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1. Introduction

Let M be a smooth orientable manifold. Hirzebruch’s index theorem states that the index
of M is equal to the L-polynomial L(M) evaluated on the top class of M i. e.

I(M) = L(M)[M ].

Here the L-polynomial is a certain rational polynomial in the Pontrjagin classes. This
theorem is surprising from many points of view: the left hand side is obviously a homotopy
invariant and an integer, whereas the right hand side a priory is only a smooth invariant
and a rational number. This led Novikov to the following conjecture: If M has fundamental
group π and x is an element in H∗(Bπ), f the classifying map, could it be that the higher
signatures, x ∪ L(M)[M ] are homotopy invariants of the manifold M? From this point of
view Hirzebruch’s theorem is a verification of the Novikov conjecture for simply connected
manifolds. Later Wall [17, section 17H] realized that the Novikov conjecture can be expressed
using the assembly map h∗(Bπ; L(Z)) → L∗(Zπ). The Novikov conjecture is equivalent to
the assembly map being a rational monomorphism.

Over the years it has turned out that there are lots of assembly maps. In algebraic K-
theory, in C∗-theory and in A-theory among others. It has become common practice to call
the statement that the assembly map is a rational monomorphism, the Novikov conjecture
in that theory. In the case of C∗-theory, monicity of the assembly map implies, but is not
equivalent to the classical Novikov conjecture.

In this paper we treat the A-theory case. We wish to extend the results in [6] and [7]
to A-theory, using a variation of the continuously controlled A-theory in [13, 15] to replace
the continuously controlled K-theory in [1]. One of the main problems here is, that as
a computational device, slightly discontinuous maps were allowed in [1] and [6], and A-
theory does not respond nicely to that. The answer is to work with spaces that are so
locally contractible, that the slightly discontinuous maps (eventually continuous maps) can
be replaced by continuous maps. Otherwise the strategy is to follow [7, 6] and [13, 15], and
we shall assume the reader has some familiarity with these papers. We prove the following
theorem
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Theorem A. Let Γ be a group with finite BΓ, and assume the universal cover EΓ admits a
compactification D satisfying

(i) The Γ-action extends to D.
(ii) D is contractible.
(iii) Compact subsets of E become small near F = D−E i. e. for every point y ∈ D, for

every compact subset K ⊂ E and for every neighborhood U of y in D, there exists a
neighborhood V of y in D so that if g ∈ Γ and gK ∩ V 6= ∅ then gK ⊂ U .

Let X be a space satisfying that K−i(Zπ1(X)) = 0 for i sufficiently large. Then the assembly
map

BΓ+ ∧ A−∞(X)→ A−∞(BΓ×X)

is a split monomorphism of spectra.

By [2] the above conditions are satisfied for word hyperbolic groups.
In the above theorem A−∞ denotes the non-connective delooping of the usual A-theory

spectrum, see [14]. Since the strategy of this paper follows the K- and L-theory proofs
so closely, we shall mainly be emphasizing the points where the A-theory arguments are
different.

The assembly map in A-theory has been extensively studied under various assumptions on
the group, and with various conclusions such as rational splitting, integral splitting, integral
isomorphism, see e. g. [9], [3], and [10].

2. Continuously controlled A-theory

In this section we recall and expand results from [15].

Definition 2.1. Let X be a topological space. R(X) denotes the category of retractive
spaces over X. An object is a triple (Y, r, s) where r : Y → X is a map of topological spaces,
and s is a section of the map r. A morphism (Y, r, s)→ (Y ′, r′, s′) in R(X) is by definition
a map f : Y → Y ′ satisfying that r′f = r, and s′ = fs.

We will also insist that an object of this category is embedded as a subspace of X × R∞,
such that the retraction is given by the projection map to X. This is important not only
for set-theoretic reasons but also because we want to be able to talk about fixed points of a
group action on this category in a meaningful way.

Next we want to impose control conditions on this category.

Definition 2.2. A control pair is a pair of compact Hausdorff spaces (D, F ) such that
E = D − F is an open dense subset of D.

(In the applications later in this paper, E usually corresponds to EΓ for some group Γ,
and D is a compactification of E.)
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Definition 2.3. Let (D, F ) be a control pair, and let X denote any topological space.
Let Rf (D, F ; X) be the full subcategory of R(X × E) consisting of those objects (Y, r, s)
satisfying that

(i) Y is a finite-dimensional, locally finite CW-complex rel. X × E
(ii) Cells of Y become small near F , i. e. for every z ∈ F and every neighborhood U of

z there exist a neighborhood V of z such that e ∩ V 6= ∅ implies e ⊂ U for every cell
e in Y .

(iii) The retraction r is proper.

Eventually we want to relax the finiteness condition in this definition to include spaces
which are locally finite up to homotopy, or even finitely dominated in a suitable sense.

Definition 2.4. Let Y and Y ′ be objects of Rf (D, F ; X). A map (a continuous map, but
not necessarily a morphism in the category ) f : Y → Y ′ is called F -controlled if for every
z ∈ F , and for every neighborhood U of z in D there exists a neighborhood V ⊂ U such
that

f(YV ) ⊂ Y ′
U

(where YV = r−1(X × (V ∩ E)), Y ′
U = r′−1(X × (U ∩ E))).

Observe that a morphism in Rf (D, F ; X) is automatically F -controlled. (Just choose
V = U .)

Definition 2.5. A morphism f : Y → Y ′ in Rf (D, F ; X) is an F -controlled homotopy
equivalence if there exists a map g : Y ′ → Y (not necessarily a morphism !), together with
F -controlled homotopies fg ' 1Y ′ , and gf ' 1Y .

Observe that it is implied that the map g is F -controlled.

Definition 2.6. Let G be an open subset of F . A morphism f : Y → Y ′ in Rf (D, F ; X)
is called germ of an F -controlled homotopy equivalence at G if there exist open sets V ⊂ U
and W in D, all intersecting F in G, and a map g : Y ′

U → Y , such that fg|Y ′
V is F -controlled

homotopic to the identity and such that f(YW ) ⊂ Y ′
U and gf |YW is F -controlled homotopic

to the identity

Notice the control conditions imply the existence of W so f(YW ) ⊂ Y ′
U

We use the notations cFRf (D, F ; X) resp. cG
FRf (D, F ; X) to denote the subcategories of

Rf (D, F ; X) defined by restricting the morphisms to be F -controlled (resp. germs at G of
F -controlled) homotopy equivalences.

With these concepts we can give the definition of the category we really are interested in,
namely Rfd(D, F ; X). For the objects of this category we want to allow spaces which are
retracts up to cF -equivalence of objects of Rf (D, F ; X). In the following we shall denote



4 GUNNAR CARLSSON, ERIK KJÆR PEDERSEN, AND WOLRAD VOGELL

Rfd(D, F ; X) simply by R(D, F ; X) but the reader is cautioned to remember that it is al-
lowing finite domination rather than just finiteness that is responsible for the non-connective
nature of the spectra.

The category R(D, F ; X) is a category with cofibrations in the sense of [16]. The class
of cofibrations is given by the morphisms satisfying the obvious F -controlled version of the
homotopy extension property. The cF -equivalences (resp. cG

F -equivalences) qualify as classes
of weak equivalences in the sense of [16]. Applying Waldhausen’s S.-construction to the
categories just described we obtain the continuously controlled versions of A-theory.

Definition 2.7.

Ac(D, F ; X) = Ω | cF S.R(D, F ; X) |
Ac(D, F ; X)germ G = Ω | cG

F S.R(D, F ; X) |

We want to study the functorial behavior of this construction.

Lemma 2.8. Let f : (D, F )→ (D′, F ′) be a continuous map of pairs satisfying that f(D −
F ) ⊂ (D′ − F ′). Then there is an induced map

f] : Ac(D, F ; X)→ Ac(D′, F ′; X) .

If f is an F ′-controlled homotopy equivalence, then f] is a weak homotopy equivalence.

Proof. The map f] is induced by the functor defined by Y 7→ Y ∪X×E X × E ′. Observe
that (by the compactness of D and D′) f is automatically proper. Therefore Y ∪E E ′ is
again locally finite. The continuity of f |D guarantees that cF -equivalences are mapped to
c′F -equivalences. To show that f] is a homotopy equivalence if f is an F ′-controlled homotopy
equivalence one uses the same argument as in [13, Lemma 1.3] �

It is easy to verify that we obtain a functor (D, F ) 7→ Ac(D, E; X) on a suitable category
of pairs, which is homotopy invariant in a way specified in the lemma. This functor has been
studied in some detail in [15]. The main result there was the following:

Theorem 2.9. Let F be a finite complex, and let D = cF be the closed cone on F . Then
the functor F 7→ Ac(D, F ; X) is a generalized reduced homology theory. The coefficients of
this homology theory are given by ΣA−∞(X).

(Here by a generalized reduced homology theory we mean a homotopy invariant functor
which maps cofibre sequences into fibrations up to homotopy, and which maps the one-point
space to a contractible space.)

We will need a more general version of this theorem here. Namely for the applications we
have in mind, we have to admit more general spaces than just finite complexes, e.g. compact
metrizable, or even more general spaces. Accordingly we shall have to work with generalized
Steenrod homology theories, whose definition we briefly recall [8, 11].
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Definition 2.10. A Steenrod homology theory is a functor

f : (compact metrizable spaces)→ (spectra)

satisfying the following axioms

(i) f is homotopy invariant
(ii) If A ⊂ X is a closed subset then there is a fibration up to homotopy

f(A)→ f(X)→ f(X/A) .

(iii) If X =
∨∞

i=0 Xi is a (strong) countable wedge, then there is a weak homotopy equiv-
alence

f(X)→
∞∏
i=0

f(Xi)

induced by the projection maps.

We will now describe the main technical tool in analyzing the excision properties of con-
tinuously controlled A-theory.

Let us fix the following data: (D, F ) is a control pair as considered before, X is any
topological space, C is a closed subset of F .

Definition 2.11. For any object (Y, r, s) of the category R(D, F ; X) define its support by

supp(Y ) = {e ∈ E | r−1(X × {e}) 6= s(X × {e})} .

Let R(D, F ; X)C be the subcategory of R(D, F ; X) consisting of those objects Y which
have support near C, i. e. such that supp(Y ) is outside some neighborhood of F − C in D.
Moreover, let

Ac(D, F ; X)supp C = Ω | cF S.R(D, F ; X)C | .

Proposition 2.12. Let (D, F ) be a control pair, and let C ⊂ F be a closed subset. Then
there is a fibration up to homotopy

Ac(D, F ; X)supp C → Ac(D, F ; X)→ Ac(D, F ; X)germ F−C .

Proof. Let R̃(D, F ; X) denote the subcategory of R(D, F ; X) of those objects (Y, r, s) which
are cF−C

F -acyclic, i. e. such that s : X × E → Y is the germ near F − C of an F -controlled
homotopy equivalence. By the generic fibration theorem [16, Theorem 1.6.4] we obtain a
fibration up to homotopy

cF S.R̃(D, F ; X)→ cF S.R(D, F ; X)→ cF−C
F S.R(D, F ; X) .

(The verification of the extension axiom for the cF−C
F -equivalences which is required for the

application of the generic fibration theorem involves a slight modification of the categories
involved, cf. [16, proof of 3.3.1])

Observe that an object which has support near C is automatically cF−C
F -acyclic. To con-

clude the proof of the proposition we therefore have to verify that the inclusion of categories
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cFR(D, F ; X)C ⊂ cF R̃(D, F ; X) induces a weak homotopy equivalence on K–theory. This
in turn follows from an application of the approximation theorem, [16, thm 1.6.7]. We have
to verify the following condition:

Given a morphism f : Y → Z in cF R̃(D, F ; X) where Y is in cFR(D, F ; X)C there exists
a cofibration i : Y � Y ′ in cFR(D, F ; X)C , and a cF =equivalence f ′ : Y ′ → Z such that
f = f ′i.

By a mapping cylinder argument we may without loss of generality assume that f is a
cofibration. If Z is cF−C

F -acyclic, there exists a controlled deformation H : Z × I → Z (rel.
X ×E) from the identity map to a map which factors through a certain subspace Z ′ which
has support outside some neighborhood of F − C. By choosing this neighborhood small
enough we can assume that Z ′ is a subcomplex of Z and contains Y as a subcomplex, since
by assumption Y has support near C. Because the deformation is F -controlled, there exists
Z ′′ satisfying that

(i) Z ′′ contains Z ′ as a subcomplex
(ii) H(Z ′ × I) ⊂ Z ′′

(iii) Z ′′ has support near C.

Now consider the composite map p : Z ′′ � Z
H|Z×1−−−−→ Z ′ � Z ′′. This map is idempotent

up to F -controlled homotopy, and one verifies that the mapping telescope of p maps to Z
by a cF -equivalence. By construction the mapping telescope has support near C, and it is
dominated up to cF -controlled homotopy by the locally finite complex Z ′′. This proves the
proposition. �

To obtain more concrete results we will have to restrict our control pairs as suggested by
the main result of [15]. It turns out though that the role of the cone in that result has to be
replaced by a more sophisticated concept in order to be applicable to more general spaces.
The idea of this construction is due to Milnor, [12]. For any compact metrizable space C
one constructs a pair of spaces (T (C), M(C) satisfying the following conditions

(i) T (C) is a contractible, compact metrizable space
(ii) M(C) is a contractible, countable, locally finite CW complex
(iii) M(C) is an open dense subspace of T (C)
(iv) T (C)−M(C) = C
(v) T (C)/C = M(C)∞ (the one-point compactification)

The space T (C) is constructed as follows: Any compact metrizable space C can be written as
a countable inverse limit of finite simplicial complexes C = lim←−Ci. This follows by choosing
a sequence of finite open covers Ui of C whose mesh tends to zero. Ci is then defined as the
Čech nerve of Ui. The maps Ci → Ci−1 are not the induced maps, but have to chosen more
carefully, see [12]. We will always assume that the covering U0 is trivial, so that C0 = ∗.
Define

Mi(C) = M(C0 ← · · · ← Ci)
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the iterated mapping cylinder, and let furthermore

M(C) = lim−→Mi(C) .

There are canonical retractions Mi+1(C)→Mi(C), so that we obtain an inverse system, and
we can therefore define

T (C) = lim←−Mi(C) .

The verification of the stated properties is easy. The construction of this “Milnor cone” can
be made almost functorial. In fact, one chooses the sequence of coverings of C in a special
way (a “convergent sequence of coverings”) and obtains the following lemma, due to Milnor,
[12].

Lemma 2.13. Let C, D be compact metrizable spaces, and let f : C → D be a continuous
map. Then there exists a map of triples

f : (T (C), M(C), C)→ (T (D), M(D), D)

such that f |C = f , f |M(C) is proper, and cellular. Moreover, choosing another (convergent)
sequence of coverings gives a pair (T ′(C), C) which is C–controlled homotopy equivalent to
(T (C), C). �

In the following we will study the controlled A-theory associated to the control pair
(T (F ), F ) for a compact metrizable space F . Though Ac(T (F ), F ; X) is not a functor on the
nose, given a map F → F ′, we still have an induced map Ac(T (F ), F ; X)→ Ac(T (F ′), F ′; X)
well defined up to homotopy, by the preceding lemma, and by lemma 2.8.

Remark 2.14. With some effort one could indeed produce an honest functor. Namely
observe that the category I of convergent sequences of coverings is filtering. So we obtain
an inverse system {α 7→ Ac(Tα(F ), F ; X)}α∈I which defines a functor

Ac(α) : (compact metric spaces)→ (pro-objects of spectra)

and we can define Ac(T (F ), F ; X) = holim Ac(α) .

Proposition 2.15. Let C be a closed subset of F . The canonical map

Ac(T (C), C; X)→ Ac(T (F ), F ; X)supp C

is a weak homotopy equivalence.

Proof. There is a filtration of T (F ) given by Ti(F ) = Mi(F ) ∪ T (C). The canonical
map (T (C), C) → (Ti(F ), C) is clearly a C-controlled homotopy equivalence. Hence by

lemma 2.8 we have a homotopy equivalence Ac(T (C), C; X)
'−→ Ac(Ti(F ), C; X). Since

R(T (F ), F ; X)C =
⋃

iR(Ti(F ), C; X), and A–theory commutes with filtering colimits, the
proposition follows. �

Before proceeding further we need a (very) special case.

Lemma 2.16. Ac(T (∗), ∗; X) = Ac([0, 1], 1; X) ' ∗ .
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Proof. This follows from the main theorem of [15], or alternatively directly from an Eilenberg
swindle argument. �

Corollary 2.17. Ac(T (F ), F ; X)
'−→ Ac(T (F ), F ; X)germ F−∗ �

Proposition 2.18. There is a chain of homotopy equivalences between

Ac(T (F ), F ; X)germ F−C and Ac(T (F/C), F/C; X)

Proof. Since we are interested in germs at F −C, we may assume (by an easy application of
the approximation theorem) that the objects in cF−C

F R(T (F ), F ; X) are trivial in a neigh-
borhood of C, and even that they are trivial in a neighborhood of T(C). In this way we
obtain a functor

cF−C
F R(T (F ), F ; X)(T (C)) −→ c

F/C−∗
F/C R(T (F ) ∪T (C) T (∗), F/C − ∗; X) .

which also satisfies the approximation hypothesis. The previous corollary, together with the
identification T (F/C) = T (F ) ∪T (C) T (∗) proves the proposition. �

Next we have to verify the strong wedge axiom.

Proposition 2.19. There is a weak homotopy equivalence

Ac(T (
∨

Fi),
∨

Fi; X)
'−→

∏
Ac(T (Fi), Fi; X) .

Proof. Using the previous corollary again, we obtain that the categories

c∨Fi
R(T (

∨
Fi),

∨
Fi; X) and c∨Fi−∗

∨Fi
R(T (

∨
Fi),

∨
Fi; X)

have the same K–theory up to homotopy. In the latter category we may assume as before
that objects are trivial near T (∗) − ∗. Hence this category decomposes as a product of
categories

∏
i c

Fi−∗
Fi
R(T (Fi), Fi; X). By [5] K-theory of a category with cofibrations and

weak equivalences commutes with infinite products up to homotopy, provided there is a
cylinder functor, and the weak equivalences satisfy the cylinder axiom, which is certainly
true here. This ends the proof of the proposition. �

Finally we need to show that Ac(T (F ), F ; X) is homotopy invariant as a functor of F
when F is compact metrizable. This follows from the following

Lemma 2.20. Let F be compact metrizable. Then Ac(T (CF ), CF ; X) is weakly contractible.

Proof. Choose Ki so that F = lim←−Ki, so T (F ) may be chosen to be the inverse limit of
iterated mapping cylinders. Clearly CF = lim←−CKi, and we may choose T (CF ) to be the
iterated mapping cylinder of CKi compactified by CF . But this model of T (CF ) allows
selfmaps fi sending the i-th mapping cylinder to the cone point in CKi, and for j > i
sending the cone CKj = Kj × [0, 1]/Kj × 0 linearly to Kj × [0, j − i/n]/Kj × 0, and in the
mapping cylinders by linear interpolation. These maps may be used to produce an Eilenberg
swindle which shows Ac(T (CF ), CF ; X) is weakly contractible. �
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Notice that since the S. construction provides a functorial delooping we may consider
Ac(D, F ; X) as taking values in the category of spectra, and we get a map of spectra

Ac(D, F ; X)→ Ac(ΣD, ΣF ; X)

which is functorially nullhomotopic in two ways by Eilenberg swindle thus producing maps

Ac(D, F ; X)→ ΩAc(ΣD, ΣF ; X)→ . . . .

We denote the homotopy colimit by Ac
−∞. The preceding propositions now lead to

Theorem 2.21. Let F be a compact metrizable space and X a space such that K−i(Zπ1(X)) =
0 for i sufficiently large. Then Ac

−∞(T (F ), F ; X) is a reduced Steenrod functor with value
ΣA−∞(X) on S0. In particular if F is a finite CW complex T (F ) can be taken to be the
cone on F and ΩAc

−∞(CF, F ; X) is weakly homotopy equivalent to F ∧ A−∞(X).

Proof. The condition on X ensures that the hocolim of spectra above is finite, and thus
commutes with infinite products. �

Remark 2.22. The spectrum A−∞(X) is the spectrum given by the nonconnective delooping
in [14]. It has connective covering the usual A-theory spectrum A(X) and the negative
homotopy groups are given by K−i(Z[π1(X)]).

3. Splitting the A-theory assembly map

At this point it is natural to proceed along the lines of [6]. This is indeed possible to a
certain extent, with some restrictions

(i) We need to add the condition that D be metrizable in theorem A.
(ii) We need to assume that the pair (D, F ), where F = D−EΓ is controlled homotopy

equivalent to (T (F ), F )

Condition (i) does exclude certain groups from being treated. Considering (ii) it seems nat-
ural to conjecture that (D, F ) is automatically controlled homotopy equivalent to (T (F ), F )
given the other conditions on the compactification, but we have not been able to prove that.
This problem does not arise in the K- and L-theory situation because allowing eventually
continuous maps, we do not need (T (F ), F ), we can make do with (CF, F ). Thus it is
not obvious that Ac

−∞(D, F ; X) is given as the Steenrod homology theory of F with coef-

ficients in A−∞(X). To avoid both these problems we instead utilize the Čech homology
techniques developed in [7]. The point here is that we can always construct a homotopy
natural transformation

Ac
−∞(D, F ; X)→ h̆(F ; A−∞(X))

which will be a homotopy equivalence in case (D, F ) is a metrizable pair of compact Hausdorff
spaces, which is controlled homotopy equivalent to (T (F ), F ).
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Lemma 3.1. Let E be a countable finite dimensional locally finite simplicial complex, and
C̃(E+) = (E × (0, 1])+ denotes the reduced cone of the one point compactification. Then
there is a strict map of pairs f : (C̃(E+), E+)→ (T (E+), E+) which is a homeomorphism in
a neighborhood of E, inducing homotopy equivalence

Ac
−∞(C̃(E+), E+; X) ' Ac

−∞(T (E+), E+; X)

Proof. Filtering E by subcomplexes Ki with frontier Fi we may display E+ as the inverse
limit E = Ki/Fi under the projection maps. We get a map of inverse systems

∗

��

E+
oo

��

E+
oo

��

E+
oo

��

. . .oo

∗ K1/F1
oo K2/F2

oo K3/F3
oo . . .oo

From this, we get an induced map of the iterated mapping cylinders, and hence of the inverse
limits of the iterated mapping cylinders i. e. C(E+) → T (E+). It is easy to construct a
selfmap of T (E+) which is the identity on E+ and on a neighborhood of E which sends
the line going through the [Fi]-points to the point + in E+ so this way we get the map
C(E+)→ T (E+) to factor through C̃(E+). Consider the diagram of fibrations

Ac
−∞(C̃(E+), E+; X)∗ //

��

Ac
−∞(C̃(E+), E+; X) //

f∗
��

Ac
−∞(C̃(E+), E+; X)E

��
Ac
−∞(T (E+), E+; X)∗ // Ac

−∞(T (E+), E+; X) // Ac
−∞(T (E+), E+; X)E

We have c is a homotopy equivalence since f is a homeomorphism in a neighborhood of E. To
show a is a homotopy equivalence we need to show that Ac

−∞(C̃(E+), E+; X) is contractible,
but this is easy since with trivial support in a neighborhood of E we may use the cone
structure to produce an Eilenberg swindle towards the reduced cone point �

We briefly recall the construction of Čech homology with coefficients in a spectrum T, and
the natural transformation from controlled theory [7].

Let F be a compact Hausdorff space, and consider a finite open covering of F ,

α : {U1, U2, . . . Un}.
Define a functor Gα from subsets of {1, 2, . . . , n} to spectra by

Gα(i1, i2, . . . , is} =

{
1, if Ui1 ∩ . . . Uis 6= ∅
T if Ui1 ∩ . . . Uis = ∅

then

h̆(F ; T) = Ω holim
α

hocolim Gα.
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It was proved in [7] that h̆(F ; T) when restricted to compact metrizable spaces is a Steenrod
functor.

Now consider T = A−∞(X) and let (D, F ) be a pair of compact Hausdorff spaces such
that D−F is contractible. Given a covering α : {U1, . . . , Un}, the excision results in section
1 generalize to

hocolim(Ac
−∞(D, F ; X)Ui1

∩...Uis
) ' Ac

−∞(D, F ; X)

and hence taking the homotopy limit over all finite coverings we get

holim
α

hocolim(Ac
−∞(D, F ; X)Ui1

∩...Uis
) ' Ac

−∞(D, F ; X)

Notice the natural map

Ac
−∞(D, F ; X)∅ → A−∞(X)

is a weak homotopy equivalence. This follows from the usual homotopy invariance of A-
theory and the fact that D − F is assumed to be contractible. Sending Ac

−∞(D, F ; X)U to
a point when U is nonempty, and to A−∞(X) when U is empty produces a map

holim
α

hocolim
α=(U1,...,Un)

(Ac
−∞(D, F ; X)Ui1

∩...∩Uis
)→ Σh̆(F ; A−∞(X)),

and hence we get
Recall from [4] that a homotopy natural transformation from a functor Φ to Ψ is a sequence

of functors Φi and Ψi, for i = 0, 1, . . . , k, together with a family of natural transformations
Φi → Ψi and a family of natural equivalences Φi → Ψi−1 for i > 0, where Φ0 = Φ and
Ψk = Ψ.

Theorem 3.2. There is a homotopy natural transformation

Ac
−∞(D, F ; X)→ Σh̆(F ; A−∞(X))

which is a weak equivalence when F is metrizable and (D, F ) is controlled homotopy equiv-
alent to (T (F ), F ).

Proof. For D = ∗, F = ∅ this is clearly an equivalence, and since both sides are homology
theories we immediately get that this is an equivalence for F a finite CW complex and D
the cone on F . The extension to the case when F is metrizable and (D, F ) is controlled
equivalent to (T (F ), F ) is proved in [12], but for the readers convenience we briefly give the
argument in the following Lemma. �

Lemma 3.3. Let h and k be reduced Steenrod homology theories and ν a natural transfor-
mation h→ k inducing isomorphism on ∅. Then ν is an isomorphism on all compact metric
spaces. Moreover for one of the homology theories it suffices that the wedge axiom holds for
a wedge of finite CW complexes.
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Proof. It follows by standard techniques that ν is an isomorphism on finite CW complexes.
Let F be a compact metric space. Milnor proves that F may be displayed as the inverse
limit of finite complexes F = lim←−(Ki),

. . .→ Ki → Ki−1 → . . . K1 → ∗.

Denoting the mapping cylinder of Ki → Ki−1 by Mi we have T (F ) = ∪Mi ∪ F . Since T (F )
is contractible ν is an isomorphism on F if and only if it is an isomorphism on T (F )/F . Let

Meven = ∪i evenMi ∪ F.

We have ∪Ki ∪ F , a subset of Meven, and when we collapse F we get

∪Ki ∪ ∗ =
∨

Ki+

with the strong topology. Meven/ ∪Ki ∪ F also becomes a strong wedge and T (F )/Meven is
a strong wedge, so we find that ν is an isomorphism on T (F )/F and hence on F . All the
wedges we considered were wedges of finite complexes. �

Proof of Theorem A. Consider a group Γ admitting a compactification D as in theorem A,
and consider the projection p : D × (0, 1) → D where D × (0, 1) is identified with an open
subset of the cone CD. We define Ac

−∞(CD,CF, p; X) as we defined Ac
−∞(CD,CF ; X),

except along points of F × (0, 1) we do not require control in the cone direction, so in
Definition 2.4 the condition only has to satisfied for open sets U of the form p−1(U ′). Consider
the following diagram

ΩAc
−∞(C̃EΓ+, EΓ+; X)

c

��

ΩAc
−∞(CD,CF ∪D, p; X)

b //

d

��

aoo ΩAc
−∞(ΣD, ΣF, p; X)

l

��
h̆(EΓ+; A−∞(X)) H̆

foo g // T̆

h̆(CF ∪D; A−∞(X))

h
jjVVVVVVVVVVVVVVVVVV

i

OO

k // h̆(ΣF ; A−∞(X))lj

OO

Which we shall proceed to explain using the notation

S

c
��

H
b //

d
��

aoo T

l
��

S̆ H̆
foo g // T̆

Y

h
__????????

i

OO

k // Z

j

OO
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First consider H̆ and T̆ . We shall call a finite covering α = {U1, U2, . . . , Un} of CF ∪D or of
ΣF ,p-saturated if p−1p(Ui) ⊂ Ui or in other words if (x, t) ∈ Ui for some t, 0 < t < 1 implies
(x, t) ∈ Ui for all t, 0 < t < 1. We now define

H̆ = holim
α p-saturated

hocolim(Gα),

and T̆ is defined similarly. The map c is the homotopy natural transformation constructed
above, the maps d and l are constructed similarly to c but using only p-saturated open sets.
The map a is induced by collapsing CF . The map b is induced by collapsing D. The maps
i and j are induced by restriction to a subcategory of coverings. The maps h and k are
induced by collapsing CF and D respectively. Notice the whole diagram is equivariant with
respect to a natural action by Γ. The proof of the splitting of the A-theory assembly map is
now completed by the following statements

(i) SΓ ' BΓ+ ∧ A−∞(X) as spectra
(ii) aΓ is a homeomorphism.
(iii) SΓ → ShΓ is a weak homotopy equivalence.
(iv) T Γ ' A−∞(BΓ×X)
(v) The maps c,h,i,k, and j are homotopy equivalences.

Since equivariant maps that are weak homotopy equivalences unequivariantly induce weak
homotopy equivalence on homotopy fixed sets. This produces a splitting of the assembly
map SΓ → T Γ.

To see (i) notice that we defined A-theory on the basis of subsets of EΓ × X × R∞.
The fixed sets will be based on the setwise invariant subsets under the Γ action in other
words identifiable with Ac

−∞(CBΓ, BΓ+; X), but we have seen this is equivalent as spectra
to BΓ+∧A−∞(X). To see (ii) notice that the control condition along CF in the F -direction
is automatic by equivariance and in the p-direction it is not required. The proof of (iii)
proceeds by a cell by cell argument exactly as in [6]. To see (iv) once again notice that
the control conditions along ΣF are automatically fulfilled except at the suspension points,
hence we may identify

Ac
−∞(ΣD, ΣF, p; X)Γ = Ac

−∞(ΣBΓ, S0; X),

but a simple interpretation of the two sides reveals that

Ac
−∞(ΣBΓ, S0; X) = Ac

−∞(I, S0; X ×BΓ)

which is ΣA−∞(X × BΓ) by theorem 2.9 above. Finally to see (v), c is a weak homotopy
equivalence by Theorem 3.2 because EΓ+ is metrizable. h and k are homotopy equivalences
since we are collapsing a contractible set in a Čech homology theory. i and j are homotopy
equivalences since we are only restricting the coverings on a cone part of the space, and the
restricted coverings have nerves that are cones of that subspace. �
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Remark 3.4. Finally we should notice that the proof that the map considered here is indeed
the assembly map proceeds exactly as in the K-theory case [6, 18]
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