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0. Introduction

In this paper we consider bounded and thin h-cobordisms parameterized by Rk. We
obtain results similar to those obtained by Quinn [5, 6] and Chapman [2], but in a much
more restricted situation. The point of the exercise is to give a self contained proof, based
on the algebra developed in [4, 3] in the important special case, where the parameter space
is euclidean space. We also get a nice explanation as to why the thin and bounded h-
cobordisms theorems have the same obstruction groups. Unlike the general version being
developed by D. R. Anderson and H. J. Munkholm [1], we only consider h-cobordisms with
constant (uniformly bounded) fundamental group.

In case of the bounded h-cobordism theorem, it is however clear, that the discussion we
carry through will generalize to more general metric spaces than Rk, namely to proper metric
spaces (every ball compact). We mention this because in this case, we have computed K1 of
some of the relevant categories i. e. the obstruction groups, in joint work with C. Weibel.

This work was completed while the author spent a most agreeable year at the Sonder-
forschungsbereich für Geometrie und Analysis at Göttingen University. The author wants to
thank for support and hospitality. The author also wants to acknowledge useful conversations
with D. R. Anderson and H. J. Munkholm

1. Definitions. Statement of results

Definition 1.1. A manifold W parameterized by Rk consists of a manifold W together with

a proper map W
p−→ Rk, which is onto.

We use the map p to give a pseudo metric on W by which we measure size. This is distilled
in the following definition,

Definition 1.2. Given K ⊆ W , W parameterized by Rk by p : W → Rk, we define the size
of K, S(K) to be

S(K) = inf{r|∃y ∈ Rk : p(K) ⊆ B(y, r/2)}
where B(y, r/2) is the closed ball in Rk with radius r/2.

S(K) is thus the diameter of the smallest ball containing p(K).
1
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We shall now introduce uniformly bounded and locally constant fundamental groups.
Given t ∈ R+, we shall define t-bounded fundamental group as follows:

Definition 1.3. The fundamental group of W is t-bounded if the following two conditions
hold:

1) For every {x, y} ∈ W and for every homotopy class of paths from x to y, there is a
representative α : (I, 0, 1) → (W, x, y) so that S(α(I)) < t + S({x, y}).

2) For every null homotopic map α → W , there is a null homotopy A : D2 → W so
that S(A(D2)) < S(α(S1)) + t.

In other words, generators and relations of π1(W ) are everywhere representable by some-
thing universally bounded. We say the fundamental group is bounded, if for some t it is
t-bounded, and we say it is locally constant if it is t-bounded for all t.

We shall now consider h-cobordisms in the category of manifolds parameterized by Rk.

Definition 1.4. The triple (W, ∂0W, ∂1W ) parameterized by Rk, is a bounded h-cobordism
(bounded by t) if the boundary W , ∂W , is the disjoint union of ∂0W and ∂1W , and there
are deformations Di : W × I → W of W in ∂iW , so that S(Di(w × I)) < t for all w ∈ W .

Given an h-cobordism of this kind, it is natural to ask for a product structure:

Definition 1.5. A bounded product structure (bounded by t) on (W, ∂0W, ∂1W ) is a home-
omorphism

h : (∂0W × I, ∂0W × 0, ∂0W × 1) → (W, ∂0W, ∂1W )

which is the identity on ∂0W and satisfies that S(h(w × I)) < t for all w ∈ ∂0W .

We are now able to formulate the thin and bounded h-cobordism theorems.

Bounded h-cobordism theorem. Let (W, ∂0W, ∂1W ) be a bounded h-cobordism of dimen-
sion at least 6, parameterized by Rk with bounded fundamental group π. Then there is an

obstruction in K̃−k+1(Zπ), which vanishes if and only if W admits a bounded product struc-
ture. All such invariants are realized by bounded h-cobordisms.

This bounded h-cobordism theorem is a formal consequence of the thin h-cobordism the-
orem, which we proceed to formulate. However it is much easier to prove the bounded
h-cobordism theorem. In the above statement, one could replace Rk by any other metric
space X, which is proper in the sense that every ball is compact, at the price of replacing

the obstruction group by K̃1(CX(Zπ)). ( see section 4 for definition and discussion of this).
We now formulate the thin h-cobordism theorem:

Thin h-cobordism theorem. There is a function f : N×N → R so that if (W, ∂0W, ∂1W )
is an h-cobordism of dimension n bigger than 6, parameterized by Rk, bounded by t, with
fundamental group bounded by t, then there is a product structure on W bounded by f(n, k)·t,
if and only if the obstruction to a bounded structure, in K̃−k+1(Zπ) vanishes.
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Remark 1.6. The difference between the thin and bounded h-cobordism theorems parame-
terized by Rk thus lies in the predictability of the bound of the product structure. This of
course implies that one may let t go to 0, whereas in the bounded h-cobordism theorem,
that has no effect.

It is natural to relate bounded h-cobordism theorems to classical compact h-cobordism
theorem. This is done in the following:

Theorem 1.7. Let (M, ∂M0, ∂M1) be a compact h-cobordism with fundamental group π×Zk,
and let M → T k induce the projection π × Zk → Zk on fundamental groups. Then the
pullback over Rk → T k defines a bounded h-cobordism (M, ∂0W, ∂1W ) (the Zk-covering) and
the torsion invariants are related by the Bass-Heller-Swan epimorphism

Wh(π × Zk) → K̃−k+1(Zπ).

Remark 1.8. K̃−k+1(Zπ) means Wh(π) for k = 0, K̃0(Zπ) for k = 1 and K−k+1(Zπ) for
k > 1.

2. Reviewing the algebra

In this section, we review some of the algebra from [4, 3]. We also develop the algebra
needed to make it possible to treat not only the bounded h-cobordism theorem, but also the
thin h-cobordism theorem. This amounts to a discussion of the “size” of the “reason” for
the vanishing of an invariant, which is known to vanish. A reader familiar with [4, 3] and
only interested in the bounded h-cobordism theorem may thus skip this section.

Given a ring R we define the category Ck(R) to be Zk-graded, free, finitely generated ,
based R-modules and bounded homomorphisms. That means an object A is a collection
of finitely generated, free, based R-modules A(J), J ∈ Zk, and a morphism φ : A → B is
a collection φI

J : A(I) → B(J) of R-module morphisms with the property that there is a
r = r(φ) so that φI

J = 0 when ||I − J || > r. Here it is convenient to use the max norm on
Zk. A morphism φ will be called degree preserving or homogeneous if φI

J = 0 for I different
from J .

Another way of thinking of Ck(R) is to think of A as ⊕A(J). Then the condition on φ is
that φ : A → B is a usual R-module morphism satisfying that φ(A(J) ⊆ ⊕

||I−J ||≤r
B(I).

The description given here differs from the one given in [4] in that we take based R-
modules. This however does not change anything and makes applications to geometry easier.
In [4] we proved that K1(Ck(R)) ∼= K−k+1(R). The definition of K1(Ck(R)) is, that as
generators we take [A, α] where A is an object and α an automorphism and as relations

[A, αβ]− [A, α]− [A, β] and A⊕B

(
1 η
0 1

)
−−−→ A⊕B. The reason it does not make a difference

whether we consider based or unbased R-modules, is that [A, αβα−1] = [A, β]. Thus a basis
change will have no effect on the invariant.
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Given an object A of Ck+1(R) there is an obvious object A[t, t−1] of Ck+1(R[t, t−1]). This
object has a homogeneous automorphism βt which is the identity on homogeneous elements
whose last coordinate is negative, and multiplication by t when the last coordinate is positive.
If α is an automorphism of A bounded by r, then the commutator [α, βt] is the identity on
any element whose last coordinate is numerically bigger than r, since α both commutes
with multiplication by t and with the identity. This means that [α, βt] only does something
interesting in a certain band. If we then restrict to that band, and forget the last coordinate
in the grading (by taking direct sum), then we get a Zk graded automorphism in Ck(R[t, t−1]).
This is the Bass-Heller-Swan monomorphism

K−k(R) = K1(Ck+1(R)) → K1(Ck(R[t, t−1])) = K−k+1(R[t, t−1]).

The details are given in [4]. Here we want to use this for some simple observations:
Let K be a fixed integral k-tuple. We may then regrade Zk by vector addition of K. This

will clearly induce a functor of Ck(R).

Lemma 2.1. The map on K−k+1(R) induced by the regrading given by vector addition of K
is the identity.

Proof. The map A → (regraded) A induced by the identity is bounded, and the map on
K−k+1(R) is thus given by conjugation by this map. �

This lemma is used to prove the more interesting

Lemma 2.2. Let A be an object of Ck(R) and α and β two automorphisms of A bounded by
r. Suppose there is a K ∈ Zk so that α and β agree on all A(J) with ||J −K|| ≤ r, i. e. on
some box with sides 2r, α and β agree. Then [A, α] = [A, β] in K−k+1(R).

Proof. Using lemma 2.1 we may assume K = 0. Now consider γ = αβ−1. We have γ = id
on a box with side length 2r, and after application of the Bass-Heller-Swan monomorphism
this is still the case. After k applications of the B-H-S monomorphism, we thus have the
identity. �

The above lemma is used to show that parameterized torsion is well defined under subdi-
vision.

Now consider the map r : Zk → Zk multiplying by r > 0. This induces a functor
r∗ : Ck(R) → Ck(R) sending A to r∗A with r∗A(J) = A(rJ) and 0 otherwise, morphism
induced by the identity.

Lemma 2.3. The map induced by multiplication by r > 0 is the identity on K−k+1(R).

Proof. After k applications of the Bass-Heller-Swan monomorphism, we clearly have the
identity. �

Finally we have to do the algebra needed to get the thin h-cobordism theorem, rather
than just the bounded h-cobordism theorem. At this point we need to remind the reader as
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to what we mean by an elementary automorphism α of A. By this we mean there is a direct
sum decomposition A = A1 ⊕ A2 of based submodules, so that α may be given the matrix
presentation

(
1 η
0 1

)
. We also need to remind the reader that there is another description of

K−k+1(R) as the Grothendieck construction of Zk−1-graded projections. We call a projection
geometric when it sends any basis element either to itself or 0.

Lemma 2.4. There is a function f : N → N, so that the following is true:

1) If A ∈ Ck−1(R) and p : A → A is a projection bounded by r and so that [A, p] = 0 in
K−k+1(R). Then after stabilization there is an automorphism β bounded by f(k)·r ·24
so that βpβ−1 is geometric.

2) If A ∈ Ck(R) and α : A → A is an automorphism bounded by r, so that [A, α] = 0 ∈
K−k+1(R). Then stably α may be written as a product of 24 elementary automor-
phisms, each of which is bounded by f(k) · r.

Proof. is by induction on k on the statements 1) and 2) for any ring. We will show that if
the ring is of the form R = S[t, t−1] and the given automorphism (projection) only involves
finitely many t-powers, then the automorphisms produced have the same property. We shall
allow ourselves to refer freely to [4]. To facilitate the reading, we do the first steps rather
than the general step. For k = 1 statement 1 disappears, so consider statement 2. The map
p0 : A → A is the identity in positive gradings and the 0-map in negative gradings. The

map αp0α
−1 restricted to

r
⊕

i=−r
A(i) is conjugate to p0 at least after stabilization of say A(0),

so there is an automorphism β of
r
⊕

i=−r
A(i) so that βαp0α

−1β−1 = p0 or βαp0 = p0βα.

Extending β to all of A by the identity, we have an automorphism β bounded by 2r so
that βαp0 = p0βα. We thus get α = β−1(βα) where β−1 and βα both are bounded by 2r.
Since β is the identity away from the interval −r to r, β preserves the two halves when we
split up A say at r. Denote βα or β−1 by γ. The trick used in [4] is the equation

(γ ⊕ 1⊕ 1⊕ . . .) = (γ ⊕ γ−1 ⊕ γ . . .)(1⊕ γ ⊕ γ−1 . . .)

each term on the right hand side may be written as a product of 6 elementary isomorphisms
each of which is bounded by 4r, so f(1) may be taken to be 4. If the ring R is of the form
S[t, t−1], and the automorphism α only involves finitely many t-powers, then clearly all the
elementary automorphisms produced have that same property.

For k = 2 consider a Z-graded projection p of A as in statement 1). Then pt + (1 − p)
is a Z-graded automorphism of R[t, t−1] modules involving only finitely many t-powers and
bounded by r. By what we just proved pt + (1 − p) may be written as a product of 24
elementary matrices, each only involving finitely many t-powers and each bounded by 4r,
i. e. pt+(1−p) =

∏24
i=1 Ei. Turning t-powers into a grading, and conjugating the projection

p0 by this automorphism, delivers back the projection at t-degree 0, the id in positive t-degree
and the 0-map in negative t-degrees. Considering (pt + (1− p))p0(pt + (1− p))−1 in a band
around t-degree 0 corresponds to stabilization. Using the trick of lemma 1.10 in [4] which
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turns an elementary matrix into a product of one with support in a band around t-degree 0
and one far away, we obtain β bounded by 24 · 4 · r so that in a broad band ( of t-degrees)
βpβ−1 = p0. The trick being employed is that it does not matter how high t-powers get
involved, because the grading introduced by the t-powers will immediately be forgotten.

It is now clear how the induction proceeds, one essentially uses the same words. �

3. Bounded simple homotopy theory parameterized by Rk

In this section we elaborate a little on the results of [3], and carry these results into the
manifold category. First we recall

Definition 3.1. A finite, bounded CW-complex parameterized by Rk consists of the follow-
ing: A finite dimensional CW-complex X together with a map X → Rk which is onto and
proper, so that there is a t ∈ R+ so that the size, S(C) < t for each cell C.

Definition 3.2. Let K be a space parameterized by Rk. A simple homotopy type on K
consists of

1) a bounded, finite CW complex X parameterized by Rk.
2) a bounded homotopy equivalence K → X.

Two such are said to be equivalent if the induced bounded homotopy equivalence of finite

bounded CW-complexes has 0 torsion in K̃−k+1(Zπ) (see [3] for definitions)

Theorem 3.3. A manifold W parameterized by Rk with bounded fundamental group, has a
well defined simple homotopy type given by a triangulation with bounded simplices (in the
PL oe Diff categories) or by a bounded handlebody structure in the TOP category.

Proof. We give the argument in the PL category. This extends to the Diff category by smooth
triangulations. The TOP category requires the usual modifications in the argument. Given
t ∈ R+, we choose a triangulation with simplices of size less that t. This is a bounded finite
CW complex, hence the identity defines a simple homotopy type on W . We have to compare
this to another triangulation with simplices of size less than t′. The two triangulations have
a common subdivision, so as in compact topology it suffices to show that the identity is
a homotopy equivalence with trivial torsion when thought of as a map from W with some
triangulation K to a subdivision K. We pick out one of the coordinates in Rk say the last,
and call this x. Rather than comparing the triangulation and its subdivision directly, we
introduce an intermediate subdivision cell complex K ′ which is a subdivision of K and has
K as a subdivision. Furthermore if a simplex of K ′ has barycenter with x-value bigger
than 3t the simplex is also a simplex of K, whereas if the x-value is smaller than −3t, the
simplex is also a simplex of K. In other words the cell decomposition agrees with K for
large positive values of x and with K for large negative values of x. It is not possible to have
K ′ be a triangulation, because we have to subdivide a face of a simplex without subdividing
the simplex itself. This however is no problem when we only want a cell complex. We now
compare K and K ′. At the level of chain complexes the identity induces a map sending a
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generator corresponding to a cell to the sum of the simplices it is being divided into, and
the homotopy inverse sends one of these back to the generator and the rest to 0. For large
positive x-values there is no subdivision, so the map is the identity. By Lemma 2.2 it suffices
to know the map on a big chunk, so we are done. Comparing K ′ and K is treated similarly,
but now using the fact that the cell decomposition agree for large negative x-value.

Note that the reason we can not simply refer to the usual compact proofs, that we may
not subdivide equally much everywhere, so there may be more than finitely many steps
in the subdivision procedure. We are now ready to define the obstruction and prove the
theorem. �

4. Proof of thin and bounded h-cobordism theorem parameterized by Rk

Consider an h-cobordism (W, ∂0W, ∂1W ) parameterized by Rk and bounded by t, with
fundamental group π bounded by t. For the purpose of the bounded h-cobordism theorem,
these can be taken to be the same number by taking the bigger, while for the thin h-
cobordism theorem it is part of the assumption. By assumption the inclusion ∂0W ⊆ W is a
bounded homotopy equivalence. Since ∂0W as well as W have well defined simple homotopy

types by theorem 3.3, this homotopy equivalence has a well defined torsion in K̃−k+1(Zπ). If
(W, ∂0W, ∂1W ) is boundedly equivalent to (∂0W × I, ∂0W × 0, ∂0W × 1) then W is obtained
from ∂0W by attaching no handles, and it is clear that this torsion must vanish. Assuming
the invariant vanishes, we give W a filtration as ∂0W × I ∪ 0− handles∪ 1− handles∪ . . .∪
n + 1− handles ∪ ∂0W × I in such a way that the size of each handle is bounded by t, and
the size of each w× I in ∂0W × I or ∂1W × I is bounded by t. The aim is to get rid of all the
handles in-between, without changing the size of the product structure lines too badly. The
procedure is the usual handlebody theory, with attention paid to size, and the arguments
are very similar to those applied by Quinn in [5], but of course with different algebra.

Cancelling 0-handles is done in standard fashion, but one has to worry that one does not
get too long sequences of 0 and 1 handles, letting the size get out of control. We have a
t-bounded deformation retraction of W to ∂0W . The restriction to 0-handles defines a map

(0− handles)× I → W

defining a path from the core of each 0-handle to ∂0W . Using (very small) general position,
one may assume this path runs in the 1-skeleton of W , relative to ∂0W , so from the core of
every 0-handle, there is a path through cores of 1 and 0-handles to ∂0W , bounded by t when
measured in Rk. If this path has any loop, we may simply discard the loop. That does not
increase the size.Also if the path from one 0-handle is a part of a longer path from another
0-handle, we may forget the shorter path. In the end we would like to have an embedding

(cores of some 0-handles)× I → W

which goes through all 0-handles and retaining the control of size. This is done by subdividing
every 0-handle with more than 1 path going through into so may 0 and 1-handles, that they
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have been made disjoint. We now have a disjoint embedding of paths from ∂0W going through
0 and 1 handles and with size being bounded by t. Cancelling these 0-handles accordingly
will change the boundedness of the collar structure on the boundary by a controlled multiple
of t.

The cancelling of 1-handles is now done in standard fashion by introducing 2 and 3 handles,
and using the 2 handles to cancel the 1-handles. Having done this from both ends of the
handlebody, we have a handlebody without any 0, 1, n, and n + 1 handles, and the product
structure on the collars of the boundary is bounded by a constant times t. All 2 and n− 1
handles must be attached to the boundary by homotopically trivial maps (otherwise they
would change the fundamental group), so we now have the same fundamental group π at all
levels of the decomposition.

The cellular Zπ chain complex of (W, ∂0W ) may be thought of as a chain complex in
Ck(Zπ) by associating to each cell an integral lattice point in Rk near the points in Rk over
which the cell sits. As elaborated in [3]. this cellular chain complex

0 → Cn−1
∂−→ Cn−2

∂−→ . . .
∂−→ C3

∂−→ C2 → 0

will be contractible in Ck(Zπ), with a contraction s whose bound is directly related to the
bound of the deformation of W in ∂0W . We now proceed to cancel handles following the
scheme indicated by the algebra: we introduce cancelling 3 and 4 handles corresponding to
all the 2-handles, and sitting over the points in Rk where the 2-handles sit, to obtain a chain
complex in Ck(Zπ) which in low dimensions is

C2 ⊕ C4
1⊕∂−−→ C2 ⊕ C3

(0,∂)−−→ C2 → 0

At the level of 3-handles we now perform handle additions, so that to each handle x in C2

we add s(x) in C3. Since s is bounded, this will increase the cell size by a controllable
amount. Since in dim 2 we have ∂s = 1, the chain complex, after having performed this
handle addition, now has the form

C2 ⊕ C4 → C2 ⊕ C3
(1,∗)−−→ C2 → 0.

We are now in a situation to cancel the 3-handles we introduced against the 2-handles,
since we have obtained algebraic intersection 1, and after some small Whitney isotopies we
will have geometric intersection 1 and can cancel handles. After the cancelation the chain
complex has the form C2 ⊕ C4 → C3 → 0, and is of course still contractible in Ck(Zπ).

Continuing this procedure, we get into a two-index situation

0 // Cr+1

∂ // Cr
s

oo // 0

and the collars have bounded product structures, bounded by predictable (even computable

as a function of dim(W )) constant times t. The invariant in K̃−k+1(Zπ) = K1Ck(Zπ) is given
by the torsion of this chain complex, which is exactly the isomorphism ∂. Of course ∂ is
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not an automorphism but an isomorphism. The point is that if ∂ is of the type sending
a generator to a generator, then we may cancel handles. It is however easy to see that at
least stably (see e. g. [4]) Cr and Cr+1 are isomorphic by an isomorphism sending generators
to generators, hence composing ∂ with such an isomorphism, we obtain an automorphism.
At this point there is a choice involved, but for k > 1 the torsion of an automorphism
sending generators to generators is 0. This is Lemma 1.5 of [4]. When k = 1 this is not
true, and what Quinn calls a flux phenomenon occurs. The invariant thus only becomes
well defined after dividing out by automorphisms that send generators to generators, which
amounts to saying the invariant lives in reduced K-groups. At this point one might mention
that the choices involved in finding representing cells of the Zπ modules have no effect since
an automorphism multiplying generators by elements of π will have 0 torsion, because it is
homogeneous.

Since we have assumed the invariant is 0 in K̃−k+1(Zπ), the automorphism can be written
as a product of elementary automorphisms after stabilization. After stabilizing geometrically
by introducing cancelling handles, we may then change ∂ to cancel one of these elementary
automorphisms at a time, at the expense of letting the handles grow bigger. At this point,
as in all handle addition arguments, we of course use the boundedness of the fundamental
group, to be able to judge how much bigger the handles get. In the end ∂ will be equal
to the isomorphism from Cr+1 to Cr chosen, that sends generators to generators. We now
cancel handles and are done.

To prove the thin h-cobordism theorem, we have to worry about how many handle addi-
tions we perform, but by lemma 2.4 this is controlled. To sum up the difference between
the thin and the bounded h-cobordism theorem, to do the thin version one needs to do the
following: First multiply the reference map in Rk by 1/ε so the h-cobordism will be bounded
by 1. Here we use lemma 2.3 to show this does not change the obstruction. To get into the
2 index situation, there is no difference between the two proofs. In the 2-index situation, we
need lemma 2.4 to see that we can control how many handle additions we need to perform,
and how far away the handles that have to be added can sit.

Proof of Theorem 1.7. Consider a compact h-cobordism (M, ∂0M, ∂1M) with fundamental
group π×Zk. The torsion of this h-cobordism will be represented by the torsion of the based
chain complex of the universal cover of (M, ∂0M) as Z[π × Zk] modules. This is exactly the
same chain complex as that of the Zk-covering, but now Zk has been turned into a Zk-
grading. On the other hand, the description of the Bass-Heller-Swan epimorphism given in
[4] is exactly that. �

Realizability of obstructions. Given a manifold ∂0W → Rk with uniformly bounded funda-

mental group π and an element σ ∈ K̃−k+1(Zπ), we wish to construct an h-cobordism
(W, ∂0W, ∂1W ) with obstruction σ. However σ is represented by a Zk-graded bounded au-
tomorphism α : C → C, where C is some object of Ck(Zπ). We start out with ∂0W × I.
Then we attach infinitely many trivial handles of the same dimension r corresponding to the
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generators of C, and each placed at a point which in Rk is near by the integral lattice point of
the generator in C. As in the standard realizability theorem we now attach r +1-handles by
maps given by α above. It is easy to extend the reference map to Rk and we get a manifold
(W, ∂0W, ∂1W ) with the chain complex 0 → C

α−→ C → 0 and will thus have a torsion given
by the class of α which is σ. To prove it is a bounded h-cobordism, we do however need to
invoke the Whitehead theorem type results of Anderson and Munkholm [1].

5. Parameterizing by other metric spaces

In the proof of the bounded h-cobordism theorem (not the thin h-cobordism theorem) we
have nowhere used that the metric space we parameterized by is Rk. Any other metric space
X will do, as long as X satisfies that every ball in X is compact (A proper metric space in
the sense of [1]). The groups in which the obstructions will then take values will then be

K̃1(CX(Zπ)) where CX(R) is an additive category described as based, finitely generated, free
R-modules parameterized by X and bounded homomorphisms. That means an object A is a
set of based, finitely generated , free R-modules A(x), one for each x ∈ X with the property,
that for any ball B ⊂ X, A(x) = 0 for all but finitely many x ∈ B. A morphism φ : A → B
is a set of R-module morphisms φx

y : A(x) → B(y), so that there exists k = k(φ) with the
property that φx

y = 0 for d(x, y) > k. The study of this sort of category is the subject
of forthcoming joint work with C. Weibel, in which we obtain results about the K-theory
of such categories. In the case of X = Rk we have preferred to have the modules sitting
at the integral lattice points, but this is not an important difference. In general when the
fundamental group is uniformally bounded with respect to the metric space X, the proof
of the bounded h-cobordism theorem will go through word for word. The obstructions will

be elements of K̃1(CX(Zπ)), where ˜ stands for the reduction by automorphisms sending
generators to generators. The case where the fundamental group is not necessarily being
assumed to be uniformally bounded is presently being studied by D. R. Anderson and H. J.
Munkholm.
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