
MATH 488A: PUTNAM PROBLEMS LEVEL 1

1. 1985–1989

Problem. (1985 A-1) Determine, with proof, the number of ordered triples (A1, A2, A3) of sets which
have the property that

(i) A1 ∪A2 ∪A3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and
(ii) A1 ∩A2 ∩A3 = ∅.

Express your answer in the form 2a3b5c7d, where a, b, c, d are nonnegative integers.

Problem. (1985 B-1) Let k be the smallest positive integer for which there exist distinct integers
m1,m2,m3,m4,m5 such that the polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients. Find, with proof, a set of integers m1,m2,m3,m4,m5 for which this
minimum k is achieved.

Problem. (1986 A-1) Find, with explanation, the maximum value of f(x) = x3 − 3x on the set of all
real numbers x satisfying x4 + 36 ≤ 13x2.

Problem. (1986 B-1) Inscribe a rectangle of base b and height h in a circle of radius one, and inscribe
an isosceles triangle in the region of the circle cut off by one base of the rectangle (with that side as the
base of the triangle). For what value of h do the rectangle and triangle have the same area?

Problem. (1987 A-1) Curves A,B, C and D are defined in the plane as follows:

A =
{

(x, y) : x2 − y2 =
x

x2 + y2

}
,

B =
{

(x, y) : 2xy +
y

x2 + y2
= 3

}
,

C =
{
(x, y) : x3 − 3xy2 + 3y = 1

}
,

D =
{
(x, y) : 3x2y − 3x− y3 = 0

}
.

Prove that A ∩B = C ∩D.

Problem. (1987 B-1) Evaluate ∫ 4

2

√
ln(9− x) dx√

ln(9− x) +
√

ln(x + 3)
.

Problem. (1988 A-1) Let R be the region consisting of the points (x, y) of the cartesian plane satisfying
both |x| − |y| ≤ 1 and |y| ≤ 1. Sketch the region R and find its area.

Problem. (1988 B-1) A composite (positive integer) is a product ab with a and b not necessarily distinct
integers in {2, 3, 4, . . . }. Show that every composite is expressible as xy+xz +yz +1, with x, y, z positive
integers.
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Problem. (1989 A-1) How many primes among the positive integers, written as usual in base 10, are
alternating 1’s and 0’s, beginning and ending with 1?

Problem. (1989 B-1) A dart, thrown at random, hits a square target. Assuming that any two parts of
the target of equal area are equally likely to be hit, find the probability that the point hit is nearer to

the center than to any edge. Express your answer in the form
a
√

b + c

d
, where a, b, c, d are integers.

2. The 90s

Problem. (1990 A-1)
T0 = 2, T1 = 3, T2 = 6,

and for n ≥ 3,
Tn = (n + 4)Tn−1 − 4nTn−2 + (4n− 8)Tn−3.

The first few terms are
2, 3, 6, 14, 40, 152, 784, 5168, 40576.

Find, with proof, a formula for Tn of the form Tn = An + Bn, where {An} and {Bn} are well-known
sequences.

Problem. (1990 B-1) Find all real-valued continuously differentiable functions f on the real line such
that for all x,

(f(x))2 =
∫ x

0
[(f(t))2 + (f ′(t))2] dt + 1990.

Problem. (1991 A-1) A 2 × 3 rectangle has vertices as (0, 0), (2, 0), (0, 3), and (2, 3). It rotates 90◦

clockwise about the point (2, 0). It then rotates 90◦ clockwise about the point (5, 0), then 90◦ clockwise
about the point (7, 0), and finally, 90◦ clockwise about the point (10, 0). (The side originally on the x-axis
is now back on the x-axis.) Find the area of the region above the x-axis and below the curve traced out
by the point whose initial position is (1,1).

Problem. (1991 B-1) For each integer n ≥ 0, let S(n) = n −m2, where m is the greatest integer with
m2 ≤ n. Define a sequence (ak)∞k=0 by a0 = A and ak+1 = ak + S(ak) for k ≥ 0. For what positive
integers A is this sequence eventually constant?

Problem. (1992 A-1) Let f : Z → Z be a functions that satisfies the following conditions.
(i) f(f(n)) = n, for all integers n;
(ii) f(f(n + 2) + 2) = n for all integers n;
(iii) f(0) = 1.

Show that f(n) = 1− n for all n ∈ Z.

Problem. (1992 B-1) Let S be a set of n distinct real numbers. Let AS be the set of numbers that
occur as averages of two distinct elements of S. For a given n ≥ 2, what is the smallest possible number
of elements in AS?

Problem. (1993 A-1) The horizontal line y = c intersects the curve y = 2x − 3x3 in the first quadrant
as in the figure. Find c so that the areas of the two shaded regions are equal. [Figure not included. The
first region is bounded by the y-axis, the line y = c and the curve; the other lies under the curve and
above the line y = c between their two points of intersection.]
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Problem. (1993 B-1) Find the smallest positive integer n such that for every integer m with 0 < m <
1993, there exists an integer k for which

m

1993
<

k

n
<

m + 1
1994

.

Problem. (1994 A-1) Let (an) be a sequence of positive reals such that, for all n, an ≤ a2n + a2n+1.
Prove that

∑∞
n=1 an diverges.

Problem. (1994 B-1) Find all positive integers n such that |n −m2| ≤ 250 for exactly 15 nonnegative
integers m.

Problem. (1995 A-1) Let S be a set of real numbers which is closed under multiplication (that is, if a
and b are in S, then so is ab). Let T and U be disjoint subsets of S whose union is S. Given that the
product of any three (not necessarily distinct) elements of T is in T and that the product of any three
elements of U is in U , show that at least one of the two subsets T,U is closed under multiplication.

Problem. (1995 B-1) For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of elements in
the part containing x. Prove that for any two partitions π and π′, there are two distinct numbers x and
y in {1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y) and π′(x) = π′(y). [A partition of a set S is a collection
of disjoint subsets (parts) whose union is S.]

Problem. (1996 A-1) Find the least number A such that for any two squares of combined area 1, a
rectangle of area A exists such that the two squares can be packed in the rectangle (without interior
overlap). You may assume that the sides of the squares are parallel to the sides of the rectangle.

Problem. (1996 B-1) Define a selfish set to be a set which has its own cardinality (number of elements)
as an element. Find, with proof, the number of subsets of {1, 2, . . . , n} which are minimal selfish sets,
that is, selfish sets none of whose proper subsets is selfish.

Problem. (1997 A-1) A rectangle, HOMF , has sides HO = 11 and OM = 5. A triangle ABC has H
as the intersection of the altitudes, O the center of the circumscribed circle, M the midpoint of BC, and
F the foot of the altitude from A. What is the length of BC?

Problem. (1997 B-1) Let {x} denote the distance between the real number x and the nearest integer.
For each positive integer n, evaluate

Fn =
6n−1∑
m=1

min({m

6n
}, {m

3n
}).

(Here min(a, b) denotes the minimum of a and b.)

Problem. (1998 A-1) A right circular cone has base of radius 1 and height 3. A cube is inscribed in
the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the
cube?

Problem. (1998 B-1) Find the minimum value of

(x + 1/x)6 − (x6 + 1/x6)− 2
(x + 1/x)3 + (x3 + 1/x3)

for x > 0.
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Problem. (1999 A-1) Find polynomials f(x), g(x) and h(x), if they exist, such that, for all x,

|f(x)| − |g(x)|+ h(x) =


−1 x < −1
3x + 2 −1 ≤ x ≤ 0
−2x + 2 x > 0.

Problem. (1999 B-1) Right triangle ABC has right angle at C and ∠BAC = θ; the point D is chosen
on AB so that |AC| = |AD| = 1; the point E is chosen on BC so that ∠CDE = θ. The perpendicular to
BC at E meets AB at F . Evaluate lim

θ→0
|EF |. [Here, |PQ| denotes the length of the line segment PQ.]

A

θ

B

C

D

θ

E

F
ææææææææææææ

æææææ

Θ
Θ
Θ

B
B
B
B
B
B
B
BS
S
S
S
S
S
S
SS

3. The 00s

Problem. (2000 A-1) Let A be a positive real number. What are the possible values of
∑∞

j=0 x2
j , given

that x0, x1, x2, . . . are positive numbers for which
∑∞

j=0 xj = A?

Problem. (2000 B-1) Let aj , bj , and cj be integers for 1 ≤ j ≤ N . Assume, for each j, that at least
one of aj , bj , cj is odd. Show that there exist integers r, s, t such that raj + sbj + tcj is odd for at least
4N/7 values of j, 1 ≤ j ≤ N .

Problem. (2001 A-1) Consider a set S and a binary operation ∗ on S (that is, for each a, b ∈ S, a ∗ b is
in S). Assume that (a ∗ b) ∗ a = b for all a, b ∈ S. Prove that a ∗ (b ∗ a) = b for all a, b ∈ S.

Problem. (2001 B-1) Let n be an even positive integer. Write the numbers 1, 2, ..., n2 in the squares of
an n× n grid so that the k-th row, from left to right, is

(k − 1)n + 1, (k − 1)n + 2, ..., (k − 1)n + n.

Color the squares of the grid so that half of the squares in each row and in each column are red and the
other half are black (a checkerboard coloring is one possibility). Prove that for each such coloring, the
sum of the numbers on the red squares is equal to the sum of the numbers on the black squares.

Problem. (2002 A-1) Let k be a positive integer. The n-th derivative of 1/(xk − 1) has the form
Pn(x)/(xk − 1)n+1 where Pn(x) is a polynomial. Find Pn(1).

Problem. (2002 B-1) Shanille O’Keal shoots free throws on a basketball court. She hits the first and
misses the second, and thereafter the probability that she hits the next shot is equal to the proportion
of shots she has hit so far. What is the probability she hits exactly 50 of her first 100 shots?

Problem. (2003 A-1) Let n be a fixed positive integer. How many ways are there to write n as a sum
of positive integers, n = a1 + a2 + · · ·+ ak, with k an arbitrary positive integer and a1 ≤ a2 ≤ · · · ≤ ak ≤
a1 + 1? For example, with n = 4 there are four ways: 4, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.

Problem. (2003 B-1) Do there exist polynomials a(x), b(x), c(y), d(y) such that

1 + xy + x2y2 = a(x)c(y) + b(x)d(y)

holds identically?
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Problem. (2004 A-1) Basketball star Shanille O’Keal’s team statistician keeps track of the number,
S(N), of successful free throws she has made in her first N attempts of the season. Early in the season,
S(N) was less than 80% of N , but by the end of the season, S(N) was more than 80% of N . Was there
necessarily a moment in between when S(N) was exactly 80% of N ?

Problem. (2004 B-1) Let P (x) = cnxn + cn−1x
n−1 + ... + c0 be a polynomial with integer coefficients.

Suppose that r is a rational number such that P (r) = 0. Show that the n numbers

cnr, cnr2 + cn−1, cnr3 + cn−1r
2 + cn−2r, ..., cnrn + cn−1r

n−1 + ... + c1r

are integers.

Mathematics Department, Binghamton Univeristy, P. O. Box 6000, Binghamton, New York, 13902-6000
E-mail address: dikran@math.binghamton.edu


