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Should I Use Fixed or Random Effects?

TOM S. CLARK AND DREW A. LINZER*

Empirical analyses in social science frequently confront quantitative data that are clus-
tered or grouped. To account for group-level variation and improve model fit, research-
ers will commonly specify either a fixed- or random-effects model. But current advice on

which approach should be preferred, and under what conditions, remains vague and sometimes
contradictory. This study performs a series of Monte Carlo simulations to evaluate the total
error due to bias and variance in the inferences of each model, for typical sizes and types of
datasets encountered in applied research. The results offer a typology of dataset characteristics
to help researchers choose a preferred model.

In social science research, it is common to confront data that are clustered or grouped into
higher-level units. One of the most frequently encountered challenges when modeling these
data arises when the dependent variable exhibits group-level variation beyond what can be

explained by the independent variables alone. In these cases, fitting a standard linear regression
or generalized linear model without accounting for the grouped nature of the observations can
lead to poorly fitting models and misleading estimates of both the effect of independent vari-
ables of interest and of the precision of those estimates (Beck and Katz 1995; Greene 2012).

The two dominant approaches to remedy this problem are the use of so-called fixed-effects or
random-effects models.1 Although much has been written on the theoretical properties of both
approaches (for example, Kreft and DeLeeuw 1998; Robinson 1998; Kennedy 2003; Frees
2004; Gelman 2005; Wilson and Butler 2007; Arceneaux and Nickerson 2009; Wooldridge
2010; Greene 2012), recommendations for applied researchers are often confusing—or even
contradictory (Gelman and Hill 2007, 245). Often they are made with reference to idealized
datasets with very large sample sizes, or using divergent standards for assessing model quality.
There remains little consistent guidance for researchers trying to decide how best to model the
data they have on hand. They are left to wonder: “Should I use fixed or random effects?”

In this article, we offer practical guidance for researchers choosing between fixed- and
random-effects models. As we describe below, both models entail a series of assumptions that
might be violated in any given dataset. Under certain conditions, random effects models can
introduce bias, but reduce the variance of estimates of coefficients of interest. Fixed-effects
estimates will be unbiased, but may be subject to high sample dependence. We argue
that researchers ought not to place undue weight on minimizing either bias or variance, but
rather consider the trade-off between the two in either model. While it is true that under a
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1 We note that there is considerable confusion in the literature concerning the meanings of these terms (for a
discussion, see Gelman 2005, 20). We employ them here as we believe most applied researchers use them: as
shorthand for two modeling approaches. As we describe below, fixed effects refer to a series of dummy variables
for the units from which grouped data arise, while random effects refer to an estimator that assumes unit effects
are drawn from an underlying, modeled distribution. There are certainly many other modeling options one might
consider.



random-effects specification there may be bias in the coefficient estimates if the covariates
are correlated with the unit effects, it does not follow that any correlation between the
covariates and the unit effects implies that fixed effects should be preferred. What should be
judged instead is how much bias is created, and how much variance would be introduced
by using fixed effects instead. After all, except in exceptional circumstances, there will
always be some level of correlation between the covariates and the unit effects, and thus at least
minimal bias (for example, Angrist and Pischke 2009, 223n2). The question is, how much is
too much?

We compare the performance of the fixed- and random-effects models using a series of
Monte Carlo experiments that vary the sample size, effect size of the independent variable,
correlation between the independent variable and unit effects, and, crucially, whether the
majority of variation in the dependent variable is within or between units. We then calculate
how consistently each model recovers the true coefficient of interest. Drawing upon our
simulation results, we derive a set of guidelines that applied researchers can use to determine
how best to specify models for grouped dependent variables.

THE PROBLEM

We consider the linear model for observations i = 1 … N grouped into units j = 1 … J,

yi ¼ �j½i�þ�xiþ"i; "i�Nð0; �2
yÞ: (1)

The effect of x on y, denoted β, is the primary quantity of interest. We assume that β is the same
within each unit.2 However, even after accounting for the effect of x, there may still remain
additional variation in the overall level of y across units. The unit effect αj captures the amount
by which predictions of y in unit j must be adjusted upward or downward, given knowledge
only of x. The notation j[i] indicates the unit j of observation i.

One interpretation of the unit effects is that they represent ignorance about all of the other
systematic factors that predict y, other than x. If these factors were known, they could ostensibly
be included as additional covariates in the model, thus “explaining” the extra variation in y and
eliminating variation in αj across units. Since these variables are not included in the model, we
capture their effects with αj instead. The variation in αj might also be partially or completely
nonsystematic, due simply to stochastic noise.

With few exceptions, failing to allow for the possibility that αj varies by unit will lead to
biased estimates of β. If we assume that the unit effects are all equivalent—that is, αj = αk for
all j and k —then Equation 1 reduces to the pooled model

yi ¼ �þ �xi þ "i; "i � Nð0; �2
yÞ: (2)

The pooled regression model is appropriate if αj does not vary once x is included as an
independent variable. The pooled model will also not produce bias in estimates of β if the unit
effects differ but are uncorrelated with x. In most applications, however, the unit effects are
associated to some degree with x, so variation in αj must be modeled in order to avoid faulty
inferences about β.

2 Although there are many instances in which a researcher may wish to allow β to vary by unit, Equation 1
represents the most commonly encountered modeling scenario. Our notation follows that of Gelman and Hill
(2007, 256–7).
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TWO SOLUTIONS: FIXED AND RANDOM EFFECTS

There are two standard approaches for modeling variation in αj: fixed effects and random
effects. The fixed-effects model is a linear regression of y on x, which adds to the specification a
series of indicator variables zj for each unit, such that zj[i] = 1 if observation i is in unit j, and
zj[i] = 0 otherwise:

yi ¼
XJ
j¼1

�jzj½i� þ �xi þ "i; "i�Nð0; �2
yÞ: (3)

The coefficients �̂j that are computed for each zj are taken as estimates of αj.
In the random-effects model, the αj are instead assumed to follow a probability distribution,

with parameters estimated from the data. This distribution is typically normal, with average
unit effect μα and variance �2

�, which describes by how much the other unit effects vary around
the mean.

yi ¼ �j½i� þ �xi þ "i; �j�Nð��; �
2
�Þ; "i�Nð0; �2

yÞ: (4)

As Gelman and Hill (2007, 258) note, the random-effects estimator is equivalent to the fixed-
effects estimator when we assume that αj∼N(μα,∞) rather than �j�Nð��; �

2
�Þ.

The estimators of the coefficient β under the two models are mathematically related.
Let xj and yj represent the n observations in the jth unit. Following Greene (2012, 373), the
generalized least squares estimator of β for the random-effects model is:

�̂RE ¼
XJ
j¼1

x0jΣ−1xj

 !−1 XJ
j¼1

x0jΣ−1yj

 !
; (5)

where, letting I be the n× n identity matrix and i be an n× 1 column of ones,

Σ−1=2 ¼ 1
�y

I−
�

n
ii0

� �
(6)

with

� ¼ 1−
�yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
y þ n�2

�

q : (7)

As �2
� ! 1 or n→∞, θ→ 1, making the random-effects estimator �̂RE reduce to the fixed-

effects estimator �̂FE (Greene 2012, 361).

How to Choose?

In some cases, choosing between a fixed- and random-effects specification will follow directly
from a researcher’s theoretical model. Or a researcher may have application-specific concerns
about the appropriateness of the assumptions underlying either model. Unfortunately, however,
too often one’s theoretical model does not dictate a particular specification, and the theoretical
assumptions about which one might be concerned do not lend themselves to empirical
evaluation. In these situations, neither specification emerges as an obvious choice. In this
context, we investigate empirically which model offers better inferences about the quantities of
interest. Both models have potential advantages—as well as disadvantages—to consider when
selecting an approach.
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The problem of high variance

The estimate of β in the fixed-effects model may, under certain conditions, produce estimates that
are highly sample dependent—that is, overly sensitive to the random error in a given dataset.
Suppose that there are few observations per unit, or that x varies little within each unit, relative to
the amount of variation in y. Estimates of the within-unit effects of x on y may then diverge
considerably from the true effect due to chance alone.3 If there is also a small number of units, then
many of the within-unit effects may diverge from the true effects in the same direction, leading the
estimate of β to be quite different from the true β. This lack of robustness to potentially anomalous
samples is what is meant by the fixed-effects model having high variance.

A related drawback of fixed-effects models is that they require the estimation of a parameter
for each unit—the coefficient on the unit dummy variable. This can substantially reduce the
model’s power and increase the standard errors of the coefficient estimates. The problem is
worsened when the within-unit sample size is very small, as the unit effects alone may account
for most of the variation in the dependent variable.

Random-effects models enable estimation of β with lower sample-to-sample variability by
partially pooling information across units (Gelman and Hill 2007, 258). By estimating the
variance parameter �2

� in Equation 4, the random-effects estimator forms a compromise between
the fixed-effects and pooled models. Groups with outlying unit effects will have their respective
αj shrunk back toward the mean, μα. This brings estimates of β away from the less stable
fixed-effects estimate and closer to the more stable (albeit potentially biased) pooled estimate.
The effects of shrinkage will be greatest for units containing fewer observations, especially
when estimates of �2

� are close to zero.

The problem of bias

The most serious drawback of the random-effects approach is the problem of bias that partial
pooling can introduce in estimates of β. To eliminate this bias, the random-effects estimator
requires there to be no correlation between the covariate of interest, x, and the unit effects, αj. To
illustrate, suppose that there is a variable z that predicts y but is not included as a covariate in the
random-effects model. As a result of omitting z from the model specification, the higher or
lower levels of y in unit j due to z are instead accounted for by the unit effects αj. For there to be
no bias in estimates of the coefficient on x, there must be no correlation between x and z—and,
hence, no correlation between x and αj, implying no confounding due to the omitted z. Since the
random-effects model does not estimate separate unit effects, any correlation between x and αj
can imply an omitted variable z that produces bias in estimates of β. The greater the magnitude
of the correlation between x and αj, the greater the bias in estimates of β.4

Scholars are sometimes advised to use a Hausman (1978) specification test to detect violations
of the random-effects modeling assumption that the explanatory variables are orthogonal to the unit
effects. A “significant” test result is taken as evidence of a correlation between x and αj, implying
that the random-effects model should be rejected in favor of the fixed-effects model. However in
most applications, the true correlation between the covariates and unit effects is not exactly zero.
Therefore, if the Hausman test fails to reject the null hypothesis of orthogonality, it is most likely
not because the true correlation is zero—and, hence, that the random-effects estimator is unbiased.

3 In the bivariate linear regression model, Varð�̂Þ increases with smaller values of Var(x), and with larger
values of �2y , the conditional variance of y given x (Greene 2012, 48).

4 We set aside the issue of causal inference with observational data and focus explicitly on the bias and
variance of these two estimators under varying data-generating processes.
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Rather, it is likely that the test has insufficient statistical power to reliably distinguish a small
correlation from zero correlation. When using the random-effects model, there will still be bias
(if perhaps negligible) in estimates of β, even if the Hausman test does not find a significant result.
Of course, in many cases, a biased (random-effects) estimator can be preferable to an unbiased
(fixed-effects) estimator if the former provides sufficient variance reduction over the latter. The
Hausman test does not help evaluate this trade-off.

Practical considerations

In addition to these theoretical considerations, there are practical and technical issues that
researchers might take into account when deciding between a fixed- and random-effects estimator.
For example, it is very common for a researcher to want to include in the specification an important
covariate of interest that does not vary within units. In this case, the unit-invariant predictor will be
perfectly collinear with the set of unit dummy variables, making it impossible to estimate the unique
effects of that variable. Alternatively, the independent variable may exhibit extremely minimal
variation within each unit. In time-series cross-sectional data, independent variables that change
very gradually over time are frequently referred to as slow moving or sluggish. If the correlation
between the sluggish covariate and the unit fixed effects is high enough, this can destabilize
estimates of the effect of the independent variable. Plümper and Troeger (2007, 2011) propose
alternative modeling strategies for data that exhibit these characteristics, which rely on estimating
fixed effects and then decomposing those estimates to assess the effect of the sluggish variables.

What if a researcher is interested in making predictions about units that are not in the dataset?
When employing a fixed-effects estimator, making out-of-sample predictions is not possible
because the unit effects for unobserved units are unknown. In the random-effects specification,
out-of-sample predictions are feasible using the model’s estimate of the underlying distribution
of unit effects in the population.

EVALUATING THE BIAS-VARIANCE TRADE-OFF

We perform a series of Monte Carlo experiments to determine the conditions under which a
fixed- or random-effects model provides better estimates of β. Our study investigates variation
in the number of units, the number of observations within each unit, the strength of correlation
between x and the unit effects, the strength of association between x and y, and the amount of
variation in x within units.

To simulate a data-generating process in which observations are clustered by units, we first
generate a series of J within-unit means �xj, and corresponding unit effects αj, by sampling from
a bivariate normal distribution centered at zero:

�j

�xj

" #
�N

0

0

" #
;

1 �

� 1

" # !
: (8)

The variances of both αj and �xj are fixed at 1. The off-diagonal covariances ρ control the amount
of correlation between the independent variable and the unit effects. We then draw n obser-
vations of xi within each unit j = 1…J from a normal distribution with mean �xj and standard
deviation σx. The total sample size is J× n. Finally, we apply Equation 1 to produce yi as a linear
function of xi, with slope β, unit-level constant terms αj and within-unit error variance �2

y ¼ 1.
We choose hypothetical values of J, n, ρ, �x and β to mimic typical features of quantitative

social science datasets (Table 1). In the terminology of longitudinal data analysis, our
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simulations assess both short panels, in which J>n, as well as long panels, in which n>J.5 To
control the variation in x, we set σx = 0.2 to represent a sluggish independent variable, and
σx = 1 for what we refer to as the standard case in which individuals differ more greatly within
units, making the units more similar on average. Finally, we allow the correlation between the
unit effects αj and the means �xj to vary from ρ = 0 to ρ = 0.95.6

For each simulated dataset, we estimate the fixed-effects model (Equation 3), the random-
effects model (Equation 4) and the pooled model (Equation 2), and record the estimates of
�̂ produced by each.7 We then repeat this process for 2,000 simulated datasets for each
combination of values in Table 1.

COMPARING RMSE

We compute the root mean square error (RMSE) of �̂ from the fixed-effects, random-effects and
pooled models. When there is a standard amount of variation in the independent variable, there
is no appreciable difference in the quality of inferences between the fixed- and random-effects
models, except at very small numbers of observations per unit, and extremely high correlation
between the independent variable and unit effects (Figure 1). The conventional understanding
that any correlation between regressors and unit effects necessarily results in unallowable levels
of error in the random-effects estimator is therefore unfounded. Researchers should feel secure
using either fixed- or random-effects models under standard conditions, as dictated by the
practical and theoretical aspects of a given application. Either way, both approaches are strictly
preferable to the pooled model.

In the case of a sluggish independent variable, there is a range of scenarios in which the
RMSE of �̂ is lower with random effects than with fixed effects, even when the random-effects
estimate is biased (Figure 2). The smaller the dataset, the greater the potential support for a
random-effects specification if the correlation between x and the unit effects is sufficiently low.
When the number of units and/or observations per unit is small—fewer than 200 total obser-
vations, as a rule of thumb—the RMSE of the fixed-effects estimator can be quite high. This is
due to the high variance of the fixed-effects estimator in small samples, despite its unbiasedness.
The random-effects model, in contrast, can have much lower variance in small datasets. As long

TABLE 1 Parameters Manipulated in the Monte Carlo Experiments and their
Assumed Values

Parameter Description Values

J Number of units 10, 40, 100
n Observations per unit 5, 20, 50
ρ Correlation between independent variable and

unit effects
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95

σx Within-unit standard deviation of x 0.2 (sluggish), 1 (standard)
β Within-unit effect of x on y 0, 0.5, 1, 2

5 Applications with unbalanced panels (i.e., where n varies by unit) can be mapped to our results according
to the average number of observations per unit.

6 Negative correlation will lead to the same results, but in the opposite direction. In any given dataset, a
researcher may obtain an approximate estimate of ρ by fitting the fixed-effects model, and then computing the
correlation between the estimated unit effects and the within-unit means of the independent variable.

7 The simulation is performed in R (R Development Core Team 2014). We estimate the random-effects
model using the function lmer in the lme4 package (Bates, Maechler and Bolker 2011).
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as the correlation between the covariate and unit effects is not too high, the bias in the random-
effects estimator will be small enough that the lower variance of the estimator will produce a
RMSE below that of the fixed-effects model. In the very smallest datasets, the random-effects
estimator outperforms the fixed-effects estimator even when there are extreme violations of the
assumption of zero correlation.

As the size of the dataset increases, and the variance of the fixed-effects estimates falls, there
is less support for the random-effects model. In larger datasets, correlation of greater than 0.2 to
0.3 between the independent variable and unit effects leads to a preference for the fixed-effects
model. Increasing the sample size decreases the RMSE of the random-effects estimator, but its
bias at high levels of correlation is no longer sufficiently offset by efficiency gains relative to the
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Fig. 1. Root mean squared error of slope parameter estimates—standard case
Note: lines represent the average RMSE of estimates �̂ across multiple simulated datasets: fixed effects (solid
line), random effects (dashed) and pooled (dotted). The horizontal axis is the true amount of correlation
between �xj and unit effects αj. An RMSE of zero indicates that estimates are both unbiased and subject to
negligible estimation uncertainty. Each panel shows a particular combination of the number of units and
number of observations per unit.
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fixed-effects model. At low (but still non-zero) levels of correlation, however, the random-
effects model remains a superior choice.8 The conventional wisdom that any violation of the
random-effects model’s assumption of zero correlation rules out its use is once again shown to
be misguided. The presence of non-zero correlation between the independent variable and unit
effects is neither a sufficient nor a necessary condition for choosing a fixed-effects model.
Instead, the decision must be based on the amount of data in a study and the level of correlation
between regressors and unit effects.
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Fig. 2. Root mean squared error of slope parameter estimates—sluggish case
Note: lines represent the average RMSE of estimates �̂ across multiple simulated datasets: fixed effects (solid
line), random effects (dashed) and pooled (dotted). The horizontal axis is the true amount of correlation
between �xj and unit effects αj. An RMSE of zero indicates that estimates are both unbiased and subject to
negligible estimation uncertainty. Each panel shows a particular combination of the number of units and
number of observations per unit.

8 The RMSE of each estimator is invariant to effect size. The preceding simulations set the within-unit effect
of x on y at β = 1. Repeating the simulations with β = 0, β = 0.5 and β = 2, the results exactly match those
shown in Figures 1 and 2.
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Finally, we note that for a sluggish independent variable, under all conditions, the pooled
estimator yields a higher RMSE than the random-effects estimator, though it can outperform the
fixed-effects estimator when the data are sufficiently sparse. The superiority of the random-
effects model over the pooled model increases with the number of observations per unit.

CONCLUSION

Scholars generally approach grouped data using either fixed-effects or random-effects models.
Advice on which to choose typically emphasizes avoiding bias in estimates of the parameters of
interest. Examining the RMSE of both estimators, however, we demonstrate that there is a range
of conditions under which it may be worth accepting the bias in the random-effects model if it is
associated with a sufficient gain in efficiency, leading to estimates that are closer, on average,
to the true value in any particular sample. The most common objection to the use of random
effects—the violation of a “critical” modeling assumption: that the regressor and the unit effects
are uncorrelated—turns out to be an insufficient justification to prefer fixed over random effects.
This condition will hold only under exceptional circumstances, and our simulations demonstrate
that even in the presence of rather extreme violations of that assumption, the random-effects
estimator can still be preferable to (or at least no worse than) the fixed-effects estimator.

We offer a series of rules of thumb upon which researchers may rely when choosing between
a fixed- or random-effects approach. When variation in the independent variable is primarily
within units—that is, the units are relatively similar to one another on average—the choice of
random versus fixed effects only matters at extremely high levels of correlation between the
independent variable and the unit effects. Under these conditions, the appropriate model should
be guided by the researcher’s goals. When the independent variable exhibits only minimal
within-unit variation, or is sluggish, there is a more nuanced set of considerations. In any
particular dataset, the random-effects model will tend to produce superior estimates of β when
there are few units or observations per unit, and when the correlation between the independent
variable and unit effects is relatively low. Otherwise, the fixed-effects model may be preferable,
as the random-effects model does not induce sufficiently high variance reduction to offset its
increase in bias.

There are important limitations to the guidance offered here. We have not considered the
problem of when the researcher hypothesizes that the effect of x on y varies across units, in
which case one would need to employ interactive terms (fixed-effects approach) or a random
coefficients model (random-effects approach). In addition, we have only considered the linear-
regression model; we have not contemplated generalized linear models for dependent variables
that may be dichotomous, ordinal or categorical. Finally, we have only compared two possible
specifications—albeit the most commonly used ones in applied social science research.
Other modeling choices abound. Nevertheless, the approach we have outlined to evaluate the
performance of random- and fixed-effects models under possible violations of the model
assumptions can be easily extended to test alternative models on a case-by-case basis.
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