Name:

1. Let \mathbb{F}_2 be the field with 2 elements and consider the polynomial $p(x) = x^3 + 1 \in \mathbb{F}_2[x]$. Is p irreducible? If so, prove it; if not, give a factorization.

2. Is the following proposition true or false? Explain your answer.

Proposition: A polynomial $f \in \mathbb{Z}[x]$ has a factor of degree one if and only if f has a root in \mathbb{Z} .

3. What goes in the blanks in the following statement of Eisenstein's Criterion? Put your answers below the proposition.

Proposition (Eisenstein's Criterion) Let P be a prime ideal of the integral domain R and let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial in R[x] $(n \ge 2)$. Suppose that $a_{n-1}, \ldots, a_1, a_0$ and that a_0 Then f(x).

4. Show that the polynomial $x^4 + 1$ is irreducible in $\mathbb{Z}[x]$, by substitution of x + 1 for x.