that the number of yellow and
spotted bulls should be a triangular number; see the right picture in Figure 7.2.
Thus, (8) and (9) become

(8) W + X = a square number , (9) Y + Z = a triangular number.

In summary: We want to find integers W,X, Y, Z,w, x, y, z (here we assume
there are no such thing as “fractional cattle”) solving equations (1)–(9). Now
to the solution of Archimedes cattle problem. First of all, equations (1)–(7) are
just linear equations so these equations can be solved using simple linear algebra.
Instead of solving these equations by hand, which will probably take a few hours,
it might be best to use the computer. Doing so you will find that in order for
W,X, Y, Z,w, x, y, z to solve (1)–(7), they must be of the form

W = 10366482 k , X = 7460514 k , Y = 4149387 k , Z = 7358060 k

w = 7206360 k , x = 4893246 k , y = 5439213 k , z = 3515820 k,
(7.64)

where k can equal 1, 2, 3, . . .. Thus, in order for us to fulfill conditions (1)–(7), we
would have at the very least, setting k = 1,

10366482 + 7460514 + 4149387 + 7358060 + 7206360 + 4893246

+ 5439213 + 3515820 = 50389082 ≈ 50 million cattle!

Now we are “no novice in numbers!” Nevertheless we are not yet skilled in wise
calculations! To be skilled, we still have to satisfy conditions (8) and (9). For (8),
this means

W + X = 10366482 k + 7460514 k = 17826996 k = a square number.

Factoring 17826996 = 22 ·3 ·11 ·29 ·4657 into its prime factors, we see that we must
have

22 · 3 · 11 · 29 · 4657 k = (· · · )2,
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a square of an integer. Thus, we need 3 · 11 · 29 · 4657 k to be a square, which holds
if and only if

k = 3 · 11 · 29 · 4657m2 = 4456749m2

for some integer m. Plugging this value into (7.64), we get

W = 46200808287018m2 , X = 33249638308986m2

Y = 18492776362863m2 , Z = 32793026546940m2

w = 32116937723640m2 , x = 21807969217254m2

y = 24241207098537m2 , z = 15669127269180m2,

(7.65)

where m can equal 1, 2, 3, . . .. Thus, in order for us to fulfill conditions (1)–(8), we
would have at the very least, setting m = 1,

46200808287018 + 33249638308986 + 18492776362863 + 32793026546940

+ 32116937723640 + 21807969217254 + 24241207098537

+ 15669127269180 = 2.2457 . . .× 1014 ≈ 2.2 trillion cattle!

It now remains to satisfy condition (9):

Y + Z = 18492776362863m2 + 32793026546940m2

= 51285802909803m2 =
`(` + 1)

2
,

for some integer `. Multiplying both sides by 8 and adding 1, we obtain

8 · 51285802909803m2 + 1 = 4`2 + 4` + 1 = (2` + 1)2 = n2,

where n = 2`+1. Since 8 ·51285802909803 = 410286423278424, we finally conclude
that conditions (1)–(9) are all fulfilled if we can find integers m,n satisfying the
equation

(7.66) n2 − 410286423278424m2 = 1.

This is commonly called a Pell equation and is an example of a diophantine
equation. As we’ll see in the next subsection, we can solve this equation by simply
(!) finding the simple continued fraction expansion of

√
410286423278424. The

calculations involved are just sheer madness, but they can be done and have been
done [17], [186]. In the end, we find that the smallest total number of cattle which
satisfy (1)–(9) is a number with 206545 digits (!) and is equal to

7760271406 . . . (206525 other digits go here) . . . 9455081800 ≈ 8× 10206544.

We are now skilled in wise calculations! A copy of this number is printed on 42
computer sheets and has been deposited in the Mathematical Tables of the journal
Mathematics of Computation if you are interested.

7.9.2. Pell’s equation. Generalizing the cattle equation (7.66), we call a
diophantine equation of the form

(7.67) x2 − d y2 = 1

a Pell equation. Note that (x, y) = (1, 0) solves this equation. This solution
is called the trivial solution; the other solutions are not so easily attained. We
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remark that Pell’s equation was named by Euler after John Pell (1611–1685), al-
though Brahmagupta8 (598–670) studied this equation a thousand years earlier [29,

p. 221]. Any case, we shall see that the continued fraction expansion of
√

d plays
an important role in solving this equation. We note that if (x, y) solves (7.67), then
trivially so do (±x,±y) because of the squares in (7.67); thus, we usually restrict
ourselves to the positive solutions.

Recall that the continued fraction expansion for
√

d has the complete quotients
ξn and partial quotients an determined by

ξn =
αn +

√
d

βn
, an = bξnc,

where αn and βn are integers defined in Theorem 7.29. The exact forms of these
integers are not important; what is important is that βn never equals −1 and
βn = +1 if and only if n is a multiple of the period of

√
d as we saw in Theorem

7.34. The following lemma shows how the convergents of
√

d enter Pell’s equation.

Lemma 7.35. If pn/qn denotes the n-th convergent of
√

d, then for all n =
0, 1, 2, . . ., we have

p2
n − d q2

n = (−1)n+1βn+1.

Proof. Since we can write
√

d = 〈a0; a1, a2, a3, . . . , an, ξn+1〉 and ξn+1 =

(αn+1 +
√

d)/βn+1, by (7.19) of Corollary 7.6, we have

√
d =

ξn+1pn + pn−1

ξn+1qn + qn−1
=

(αn+1 +
√

d) pn + βn+1pn−1

(αn+1 +
√

d) qn + βn+1qn−1

.

Multiplying both sides by the denominator of the right-hand side, we get

√
d(αn+1 +

√
d) qn +

√
dβn+1qn−1 = (αn+1 +

√
d) pn + βn+1pn−1

=⇒ dqn + (αn+1qn + βn+1qn−1)
√

d = (αn+1pn + βn+1pn−1) + pn

√
d.

Equating coefficients, we obtain

dqn = αn+1pn + βn+1pn−1 and αn+1qn + βn+1qn−1 = pn.

Multiplying the first equation by qn and the second equation by pn and equating
the αn+1pnqn terms in each resulting equation, we obtain

dq2
n − βn+1pn−1qn = p2

n − βn+1pnqn−1

=⇒ p2
n − d q2

n = (pnqn−1 − pn−1qn) · βn+1 = (−1)n−1 · βn+1.

�

Next, we show that all solutions of Pell’s equation can be found via the con-
vergents of

√
d.

Theorem 7.36. Let pn/qn denote the n-th convergent of
√

d and m the period

of
√

d. Then the positive integer solutions to

x2 − d y2 = 1

8A person who can, within a year, solve x2 − 92y2 = 1 is a mathematician. Brahmagupta

(598–670).
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are precisely numerators and denominators of the odd convergents of
√

d of the
form x = pnm−1 and y = qnm−1, where n > 0 is any positive integer for m even
and n > 0 is even for m odd.

Proof. We prove our theorem in two steps.
Step 1: We first prove that if x2−d y2 = 1 with y > 0, then x/y is a convergent

of
√

d. To see this, observe that since 1 = x2 − d y2 = (x −
√

d y)(x +
√

d y), we

have x−
√

d y = 1/(x +
√

d y), so
∣
∣
∣
∣

x

y
−
√

d

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

x−
√

d y

y

∣
∣
∣
∣
∣
=

1

y |x +
√

d y|
.

Also, x2 = d y2 + 1 > dy2 implies x >
√

d y, which implies

x +
√

d y >
√

d y +
√

d y = 2
√

d y.

Hence,
∣
∣
∣
∣

x

y
−
√

d

∣
∣
∣
∣
=

1

y |x +
√

d y|
<

1

y · 2
√

d y
=

1

2y2
√

d
=⇒

∣
∣
∣
∣

x

y
−
√

d

∣
∣
∣
∣
<

1

2y2
.

By Dirichlet’s theorem 7.21, it follows that x/y must be a convergent of
√

d.
Step 2: We now finish the proof. By Step 1 we already know that every

solution must be a convergent, so we only need to look for convergents (pk, qk) that
make p2

k − d q2
k = 1. To this end, recall from Lemma 7.35 that

p2
k−1 − d q2

k−1 = (−1)kβk,

where βk never equals −1 and k is a multiple of the period of
√

d if and only if
βk = 1. In particular, if p2

k−1 − d q2
k−1 = 1, then as βk is never equal to −1, we

must have βk = 1, so k must be a period. Let m be the period of
√

d; then k = nm
for some n, in which case

p2
nm−1 − d q2

nm−1 = (−1)nm · βnm = (−1)nm · 1 = (−1)nm.

In particular, if m is even, then the right-hand side is one for all n and if m is odd,
then the right-hand side is one only for n even. This completes our proof. �

The fundamental solution of Pell’s equation is the smallest positive solution
of Pell’s equation; here, a solution (x, y) is positive means x, y > 0. Explicitly, the

fundamental solution is (pm−1, qm−1) for an even period m of
√

d or (p2m−1, p2m−1)
for an odd period m.

Example 7.30. Consider the equation x2 − 3y2 = 1. Since
√

3 = 〈1; 1, 2〉
has period m = 2, our theorem says that the positive solutions of x2 − 3y2 = 1 are
precisely x = p2n−1 and y = q2n−1 for all n > 0; that is, (p1, q1), (p3, q3), (p5, q5), . . ..

Now the convergents of
√

3 are

n 0 1 2 3 4 5 6 7
pn

qn

1

1

2

1

5

3

7

4

19

11

26

15

71

41

97

56

.

In particular, the fundamental solution is (2, 1) and the rest of the positive solutions
are (7, 4), (26, 15), (97, 56), . . .. Just to verify a couple entries:

22 − 3 · 12 = 4− 3 = 1
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and

72 − 3 · 42 = 49− 3 · 16 = 49− 48 = 1,

and one can continue verifying that all the odd convergents give solutions.

Example 7.31. For another example, consider the equation x2 − 13 y2 = 1.
In this case, we find that

√
13 = 〈3; 1, 1, 1, 1, 6〉 has period m = 5. Thus, our

theorem says that the positive solutions of x2 − 13y2 = 1 are precisely x = p5n−1

and y = q5n−1 for all n > 0 even; that is, (p9, q9), (p19, q19), (p29, q29), . . .. The

convergents of
√

13 are

n 0 1 2 3 4 5 6 7 8 9
pn

qn

3

1

4

1

7

2

11

3

18

5

119

33

137

38

256

71

393

109

649

180

.

In particular, the fundamental solution is (649, 180).

7.9.3. Brahmagupta’s algorithm. Thus, to find solutions of Pell’s equation
we just have to find certain convergents of

√
d. Finding all convergents is quite a

daunting task — try finding the solution (p19, q19) for
√

13 — but it turns out that
all the positive solutions can be found from the fundamental solution.

Example 7.32. We know that the fundamental solution of x2 − 3y2 = 1 is
(2, 1) and the rest of the positive solutions are (7, 4), (26, 15), (97, 56), . . .. Observe
that

(2 + 1 ·
√

3)2 = 4 + 4
√

3 + 3 = 7 + 4
√

3.

Note that the second positive solution (7, 4) to x2 − 3y2 = 1 appears on the right.
Now observe that

(2 + 1 ·
√

3)3 = (2 +
√

3)2 (2 +
√

3) = (7 + 4
√

3) (2 +
√

3) = 26 + 15
√

3.

Note that the third positive solution (26, 15) to x2 − 3y2 = 1 appears on the right.
One may conjecture that the n-th positive solution (xn, yn) to x2−3 y2 = 1 is found
by multiplying out

xn + yn

√
d = (2 + 1 ·

√
3)n

This is in fact correct as the following theorem shows.

Theorem 7.37 (Brahmagupta’s algorithm). If (x1, y1) is the fundamental
solution of Pell’s equation

x2 − d y2 = 1,

then all the other positive solutions (xn, yn) can be obtained from the equation

xn + yn

√
d = (x1 + y1

√
d)n , n = 0, 1, 2, 3, . . . .

Proof. To simplify this proof a little, we shall say that ζ = x + y
√

d ∈ Z[
√

d]
solves Pell’s equation to mean that (x, y) solves Pell’s equation; similarly, we say
ζ is a positive solution to mean that x, y > 0. Throughout this proof we shall use
the following fact:

(7.68) ζ solves Pell’s equation ⇐⇒ ζ ζ = 1 (that is, 1/ζ = ζ).

This is holds for the simple reason that

ξ ξ = (x + y
√

d) (x− y
√

d) = x2 − d y2.
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In particular, if we set α := x1 + y1

√
d, then α α = 1 because (x1, y1) solves Pell’s

equation. We now prove our theorem. We first note that (xn, yn) is a solution
because

(xn + yn

√
d) (xn + yn

√
d) = αn · αn = αn · (α)n = (α · α)n = 1n = 1,

which in view of (7.68), we conclude that (xn, yn) solves Pell’s equation. Now

suppose that ξ ∈ Z[
√

d] is a positive solution to Pell’s equation; we must show that

ξ is some power of α. To this end, note that α ≤ ξ because α = x1 + y1

√
d and

(x1, y1) is the smallest positive solution of Pell’s equation. Since 1 < α, it follows
that αk →∞ as k →∞, so we can choose n ∈ N to be the largest natural number
such that αn ≤ ξ. Then, αn ≤ ξ < αn+1, so dividing by αn, we obtain

1 ≤ η < α where η :=
ξ

αn
= ξ · (α)n,

where we used that 1/α = α from (7.68). Since Z[
√

d] is a ring (Lemma 7.30), we

know that η = ξ · (α)n ∈ Z[
√

d] as well. Moreover, η solves Pell’s equation because

η η = ξ · (α)n · ξ · αn = (ξ ξ) · (α α)n = 1 · 1 = 1.

We shall prove that η = 1, which shows that ξ = αn. To prove this, observe that
from 1 ≤ η < α and the fact that 1/η = η (since η η = 1), we have

0 < α−1 < η−1 ≤ 1 =⇒ 0 < α−1 < η ≤ 1.

Let η = p + q
√

d where p, q ∈ Z. Then the inequalities 1 ≤ η < α and 0 < α−1 <
η ≤ 1 imply that

2p = (p + q
√

d) + (p− q
√

d) = η + η ≥ 1 + α−1 > 0

and

2q
√

d = (p + q
√

d)− (p− q
√

d) = η − η ≥ 1− 1 = 0.

In particular, p > 0, q ≥ 0, and p2−dq2 = 1 (since η solves Pell’s equation). There-
fore, (p, q) = (1, 0) or (p, q) is a positive (numerator, denominator) of a convergent

of
√

d. However, we know that (x1, y1) is the smallest such positive (numerator,

denominator), and that p + q
√

d = η < α = x1 + y1

√
d. Therefore, we must have

(p, q) = (1, 0). This implies that η = 1 and hence ξ = αn. �

Example 7.33. Since (649, 180) is the fundamental solution to x2− 13 y2 = 1,
all the positive solutions are given by

xn + yn

√
13 = (649 + 180

√
13)n.

For instance, for n = 2, we find that

(649 + 180
√

13)2 = 842401 + 233640
√

13 =⇒ (x2, y2) = (842401, 233640),

much easier than finding (p19, q19).

There are many cool applications of Pell’s equation explored in the exercises.
Here’s one of my favorites (see Problem 7): Any prime of the form p = 4k + 1
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is a sum of two squares. This was conjectured by Pierre de Fermat9 (1601–1665)
in 1640 and proved by Euler in 1754. For example, 5, 13, 17 are such primes, and
5 = 12 + 22, 13 = 22 + 32, and 17 = 12 + 42.

Exercises 7.9.

1. Find the fundamental solutions to the equations

(a) x2 − 8 y2 = 1 , (b) x2 − 5 y2 = 1 , (c)x2 − 7 y2 = 1.

Using the fundamental solution, find the next two solutions.
2. Here’s is a nice problem solvable using continued fractions. A Pythagorean triple

consists of three natural numbers (x, y, z) such that x2+y2 = z2. For example, (3, 4, 5),
(5, 12, 13), and (8, 15, 17) are examples. (Can you find more?) The first example (3, 4, 5)
has the property that the first two are consecutive integers; here are some steps to find
more Pythagorean triples of this sort.

(i) Show that (x, y, z) is a Pythagorean triple with y = x + 1 if and only if

(2x + 1)2 − 2z2 = 1.

(ii) By solving the Pell equation u2−2 v2 = 1, find the next three Pythagorean triples
(x, y, z) (after (3, 4, 5)) where x and y are consecutive integers.

3. Here’s is another very nice problem that can be solved using continued fractions. Find
all triangular numbers that are squares, where recall that a triangular number is of the
form 1 + 2 + · · · + n = n(n + 1)/2. Here are some steps.

(i) Show that n(n + 1)/2 = m2 if and only if

(2n + 1)2 − 8m2 = 1.

(ii) By solving the Pell equation x2 −8 y2 = 1, find the first three triangular numbers
that are squares.

4. The diophantine equation x2 − d y2 = −1 (where d > 0 is not a perfect square) is also
of interest. In this problem we determine when this equation has solutions. Following
the proof of Theorem 7.36, prove the following statements.

(i) Show that if (x, y) solves x2 − d y2 = −1 with y > 0, then x/y is a convergent of√
d.

(ii) Prove that x2 − d y2 = −1 has a solution if and only if the period of
√

d is odd,
in which case the nonnegative solutions are exactly x = pnm−1 and y = qnm−1

for all n > 0 odd.
5. Which of the following equations have solutions? If an equation has solutions, find the

fundamental solution.

(a) x2 − 2 y2 = −1 , (b) x2 − 3 y2 = −1 , (c)x2 − 17 y2 = −1.

6. In this problem we prove that the diophantine equation x2 − p y2 = −1 always has a
solution if p is a prime number of the form p = 4k + 1 for an integer k. For instance,
since 13 = 4 ·3+1 and 17 = 4 ·4+1, x2−13y2 = −1 and x2−17y2 = −1 have solutions
(as you already saw in the previous problem). Let p = 4k + 1 be prime.

(i) Let (x1, y1) be the fundamental solution of x2 − p y2 = 1. Prove that x1 and y1

cannot both be even and cannot both be odd.
(ii) Show that the case x1 is even and y1 is odd cannot happen. Suggestion: Write

x1 = 2a and y1 = 2b + 1 and plug this into x2
1 − p y2

1 = 1.

9[In the margin of his copy of Diophantus’ Arithmetica, Fermat wrote] To divide a cube into

two other cubes, a fourth power or in general any power whatever into two powers of the same
denomination above the second is impossible, and I have assuredly found an admirable proof of

this, but the margin is too narrow to contain it. Pierre de Fermat (1601–1665). Fermat’s claim

in this marginal note, later to be called “Fermat’s last theorem” remained an unsolved problem

in mathematics until 1995 when Andrew Wiles (1953 – ) finally proved it.
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(iii) Thus, we may write x1 = 2a+1 and y1 = 2b. Show that p b2 = a (a+1). Conclude
that p must divide a or a + 1.

(iv) Suppose that p divides a; that is, a = mp for an integer m. Show that b2 =
m (mp + 1) and that m and mp + 1 are relatively prime. Using this equality,
prove that m = s2 and mp + 1 = t2 for integers s, t. Conclude that t2 − p s2 = 1
and derive a contradiction.

(v) Thus, it must be the case that p divides a + 1. Using this fact and an argument
similar to the one in the previous step, find a solution to x2 − d y2 = −1.

7. In this problem we prove the following incredible result of Euler: Every prime of the
form p = 4k + 1 can be expressed as the sum of two squares.

(i) Let p = 4k + 1 be prime. Using the previous problem and Problem 4, prove that
the period of

√
p is odd and from this, deduce that

√
p has the expansion

√
p = 〈a0; a1, a2, . . . , a`−1, a`, a`, a`−1, . . . , a1, 2a0〉.

(ii) Let η be the complete quotient ξ`+1:

η := ξ`+1 = 〈a`, a`−1 . . . , a1, 2a0, a1, . . . , a`−1, a`〉.
Prove that −1 = η · η. Suggestion: Use Lemma 7.33.

(iii) Finally, writing η = (a+
√

p)/b (why does η have this form?) show that p = a2+b2.

7.10. Epilogue: Transcendental numbers, π, e, and where’s calculus?

It’s time to get a tissue box, because, unfortunately, our adventures through
Book I have come to an end. However, in Book II we start a new amazing journey
through topology and calculus. In this section we wrap up Book I with a discussion
on transcendental numbers and continued fractions.

7.10.1. Approximable numbers. A real number ξ is said to be approx-
imable (by rationals) to order n ≥ 1 if there exists a constant C and infinitely
many rational numbers p/q in lowest terms with q > 0 such that

(7.69)
∣
∣
∣ξ − p

q

∣
∣
∣ <

C

qn
.

Observe that if ξ is approximable to order n > 1, then it is automatically approx-
imable to n− 1; this is because

∣
∣
∣ξ − p

q

∣
∣
∣ <

C

qn
≤ C

qn−1
.

Similarly, if ξ approximable to any order k with 1 ≤ k ≤ n. Intuitively, the
approximability order n measures how close we can surround ξ with “good” rational
numbers, that is, rational numbers having small denominators. To see what this
means, suppose that ξ is only approximable to order 1. Thus, there is a C and
infinitely many rational numbers p/q in lowest terms with q > 0 such that

∣
∣
∣ξ − p

q

∣
∣
∣ <

C

q
.

This inequality suggests that in order to find rational numbers very close to ξ, these
rational numbers need to have large denominators to make C/q small. However, if
ξ were approximable to order 1000, then there is a C and infinitely many rational
numbers p/q in lowest terms with q > 0 such that

∣
∣
∣ξ − p

q

∣
∣
∣ <

C

q1000
.
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This inequality suggests that in order to find rational numbers very close to ξ, these
rational numbers don’t need to have large denominators, because even for small q,
the large power of 1000 will make C/q1000 small. The following lemma shows that
there is a limit to how close we can surround algebraic numbers by “good” rational
numbers.

Lemma 7.38. If ξ is real algebraic of degree n ≥ 1 (so ξ is rational if n = 1),
then there exists a constant c > 0 such that for all rational numbers p/q 6= ξ with
q > 0, we have ∣

∣
∣ξ − p

q

∣
∣
∣ ≥ c

qn
.

Proof. Assume that f(ξ) = 0 where

f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 = 0, ak ∈ Z,

and that no such polynomial function of lower degree has this property. First, we
claim that f(r) 6= 0 for any rational number r 6= ξ. Indeed, if f(r) = 0 for some
rational number r 6= ξ, then we can write f(x) = (x−r)g(x) where g is a polynomial
of degree n − 1. Then 0 = f(ξ) = (ξ − r)g(ξ) implies, since ξ 6= r, that g(ξ) = 0.
This implies that the degree of ξ is n− 1 contradicting the fact that the degree of
ξ is n. Now for any rational p/q 6= ξ with q > 0, we see that

0 6= |f(p/q)| =
∣
∣
∣an

(p

q

)n

+ an−1

(p

q

)n−1

+ · · ·+ a1

(p

q

)

+ a0

∣
∣
∣

=
|anpn + an−1p

n−1q + · · ·+ a1pqn−1 + a0q
n|

qn
.

The numerator is a nonnegative integer, which cannot be zero, so the numerator
must be ≥ 1. Therefore,

(7.70) |f(p/q)| ≥ 1/qn for all rational numbers p/q 6= ξ with q > 0.

Second, we claim that there is an M > 0 such that

(7.71) |x− ξ| ≤ 1 =⇒ |f(x)| ≤M |x− ξ|.
Indeed, note that since f(ξ) = 0, we have

f(x) = f(x)− f(ξ) = an(xn − ξn) + an−1(x
n−1 − ξn−1) + · · ·+ a1(x− ξ).

Since

xk − ξk = (x− ξ) qk(x), qk(z) = xk−1 + xk−2 ξ + · · ·+ x ξk−2 + ξk−1,

plugging each of these, for k = 1, 2, 3, . . . , n, into the previous equation for f(x), we
see that f(x) = (x − ξ)h(x) where h is a continuous function. In particular, since
[ξ − 1, ξ + 1] is a closed and bounded interval, there is an M such that |h(x)| ≤M
for all x ∈ [ξ − 1, ξ + 1]. This proves our claim.

Finally, let p/q 6= ξ be a rational number with q > 0. If |ξ − p/q| > 1, then
∣
∣
∣ξ − p

q

∣
∣
∣ > 1 ≥ 1

qn
.

If |ξ − p/q| ≤ 1, then by (7.70) and (7.71), we have
∣
∣
∣ξ − p

q

∣
∣
∣ ≥ 1

M
|f(p/q)| ≥ 1

M

1

qn
.

Hence, |ξ − p/q| ≥ c/qn for all rational p/q 6= ξ with q > 0, where c is the smaller
of 1 and 1/M . �
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Let us negate the statement of this lemma: If for all constants c > 0, there
exists a rational number p/q 6= ξ with q > 0 such that

(7.72)
∣
∣
∣ξ − p

q

∣
∣
∣ <

c

qn
,

then ξ is not algebraic of degree n ≥ 1. Since a transcendental number is a number
that is not algebraic of any degree n, we can think of a transcendental number as a
number that can be surrounded arbitrarily close by “good” rational numbers. This
leads us to Liouville numbers to be discussed shortly, but before talking about these
special transcendental numbers, we use our lemma to prove the following important
result.

Theorem 7.39. A real algebraic number of degree n is not approximable to
order n + 1 (and hence not to any higher order). Moreover, a rational number is
approximable to order 1 and a real number is irrational if and only if it is approx-
imable to order 2.

Proof. Let ξ be algebraic of degree n ≥ 1 (so ξ is rational if n = 1). Then by
Lemma 7.38, there exists a constant c such that for all rational numbers p/q 6= ξ
with q > 0, we have

∣
∣
∣ξ − p

q

∣
∣
∣ ≥ c

qn
.

It follows that ξ is not approximable by rationals to order n + 1 because
∣
∣
∣ξ − p

q

∣
∣
∣ <

C

qn+1
=⇒ c

qn
<

C

qn+1
=⇒ q < C/c.

Since there are only finitely many integers q such that q < C/c; it follows that there
are only finitely many fractions p/q such that |ξ − p/q| < C/qn+1.

Let a/b be a rational number in lowest terms with b ≥ 1; we shall prove that a/b
is approximable to order 1. (Note that we already know from our first statement
that a/b is not approximable to order 2.) From Theorem 7.9, we know that the
equation ax−by = 1 has an infinite number of integer solutions (x, y). The solutions
(x, y) are automatically relatively prime. Moreover, if (x0, y0) is any one integral
solution, then all solutions are of the form

x = x0 + bt , y = y0 + at , t ∈ Z.

Since b ≥ 1 we can choose t large so as to get infinitely many solutions with x > 0.
With x > 0, we see that

∣
∣
∣
a

b
− y

x

∣
∣
∣ =

∣
∣
∣
∣

ax− by

bx

∣
∣
∣
∣
=

1

bx
<

2

x
,

which shows that a/b is approximable to order 1.
Finally, if a number is irrational, then it is approximable to order 2 from Dirich-

let’s approximation theorem 7.21; conversely, if a number is approximable to order
2, then it must be irrational by the first statement of this theorem. �

Using this theorem we can prove that certain numbers must be irrational. For
instance, let {an} be any sequence of 0, 1’s where there are infinitely many 1’s.
consider

ξ =
∞∑

n=0

an

22n .
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Note that ξ is the real number with binary expansion a0.0a10a30 · · · , with an in
the 2n-th decimal place and with zeros everywhere else. Any case, fix a natural
number n with an 6= 0 and let sn =

∑n
k=0

ak

22k be the n-th partial sum of this series.

Then we can write sn as p/q where q = 22n

. Observe that

∣
∣ξ − sn

∣
∣ ≤ 1

22n+1 +
1

22n+2 +
1

22n+3 +
1

22n+4 + · · ·

<
1

22n+1 +
1

22n+1+1
+

1

22n+1+2
+

1

22n+1+3
+ · · ·

=
1

22n+1

(

1 +
1

21
+

1

22
+

1

23
+ · · ·

)

=
2

22n+1 =
2

(22n)2
.

In conclusion,
∣
∣ξ − sn

∣
∣ <

2

(22n)2
=

C

q2
,

where C = 2. Thus, ξ is approximable to order 2, and hence must be irrational.

7.10.2. Liouville numbers. Numbers that satisfy (7.72) with c = 1 are spe-
cial: A real number ξ is called a Liouville number, after Joseph Liouville (1809–
1882), if for every natural number n there is a rational number p/q 6= ξ with q > 1
such that ∣

∣
∣
∣
ξ − p

q

∣
∣
∣
∣
<

1

qn
.

These numbers are transcendental by our discussion around (7.72). Because this
fact is so important, we state this as a theorem.

Theorem 7.40 (Liouville’s theorem). Any Liouville number is transcenden-
tal.

Using Liouville’s theorem we can give many (in fact uncountably many — see
Problem 3) examples of transcendental numbers. Let {an} be any sequence of
integers in 0, 1, . . . , 9 where there are infinitely many nonzero integers. Let

ξ =
∞∑

n=0

an

10n!
.

Note that ξ is the real number with decimal expansion

a0.a1a2000a300000000000000000a4 · · · ,
with an in the n!-th decimal place and with zeros everywhere else. Using Liouville’s
theorem we’ll show that ξ is transcendental. Fix a natural number n with an 6= 0
and let sn be the n-th partial sum of this series. Then sn can be written as p/q
where q = 10n! > 1. Observe that

∣
∣ξ − sn

∣
∣ ≤ 9

10(n+1)!
+

9

10(n+2)!
+

9

10(n+3)!
+

9

10(n+4)!
+ · · ·

<
9

10(n+1)!
+

9

10(n+1)!+1
+

9

10(n+1)!+2
+

9

10(n+1)!+3
+ · · ·

=
9

10(n+1)!

(

1 +
1

101
+

1

102
+

1

103
+ · · ·

)

=
10

10(n+1)!
=

10

10n·n! · 10n!
≤ 1

10n·n!
.
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In conclusion,
∣
∣ξ − sn

∣
∣ <

1

(10n!)n
=

1

qn
,

so ξ is a Liouville number and therefore is transcendental.

7.10.3. Continued fractions and the “most extreme” irrational of all
irrational numbers. We now show how continued fractions can be used to con-
struct transcendental numbers! This is achieved by the following simple observa-
tion. Let ξ = 〈a0; a1, . . .〉 be an irrational real number with convergents {pn/qn}.
Then by our fundamental approximation theorem 7.18, we know that

∣
∣
∣ξ − pn

qn

∣
∣
∣ <

1

qnqn+1
.

Since

qnqn+1 = qn(an+1qn + qn−1) ≥ an+1q
2
n,

we see that

(7.73)
∣
∣
∣ξ − pn

qn

∣
∣
∣ <

1

an+1 q2
n

.

Thus, we can make the rational number pn/qn approximate ξ as close as we wish
by simply taking the next partial quotient an+1 larger. We use this observation in
the following theorem.

Theorem 7.41. Let ϕ : N→ (0,∞) be a function. Then there is an irrational
number ξ and infinitely many rational numbers p/q such that

∣
∣
∣ξ − p

q

∣
∣
∣ <

1

ϕ(q)
.

Proof. We define ξ = 〈a0; a1, a2, . . .〉 by choosing the an’s inductively as fol-
lows. Let a0 ∈ N be arbitrary. Assume that a0, . . . , an have been chosen. With qn

the denominator of 〈a0; a1, . . . , an〉, choose (via Archimedean) an+1 ∈ N such that

an+1q
2
n > ϕ(qn).

This defines the an’s. Now defining ξ := 〈a0; a1, a2, . . .〉, by (7.73), for any natural
number n we have

∣
∣
∣ξ − pn

qn

∣
∣
∣ <

1

an+1 q2
n

<
1

ϕ(qn)
.

This completes our proof. �

Using this theorem we can easily find transcendental numbers. For example,
with ϕ(q) = eq, we can find an irrational ξ such that for infinitely many rational
numbers p/q, we have

∣
∣
∣ξ − p

q

∣
∣
∣ <

1

eq
.

Since for any n ∈ N, we have eq =
∑∞

k=0 qk/k! > qn/n!, it follows that for infinitely
many rational numbers p/q, we have

∣
∣
∣ξ − p

q

∣
∣
∣ <

c

qn
,

where c = n!. In particular, ξ is transcendental.
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As we have just seen, we can form transcendental numbers by choosing the
partial quotients in an infinite simple continued fraction to be very large and tran-
scendental numbers are the irrational numbers which are “closest” to good rational
numbers. With this in mind, we can think of infinite continued fractions with small
partial quotients as far from being transcendental or far from rational. Since 1 is
the smallest natural number, we can consider the golden ratio

Φ =
1 +
√

5

2
= 〈1; 1, 1, 1, 1, 1, 1, 1, . . .〉

as being the “most extreme” or “most irrational” of all irrational numbers in the
sense that it is the “farthest” irrational number from being transcendental or the
“farthest” irrational number from being rational.

7.10.4. What about π and e and what about calculus? Above we have
already seen examples (in fact, uncountably many — see Problem 3) of transcen-
dental numbers and we even know how to construct them using continued fractions.
However, these numbers seem in some sense to be “artificially” made. What about
numbers that are more “natural” such as π and e? Are these numbers transcen-
dental? In fact, these numbers do turn out to be transcendental, but the “easiest”
proofs of these facts need the technology of calculus (derivatives)! Our next ad-
venture is to study calculus and during our journey we’ll prove that π and e are
transcendental. However, before going on this adventure, we ask you to look back
at all the amazing things that we’ve encountered during these past chapters —
everything without using one single derivative or integral!

Exercises 7.10.

1. Given any integer b ≥ 2, prove that ξ =
∑∞

n=0 b−2n

is irrational.
2. Let b ≥ 2 be an integer and let {an} be any sequence of integers 0, 1, . . . , b − 1 where

there are infinitely many nonzero an’s. Prove that ξ =
∑∞

n=1 anb−n! is transcendental.
3. Using a Cantor diagonal argument as in the proof of Theorem 3.35, prove that the set

of all numbers of the form ξ =
∑∞

n=0
an

10n! where an ∈ {0, 1, 2, . . . , 9} is uncountable.
That is, assume that the set of all such numbers is countable and construct a number
of the same sort not in the set. Since we already showed that all these numbers are
Liouville numbers, they are transcendental, so this argument provides another proof
that the set of all transcendental numbers is uncountable.

4. Going through the construction of Theorem 7.41, define ξ ∈ R such that if {pn/qn} are
the convergents of its canonical continued fraction expansion, then for all n,

∣
∣
∣ξ − pn

qn

∣
∣
∣ <

1

qn
n

.

Show that ξ is a Liouville number, and hence is transcendental.


