
Math 532 • Regression 2 Name
Midterm Solutions, March 15, 2023 Instructor: Dikran Karagueuzian

1. Suppose that we are doing a retrospective study of a disease. Let D be the event that
an individual has the disease, D̄ be the event that an individual does not have the
disease, and I the event that an individual is included in the study. Let π0 = P (I | D),
π1 = P (I | D̄).

In our study we wish to account for the effect of certain variables. For an individual
patient we denote these variables collectively by x. Let p∗(x) be the conditional proba-
bility that a patient with these variable values has the disease given that he or she was
included in the study, and let p(x) be the unconditional probability that he or she has
the disease.

Bayes’ Formula gives:

p∗(x) =
π1p(x)

π1p(x) + π0(1− p(x))

(a) (5 points) What is the definition of the logit or log-odds function logit(p)?

Solution:
logit(p) = log(

p

1− p
)

(b) (15 points) Find logit(p(x))) in terms of logit(p∗(x))), using the Bayes’ Formula
equation above.

Solution:

p∗(x) =
π1p(x)

π1p(x) + π0(1− p(x))
Bayes’ Formula

logit(p∗(x)) = logit
( π1p(x)

π1p(x) + π0(1− p(x))

)
logit(p∗(x)) = log

[ π1p(x)
π1p(x)+π0(1−p(x))

π0(1−p(x))
π1p(x)+π0(1−p(x))

]
definition of logit

logit(p∗(x)) = log
( π1p(x)

π0(1− p(x))

)
logit(p∗(x)) = log(

π1
π0

) + logit(p(x)) property of log

logit(p(x)) = logit(p∗(x))− log(
π1
π0

)



(c) (10 points) What does this tell us about the effect of the variables x in retrospective
studies? (Assume that we do not know π1 or π0.)

Solution: We can see the relative effect of the variables, but not the absolute
effect. That is, we might know that patients who have systolic blood pressure
10 points higher tend to have log-odds of having the disease larger by 2. But
we would not know the absolute log-odds of having the disease for the patient
population as a whole or any subgroup with particular values of our predictor
variables.

2. Assume that you have a linear regression model for the price of Honda Accords (a model
of car) in terms of age in years, and miles on the odometer (measured in units of 10, 000).
(So, a brand new car is 0 years old and has 0 miles, while a 3-year old car with 40, 000
miles has values of 3 and 4.) This model is given by the equation:

price = α0 + α1 ·miles + α2 · age + ε,

where ε is a normally distributed error. You fit this model and obtain coefficients
α̂0, α̂1, α̂2.

Cars that are older and/or have more miles tend to have lower prices.

Cars that are older tend to have more miles on the odometer, and vice versa.

(a) (6 points) What sign(s) do you expect α̂0, α̂1, α̂2 to have?

Solution: We expect that α̂0 is positive: new cars cost something. We expect
that α̂1, α̂2 are negative: cars that are older and/or have more miles tend to
have lower prices.

You now fit a new model with age omitted, i.e.:

price = β0 + β1 ·miles + ε,

where ε is a normally distributed error, and obtain coefficients β̂0, β̂1.

(b) (8 points) You now fit a new model with age omitted, i.e.:

price = β0 + β1 ·miles + ε,

where ε is a normally distributed error, and obtain coefficients β̂0, β̂1.

Do you expect that β̂1 ≈ α̂1, β̂1 < α̂1, or β̂1 > α̂1?
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Solution: We expect that β̂1 < α̂1.

(c) (8 points) Give a reason for your answer in the previous part.

Solution: This is because α̂1 is negative, α̂2 is negative, and the correlation of
age and miles is positive, so miles acts as a proxy for age. Note also that the
order of magnitidue of age and miles is the same in the given units, so the effect
is significant.

3. You fit a logistic regression model in R; the summary output is given below:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -360.61 195972.86 -0.0018 0.9985

Sepal.Width -110.13 55361.50 -0.0020 0.9984

Sepal.Length 131.79 64576.99 0.0020 0.9984

n = 100 p = 3

Deviance = 0.00000 Null Deviance = 138.62944 (Difference = 138.62944)

Some facts about this output indicate a phenomenon we have studied.

(a) (5 points) What is the name of this phenomenon?

Solution: “Perfect Separation”, “Linear Separability”, and “Existence of a sep-
arating hyperplane” are all reasonable answers.

(b) (10 points) What, specifically, in this output indicates that this phenomenon is
occurring?

Solution: The standard errors are all very large. The coefficient estimates are
all large. Nothing is significant.

(c) (5 points) What are some circumstances in which this phenomenon frequently oc-
curs?

Solution: It often happens that there is a separating hyperplane when the
number of data points is of the same order of magnitude as the number of
predictor variables. (That’s n < 10p in the usual notation.)

(d) (5 points) What could you do in such circumstances to improve your model?
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Solution: You could use a regularized regression package, like brglm. You
could get more data. You could use another binary classification method.

4. (15 points) Suppose we have data on a response Y and predictor variables X1, . . . , Xp.
Consider a model that transforms the response Y to make a linear regression model

log(Y ) = β0 + β1X1 + · · ·+ βpXp + ε.

What are some of the differences between this and a Poisson GLM for Y ?

Solution: The Poisson GLM assumes that Y is Poisson and that log(E[Y ]) =
β0 + β1X1 + · · · + βpXp. The model above assumes that Y is real-valued and that
E[log(Y )] = β0 + β1X1 + · · · + βpXp. Since Poisson random variables are discrete
and not continuous, and E[log(Y )] 6= log(E[Y ]), these are differences.

Also, the model above assumes that the variance of the response log(Y ) is the same
whatever the values of X1, . . . , Xp. In the Poisson GLM, the variance of Y is the
same as the mean, which changes with the values of X1, . . . , Xp.

Other answers are also possible.

5. You fit a logistic regression with a command in R.

(a) (5 points) What command is it that you use and what options to this command do
you use?

Solution: Use the glm command with the family=binomial option.

(b) (5 points) How does this change if you wish to fit a probit regression instead?

Solution: Use the glm command with the family=binomial option and the
link=probit option.

(c) (5 points) What about a Poisson regression instead of a logistic regression?

Solution: Change family=binomial to family=poisson.
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6. Suppose that
Y = α + βX + ε

where ε is a normally distributed error, i.e. this model is exactly true.

Assume that you do not have access to the true values of X but only to X ′ = X + u,
where u is a normally distributed error with mean 0 and variance σ2 which is independent
of X, Y, ε.

You now fit a regression
Y = α + βX ′ + ε.

Recall that your estimate β̂ = Cov(Y,X′)
Var(X′)

. (You learned this fact about linear regression

last semester.)

(a) (15 points) Compute Cov(Y,X′)
Var(X′)

in terms of Cov(Y,X)
Var(X)

.

Solution:

Cov(Y,X ′)

Var(X ′)
=

Cov(Y,X + u)

Var(X + u)
definition of X ′

=
Cov(Y,X) + Cov(Y, u)

Var(X) + Var(u)
indep of u and bilinearity of Cov

=
Cov(Y,X) + 0

Var(X) + σ2
indep of u and definition of σ2

=
Cov(Y,X)

Var(X)
· Var(X)

Var(X) + σ2

(b) (10 points) How does the expected value of your estimate β̂ compare to the true
value β?

Solution: The computation above shows that

β̂ = β · Var(X)

Var(X) + σ2
,

so that β̂ is β times a multiplicative factor which is less than one, since variance
is positive. In other words, β̂ has smaller absolute value than β, i.e. β̂ is biased
towards zero. This is called “Attenuation Bias”.
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