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1. Introduction

In [5], we studied the assembly map in algebraic K- and L-theory, and showed that the
assembly map splits for a class of groups Γ with finite BΓ for which EΓ admits a metrizable,
contractible, equivariant compactification such that the Γ-action is “small at infinity”. This
means that every compact subset of EΓ when translated out near a point in the boundary
becomes small i. e. for every y ∈ ∂EΓ and for every neighborhood U of y in EΓ, there is a
neighborhood V of y so that γK ∩ V 6= ∅ implies γK ⊂ U . The method used in [5] was to
use continuously controlled K- and L-theory.

Given a spectrum S one may define homology with coefficients in the spectrum S by the
formula

h∗(X, x0; S) = π∗(X ∧ S)

for any finite pointed CW-complex X. If X does not come exhibited with a basepoint we
add a disjoint basepoint and get what is usually called unreduced homology by the formula
h∗(X; S) = h∗(X+, +; S) = π∗(X+ ∧ S). When X is not a CW-complex this does not give a
good definition of the homology of X. The main theme of this paper is a Čech construction
which gives a homotopy theoretically defined extension of such a functor to all compact
Hausdorff spaces. Boris Goldfarb [10] has pointed out to us, that this construction is close
to the constructions used by Edwards and Hastings [8, §8.2], and can be seen as one possible
solution to a problem posed by Edwards and Hastings [8, p. 251]. We refer the reader to [10]
for further discussion of the history of this subject. We also construct natural transformations
from various continuously controlled theories such as K-theory and L-theory to Čech theory.
The theory satisfies the Steenrod axioms [13]. Hence using [14] the natural tranformation
will be an isomorphism on the smaller category of compact metrizable spaces.

As an application of this we show how this may be used to split assembly maps for various
groups. We still need compactifications of EΓ but we relax both the condition that the given
compactification must necessarily be metrizable and the condition that the action be small
at infinity.
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The Čech homotopy type of a space Z is the homotopy limit of the nerve of the finite
coverings of Z. We say Z is Čech contractible if the Čech homotopy type is contractible (in
particular if Z is contractible). If we are given a family F of open subsets of Z, the Čech
homotopy type with respect to F , is the homotopy limit of the nerve of finite coverings of
Z, where we only use open sets from F in the finite coverings.

We prove the following theorems

Theorem A. Assume Γ is a group with a finite BΓ and that EΓ has an equivariant compact
Hausdorff compactification which is Čech contractible and such that the action is small at
infinity then

a) If R is any ring then the assembly map

BΓ+ ∧K−∞(R)→ K−∞(RΓ)

is equivalent to an inclusion of a direct summand of spectra.
b) If R is a ring with involution such that K−i(R) = 0 for i sufficiently large then the

assembly map
BΓ+ ∧ L−∞(R)→ L−∞(RΓ)

is equivalent to an inclusion of a direct summand of spectra.

We also have results about splitting assembly maps when the action is not small at infinity

Theorem B. Assume Γ is a group with a finite BΓ and that EΓ has an equivariant compact
Hausdorff compactification which is Čech contractible and such that there exists a family of
coverings F of ∂EΓ by sets which are boundedly saturated (see Definition 8.16 ), which is
invariant under the group action and such that the Čech homotopy type defined by the family
F is homotopy equivalent to the Čech homotopy type of ∂X. Then

a) If R is any ring then the assembly map

BΓ+ ∧K−∞(R)→ K−∞(RΓ)

is equivalent to an inclusion of a direct summand of spectra.
b) If R is a ring with involution such that K−i(R) = 0 for i sufficiently large then the

assembly map
BΓ+ ∧ L−∞(R)→ L−∞(RΓ)

is equivalent to an inclusion of a direct summand of spectra.

Boris Goldfarb in his Cornell thesis [10] has verified these conditions for various groups.
Specifically he treats groups Γ such that Γ is the (torsion-free) fundamental group of a
complete non-compact finite-volume Riemannian manifold with pinched negative sectional
curvatures: −b2 ≤ K(M) ≤ −a2 < 0. The L-theory assembly map was known to be split
for this class of groups, but not the algebraic K-theory assembly map.

Throughout this paper we shall use the language of algebraic K-theory, the modifications
needed to deal with L-theory are immediate using [5]. The results of this paper do work
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to split assembly maps in A-theory and topological K-theory as well, by using the excision
results in [7] , [12] and [6]. For the readers convenience we state

Theorem C. Assume Γ is a group as in Theorem A or B. Then

a) If X is a space with K−i(π1(X)) = 0 for i sufficiently large, then the assembly map

BΓ+ ∧ A−∞(X)→ A−∞(BΓ×X)

is equivalent to an inclusion of a direct summand of spectra.
b) If C is a C∗-algebra then the assembly map

BΓ+ ∧Ktop(C)→ Ktop(C∗
r Γ)

is equivalent to an inclusion of a direct summand of spectra.

We would like to thank the referee for numerous useful suggestions.

2. Preliminaries

Throughout this paper, sS will denote the category of based simplicial sets and K will
denote the full subcategory of Kan complexes. We will assume familiarity with the standard
properties of homotopy inverse limits, also called homotopy limits, as presented in [3]. We
shall conventionally only consider homotopy limits of Kan complexes, so if we ever encounter
a homotopy limit in the category of simplicial sets, it is to be understood that we “Kan-ify”
before taking the homotopy limit. Homotopy limits and colimits are extended to the category
of spectra, by doing the constructions in each degree. If C and D are categories, Φ: D −→ K
is a functor, and f : C −→ D is a functor, the induced map holimD Φ −→ holimC Φ ◦ f
will be referred to as pullback or restriction. Recall also that if N : Φ −→ Ψ is a natural
transformation of K-valued functors on D, then N induces a map holimD Φ −→ holimD Ψ.
As mentioned above, we will only consider homotopy inverse limits of functors with values in
K. This means that the cosimplicial spaces used in defining the homotopy inverse limits are
always fibrant, and all homotopy inverse limits will themselves be Kan complexes. A map
of simplicial sets will be called a weak equivalence if its geometric realization is a homotopy
equivalence. A map between Kan complexes is a weak equivalence if and only if it is a
homotopy equivalence, i. e. there is a two-sided homotopy inverse map. We will refer to a
weak equivalence between Kan complexes as an equivalence.

Similarly, if Φ: C −→ sS is any functor, we may construct the homotopy colimit of Φ over
C, hocolimC Φ. In this case we have pushforward maps corresponding to functors f : C → D,
and natural transformations again induce maps of homotopy colimits. If Φ, Ψ: C −→ sS
are functors, and N : Φ→ Ψ is a natural transformation, we say N is a weak equivalence if
N(c) is a weak equivalence for each object c of C. Weak equivalences of sS-valued functors
induce weak equivalences on homotopy colimits, and weak equivalences of K-valued functors
induce weak equivalences of homotopy limits. We also recall from [4] that a homotopy
natural transformation from a functor Φ to Ψ is a sequence of functors Φi and Ψi, for
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i = 0, 1, . . . , k, together with a family of natural transformations Φi → Ψi and a family of
natural equivalences Φi → Ψi−1 for i > 0, where Φ0 = Φ and Ψk = Ψ. A homotopy natural
transformation induces a homotopy class of maps on homotopy colimits and homotopy limits.

If we have a diagram

Y
f←− X

g−→ Z

in sS, its homotopy pushout will be the double mapping cylinder Y
∐

X × I
∐

Z/ ∼, where
(x, 0) ∼ f(x) and (x, 1) ∼ g(x). Note that this is the homotopy colimit of the diagram. We
say a commutative diagram of simplicial sets

X

��

// Y

��
Z // W

is homotopy co-Cartesian if the natural map Y ∪X Z −→ W is a weak equivalence. Similarly,
given a diagram

Y
s−→ W

t←− Z

in K, we define the homotopy pullback of the diagram as the subspace of Y ×W I × Z of
points (y, φ, z) so that φ(0) = y and φ(1) = z. W I here denotes the function complex of
maps from the simplicial unit interval to W . This pullback is denoted by Y ×W Z. We say
a commutative diagram

X //

��

Y

��
Z // W

is homotopy Cartesian if the natural map X −→ Y ×W Z is an equivalence.
Traditionally a homology theory was defined [1] to be a functor h∗(X) from CW -complexes

to graded abelian groups satisfying the Eilenberg Steenrod axioms except for the dimension
axiom. Using Brown’s representability theorem [1] a homology theory has a representing
spectrum S. This means that a homology theory can be written as π∗(X+∧S) for a suitable
spectrum S or π∗(X∧S) for the corresponding reduced theory h∗(X, x0; S) on pointed spaces.
The functor X → X ∧ S from finite CW -spaces to spectra is homotopy invariant and sends
cofibrations of spaces to cofibrations of spectra and the one-point space to a contractible
spectrum. The functor X → Ω∞Σ∞(X ∧ S) from spaces to spaces sending X to the 0-th
space of the infinite loop spectrum corresponding to X ∧S is homotopy invariant and sends
cofibrations to fibrations. On the other hand if f is a homotopy invariant functor sending
cofibrations to fibrations and a point to a contractible space, it follows that π∗(f(X)) is
a homology theory in the classical sense. It is easy to see that Ωf(ΣX)) is homotopy
equivalent to f(X), so f(X) is the 0-th space of an infinite loop spectrum. This spectrum
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is the representing spectrum of the homology theory π∗(f(X)) as is shown in [19]. We may
thus think of a homology theory in various equivalent ways. Since we shall need the results
of [3] on homotopy limits and colimits it is practical to work simplicially rather than with
spaces. We shall use the following definition:

Definition 2.1. A functor T : sS −→ K is said to be a homology theory if

a) The induced map T (X × 0) −→ T (X × [0, 1]) is an equivalence for all simplicial sets
X.

b) T (∗) is contractible.
c) For any homotopy co-Cartesian diagram

X

��

// Y

��
Z // W

the induced diagram

TX

��

// TY

��
TZ // TW

is homotopy Cartesian.

It follows that if we have an inclusion i : X ↪→ Y , we obtain a sequence

TX −→ TY −→ T (Y ∪X CX)

which is a fibration “up to homotopy” in the sense that the natural map from TX to the
homotopy fiber of the map TY −→ T (Y ∪X CX) is an equivalence.

Remark 2.2. Given a (simplicial) spectrum S we get a homology theory in this sense, by
defining T (X) to be the zero’th space of Ω∞S∞(X ∧ S) followed by a functor turning a
simplicial set into a weakly equivalent Kan simplicial set.

We will also need standard information concerning the construction of spectra from cat-
egory theoretic data. The following theorem covers what we will need. For more detail on
the terminology in the statements, see [18].

Theorem 2.3. There is a functor Spt from the category of symmetric monoidal categories
and lax symmetric monoidal functors to the category of spectra satisfying the following con-
ditions.

(1) If f : C −→ D is a lax symmetric monoidal functor and N. (f), the induced map on
the nerve, is a weak equivalence of simplicial sets, then Spt(f) is a weak equivalence
of spectra.
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(2) For any symmetric monoidal category C, let Spt0(C) denote the zeroth space of the
spectrum Spt(C). There is a natural map N. C → Spt0(C), which induces an iso-
morphism

(π0N. C)−1H∗(N. C)
∼=−→ H∗(Spt0(C))

(3) Let f : C −→ D be a unital symmetric monoidal functor between unital symmetric
monoidal categories C and D, and suppose π0(C) contains a cofinal submonoid M so
that π0(f)(M) is also a cofinal submonoid of π0(D). Suppose further that for every
object x ∈ D lying in an equivalence class belonging to π0(f)(M), x ↓ f ( or f ↓ x)
has a weakly contractible nerve. Then πi(Spt(f)) is an isomorphism for i > 0.

(4) If µ : A×B −→ C is a symmetric monoidal pairing, then there is an induced pairing
of spectra

Spt(µ) : Spt(A) ∧ Spt(B)→ Spt(C)

so that the composite

N. A×N. B → Spt0(A) ∧ Spt0(B)→ (Spt(A) ∧ Spt(B))0 → Spt0(C)

is equal to the composite

N. A×N. B
N.µ−−→ N. C → Spt0(C)

Proof. The first 2 points are [18, Lemma 2.3] and [18, Condition 2.2], and 3. and 4. are
proved in [4, Theorem I.6]. �

We also recall the notation h(X, x0,S) for the homology of the based space (X, x0) “with
coefficients in the spectrum S”, or the smash product of the space X with the spectrum S.

We will be using homotopy inverse limits over certain categories of coverings of topological
spaces in our definition of Čech homology. These categories have certain properties which
make them convenient to work with, and we discuss these now. Recall from [9] that a
category C is said to be left filtering if (i.) for every pair of objects c, c′ in C, there exists an
object c′′ together with maps c←− c′′ −→ c′, and (ii.) for every pair of maps f, g : c′ −→ c,
there exists a morphism h : c′′ −→ c′ so that f ◦ h and g ◦ h are equal. If the category C
happens to be a partially ordered set, i. e. there is at most one morphism between any pair
of objects, then this reduces to the requirement that for any pair of objects c, c′ of C, there is
a c′′ so that there are morphisms c′′ −→ c and c′′ −→ c′. We will adopt the convention that
a partially ordered set in the usual sense is made into a category by declaring that there is
a morphism from x to y if and only if x ≥ y. If this category is left filtering we shall say the
partially ordered set is left directed. Note that it follows as in [16] that the nerve of any left
filtering category is weakly contractible, and hence the nerve of any left directed partially
ordered set is weakly contractible.

Proposition 2.4. Let C and D be two left directed partially ordered sets, and suppose we
have an order preserving map f : C −→ D. Further, suppose that φ is a functor from D to
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the category of Kan simplicial sets, and that for every element z ∈ D there is an element
x ∈ C so that f(x) ≥ z. Then the pullback map

holim
D

φ −→ holim
C

φ ◦ f

is a weak equivalence.

Proof. From [3], it will suffice to show that the category f ↓ z has contractible nerve for
each z ∈ D. But it is clear that each category f ↓ z is itself a left directed partially ordered
set, and the hypothesis of the proposition shows that it is non-empty. Therefore, its nerve
is contractible. �

We also have the following standard fact(see [3]).

Proposition 2.5. Let C be a category, and suppose that we have functors F, G, H and K
from C to the category of based Kan complexes, and that we have a commutative diagram of
natural transformations as follows.

F //

��

G

��
H // K

Suppose further that for each c ∈ C, the diagram is homotopy Cartesian, i. e. that the
natural map from F (c) to the homotopy pullback of the diagram H(c) −→ K(c)←− G(c) is
an equivalence. Then the diagram

holim
C

F //

��

holim
C

G

��
holim

C
H // holim

C
K

is also homotopy Cartesian.

We will also need some conditions which assure that a natural transformation between
functors from a left directed partially ordered set to the category of Kan complexes induces
a weak equivalence on homotopy inverse limits.

Proposition 2.6. Let C denote a left partially ordered set, and suppose that we are given a
natural transformation η : F −→ G of functors from C to K. Suppose further that for every
c ∈ C, there is a c′ ≥ c so that η(c′) is an equivalence. Then the map holimC F −→ holimC G
induced by η is an equivalence.

Proof. This is a straightforward consequence of [3]. �
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We must also understand the behavior of restriction maps on inverse limits. Preparing for
this we state

Lemma 2.7. Let f : E → C be an order preserving map of partially ordered sets, and
T : E → K a functor. For every y ∈ C let Ey be the full subcategory of E consisting of y′ so
that y ≥ f(y′) then

holim
E

T ' holim
C

holim
Ey

T |Ey

Proof. Let Z denote the partially ordered set consisting of pairs (c, e) with c ≥ f(e). Then
the iterated homotopy limit may be identified with the homotopy limit over Z of the functor
T ′ : Z → K sending (c, e) to T (e). Moreover there is a forgetful functor i : Z → E sending
(c, e) to e, and T ′ = T ◦ i . It is readily checked that i satisfied the hypothesis of [3, Theorem
XI.9.2]. Hence i induces an equivalence on homotopy inverse limits. �

Lemma 2.8. Let C ⊆ D be an inclusion of left directed partially ordered sets. Let F be a
functor from D to the category of Kan complexes. Suppose that for every x ∈ D, there exists
x′ ∈ D and a y′ ∈ C, with x′ ≥ x and x′ ≥ y′ and with F (x′) −→ F (y′) a weak equivalence.
Then the restriction map holimD F −→ holimC F is a weak equivalence.

Proof. Let E be the partially ordered set whose objects are pairs (x, y), with x ∈ D, y ∈ C,
and x ≥ y. We have functors r : E −→ D and i : C −→ E, with r(x, y) = x and i(y) = (y, y).

Note that r ◦ i is equal to the inclusion C ↪→ D. Let Ê ⊆ E be the full subcategory on all
(x, y) so that F (x ≥ y) is a weak equivalence. Of course, i(C) ⊆ Ê. The hypothesis shows

that the restriction of r to Ê satisfies the hypotheses of 2.4, so the natural map

holim
D

F −→ holim
Ê

F ◦ r

is an equivalence. It now suffices to show that the restriction map

holim
Ê

F ◦ r −→ holim
C

F ◦ r ◦ i

is an equivalence. Let T denote the functor from Ê to Kan complexes given by T (x, y) =

F (y). There is an evident natural equivalence of functors on Ê from F ◦ r to T , given by
F (x ≥ y) so when restricted to i(C) it gives the identity equivalence. Hence

holim
Ê

F ◦ r ' holim
Ê

T

Note that T ◦ C = F ◦ r ◦ i. Consequently, it suffices to show that the restriction map
holimÊ T −→ holimC T ◦ i is a weak equivalence. To prove this, given any y ∈ C, we let Êy

denote the full subcategory on those (x, y′) for which y ≥ y′. We use Lemma 2.7 to express
holimÊ T as an iterated homotopy limit

holim
Ê

T ' holim
y∈C

holim
Êy

T |Êy
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it is easy to see that the diagram

holim
Ê

T //

��

holim
y∈C

holim
Êy

T |Êy

��
holim

C
T ◦ i holim

y∈C
T (y)

is commutative. The right hand vertical map is given by restriction along the inclusion
{(y, y)} ⊆ Êy. In view of 2.6, it thus suffices to check that holimÊy

T |Êy −→ T (y) is an

equivalence. Now, by 2.4, it is clear that if E∗
y ⊆ Êy is the subset on objects of the form

(x, y), then the restriction functor holimÊy
T −→ holimE∗

y
T is an equivalence. Consequently,

it suffices to check that the map holimE∗
y
T −→ T (y) is an equivalence. But T is constant

on E∗
y with value T (y), so the homotopy limit over E∗

y can be identified with the function
complex F (N. E∗

y , T (y)), and the restriction map is simply restriction along the inclusion of
nerves of the one object category (y, y) into N. E∗

y . But N. E∗
y is weakly contractible since

it has a final object (y, y). �

3. Lemmas on Coverings

By a covering of a topological space X, we mean a parameterized family U = {Uα}α∈A

of open subsets of X, where A is a set, so that X =
⋃

α∈A Uα. A map of coverings from
{Uα}α∈A to {Vβ}β∈B is a set map f : A −→ B so that Uα ⊆ Vf(α) for all α ∈ A.

By a simplicial complex Σ we mean, as usual , a vertex set VΣ and a family of finite subsets
PΣ, so that if U ∈ PΣ and U ′ ⊆ U then U ′ ∈ PΣ. Simplicial maps are defined in the usual
way. Two simplicial maps f, g : Σ1 −→ Σ2 are said to be s-homotopic if for every U ∈ Σ1,
f(U)∪ g(U) ∈ Σ2. The join of two simplicial complexes Σ and T , Σ ∗ T , has VΣ

∐
VT as its

vertex set, and a subset of VΣ∗T is in PΣ∗T if and only if it is the union of an element of VΣ

with an element of VT .
For any set X, let F(X) denote the partially ordered set of nonempty finite subsets of

X and inclusions. As usual we may view a F(X) as a category , which by our conventions
is the opposite category of the category of non-empty subsets and inclusions. The functor
X −→ N.F(X) gives a covariant functor from Sets to sS. Given a simplicial complex Σ,
let the realization of Σ, R. Σ, be the nerve of the full subcategory of F(VΣ) with objects
the subsets belonging to PΣ. This is the simplicial version of the barycentric subdivision of
the usual realization. The functor R. preserves pushouts and carries s-homotopic maps to
simplicially homotopic maps.

For any covering U = {Uα}α∈A of a topological space, let ΣU be the simplicial complex
whose vertex set is A, and where {α1, . . . , αk} is a simplex of ΣU if and only if Uα1∩. . .∩Uαk

6=
∅. By the nerve of the covering, N.U , we will mean R. ΣU .
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Lemma 3.1. If U and V are any coverings of X, and f, g : U −→ V are any maps of
coverings, then N. f and N. g are simplicially homotopic.

Proof. This result follows directly from the above discussion of s-homotopies, since if f and
g are both maps of coverings from U to V , and {α1, . . . , αk} ∈ ΣU , then

{f(α1), . . . , f(αk), g(α1), . . . , g(αk)} ∈ ΣV

since
Uα1 ∩ . . . ∩ Uαk

⊆ Uf(α1) ∩ . . . ∩ Uf(αk) ∩ Ug(α1) ∩ . . . ∩ Ug(αk)

Thus, f and g are s-homotopic. �

Corollary 3.2. Let f : U −→ V be any map of coverings. Suppose further that there is a
map of coverings from V to U . Then N. f is a weak equivalence.

We will also define certain other simplicial sets associated to U . Suppose B ⊆ A.

Definition 3.3. By N.B U we mean the realization of the simplicial complex ΣB
U , whose

simplices are the subsets {β1, . . . , βk} ⊆ B so that Uβ1 ∩ . . . ∩ Uβk
6= ∅. We define E .B U to

be the realization of the simplicial complex T B
U , whose vertex set is B, and so that any finite

subset {β1, . . . , βk} ⊆ B is a simplex.

Of course, E .B U is weakly contractible. All these simplicial sets are viewed as subsimplicial
sets of E .U = E .A U .

Lemma 3.4. Let U = {Uα}α∈A be a covering of a space X, and let B0 ⊆ B ⊆ A be subsets
of A. Suppose further that for each β ∈ B, there is a β0 ∈ B0 so that Uβ ⊆ Uβ0. Then the

evident inclusion N.B
0 U −→ N.B U is an equivalence.

Proof. Let f : B −→ B0 be any function so that Uβ ⊆ Uf(β), and f |B0 = idB0 . f induces a
map of nerves N. f , and it is clear that the composite

N.B
0 U −→ N.B U −→ N.B

0 U
is equal to the identity. On the other hand, the composite

N.B U −→ N.B
0 U −→ N.B U

is simplicially homotopic to the identity in view of the fact that

Uβ1 ∩ . . . ∩ Uβk
6= ∅ =⇒ Uβ1 ∩ . . . ∩ Uβk

∩ Uf(β1) ∩ . . . ∩ Uf(βk) 6= ∅
This gives the result. �

Consider also the following situation. Let U = {Uα}α∈A be a covering of a space X, and
let B ⊆ A be a subset. Let WU(B) ⊆ X be the set

⋃
β∈B Uβ. Let ΛB(U) = {Wα}α∈A

be the covering of X given by Wα = Uα if α /∈ B, and Wα = WU(B) if α ∈ B. Let
P (B) = PU(B) ⊆ A be the set of all α ∈ A so that Uα ∩W (B) 6= ∅. We may view ΣΛB(U) as

a subcomplex of TU , and as such it is contained in the subcomplex ΣU ∪Σ
P (B)
U
T P (B)
U . This is
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true since it is clear from the definitions that a simplex {α1, . . . , αk} of ΣΛB(U) either contains
a vertex in B, in which case αi ∈ P (B) for all i, or it does not, in which case it is in ΣU .
Also it is clear that

ΣU ∪ΣB
U
T B
U ⊆ ΣΛB(U)

Lemma 3.5. Let U , A, and B be as above. Suppose that for any {α1, . . . , αk} ⊆ PU(B),

Uα1 ∩ . . . ∩ Uαk
6= ∅ =⇒ Uα1 ∩ . . . ∩ Uαk

∩WU(B) 6= ∅

Then the inclusion

ΣΛB(U) ↪→ ΣU ∪Σ
P (B)
U
T P (B)
U

induces an equivalence on nerves.

Proof. We first note that ΣΛB(U) is the union of ΣU with Σ
P (B)

ΛB(U)
; the overlap is Σ

P (B)
U .

Consequently, we have a map of pushout diagrams

ΣU

��

Σ
P (B)
U

oo

��

// Σ
P (B)

ΛB(U)

��

ΣU Σ
P (B)
U

oo // T P (B)
U

of simplicial complexes. Since the realization and nerve constructions preserve pushouts,

it will suffice to show that Σ
P (B)

ΛB(U)
−→ T P (B)

U induces a weak equivalence on nerves. Since

N. T P (B)
U is contractible, it will suffice to show that N. Σ

PU (B)

ΛB(U)
is contractible. Write PU(B) =

B
∐

Q(B). A typical simplex in Σ
PU (B)

ΛB(U)
is of the form {β1, . . . , βs, q1, . . . , qt}, with βi ∈ B and

qi ∈ Q(B). Clearly {β1, . . . , βs, q1, . . . , qt} is a simplex of Σ
PU (B)

ΛB(U)
if and only if {q1, . . . , qt} is a

simplex in Σ
Q(B)
U . Consequently Σ

PU (B)

ΛB(U)
is the join of Σ

Q(B)

ΛB(U)
with ΣB

ΛB(U). Since ΣB
ΛB(U) = T B

U ,

whose nerve is contractible, the result follows. �

We wish to consider subspaces also. A relative covering of a subspace Y ⊆ X is a
parameterized family U = {Uα}α∈A of open subsets Uα of X so that Y ⊆

⋃
α∈A Uα. ΣU and

N.U are defined precisely as before, i. e. the simplices of ΣU are finite subsets {α1, . . . , αk}
so that Uα1∩ . . .∩Uαk

6= ∅. For any relative covering U of Y ⊆ X, we have the covering ρU of
Y , where ρU = {Uα∩Y }α∈A. There is an evident map ΣρU −→ ΣU given by {α1, . . . , αk} −→
{α1, . . . , αk}, and hence a map of simplicial sets N. ρU −→ N.U .

Lemma 3.6. Suppose X is a compact Hausdorff space and Y is a closed subspace. Let
U = {Uα}α∈A be a finite open covering of Y . Suppose further that for each α, we are given
a closed set Wα ⊆ Uα and that {Wα}α∈A is also a covering of Y . Then there is a relative
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covering of Y in X, {Vα}α∈A , so that Wα ⊆ Y ∩ Vα ∩ Uα, and so that for every subset
{α1, . . . , αk} ⊆ A,

Vα1 ∩ . . . ∩ Vαk
= ∅ ⇐⇒ Wα1 ∩ . . . ∩Wαk

= ∅

Proof. This is a straightforward generalization of the fact that in a compact Hausdorff space,
any two disjoint closed subspaces are contained in disjoint open sets. We leave the proof to
the reader. �

4. Rigid Coverings and Čech Homology

In our construction of Čech homology, it will be important that the category of coverings
used as parameter category for certain homotopy inverse limits is a left directed partially
ordered set. We will use an analogue to the “rigid coverings” used by Friedlander [9] in his
construction of the “étale topological type ” associated to a scheme.

Definition 4.1. Let X be a topological space. A rigid covering of X is a function β from
the underlying set of X to the collection of open subsets of X satisfying the following three
conditions.

a) x ∈ β(x)

b) For any open set U ⊆ X, β−1U ⊆ U
c) Only finitely many distinct open sets occur among the sets β(x). That is, the image

of β is a finite collection of the collection of open subsets of X.

Let RC(X) denote the set of all rigid coverings of X. If β1, β2 ∈ RC(X), we say β1 refines
β2 and write β1 ≥ β2 if and only if β1(x) ⊆ β2(x) for all X, RC(X) now becomes a partially
ordered set, and hence can be viewed as a category. We also define a relative version, where
Y ⊆ X is a subspace. A relative rigid covering of Y in X is a function β from the underlying
set of Y into the open subsets of X, which satisfies properties a)– c) above. We similarly
obtain a category RC(X, Y ).

Thus, a rigid covering is an open covering of X, with parameter set X, so that only finitely
many distinct subsets occur. It turns out that X −→ RC(X) defines a contravariant functor
from the category of pointed topological spaces to the category of pointed small categories.

Proposition 4.2. For any map of topological spaces f : X −→ Y , and β ∈ RC(Y ), we
define a function f !β from the underlying set of X into the collection of open subsets of X
by the formula f !β(x) = f−1β(f(x)). Then f !β is a rigid covering of X, and the formulae
X −→ RC(X) and f −→ f ! make RC(−) into a contravariant functor.

Proof. All conditions defining RC(X) are clear except b). To check b), let U be an open

subset occurring in the image of β, i. e. U = β(y). Then f !−1
(f−1U) is equal to the union of

the inverse images under f of all the sets β−1V , as V ranges over all the sets in the image of
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β for which f−1V = f−1U . Note that this is clearly a finite union, and the closure of each
set f−1V is contained in f−1U . Since for a finite union,

V1 ∪ . . . ∪ Vk = V1 ∪ . . . ∪ Vk

condition b) follows. �

We will also need a kind of product of rigid coverings.

Proposition 4.3. Let β1 and β2 denote rigid coverings of a space X. We define a new
function β1 ×X β2 from the set X into the collection of open subsets of X by the formula
β1×X β2(x) = β1(x)∩β2(x). Then β1×X β2 is a rigid covering of X. Furthermore, it refines
both β1 and β2.

Proof. As in the preceding proposition, all is clear except the fact that β1 ×X β2 satisfies
condition b) in the definition of rigid coverings. To check this condition, we construct first
the function β1×β2 from X×X into the collection of open subsets of X×X by the formula

(β1 × β2)(x1, x2) = β1(x1)× β2(x2)

β1 × β2 is evidently a rigid covering of X ×X. Now, if we let ∆: X −→ X ×X denote the
diagonal map, then

β1 ×X β2 = ∆!β1 × β2

and the result follows directly from 4.2. �

It thus follows that RC(X) is a left directed partially ordered set. Given an arbitrary
covering U = {Uα}α∈A, the reader may wonder if there is a rigid covering β of X, so that for
all x ∈ X, β(x) = Uα(x) for some α(x). Indeed, this question is important for us for technical
reasons. The following lemma will be useful.

Lemma 4.4. Given any covering U = {Uα}α∈A of a compact Hausdorff space, there is a
rigid covering β of X so that for each x ∈ X, there is an α(x) ∈ A so that β(x) = Uα(x).

Proof. Since X is compact, we may assume that A is finite. Since X is compact Hausdorff,
there is a covering {Vα}α∈A, with Vα ⊆ Uα for all α. Let φ : X −→ A be such that x ∈ Vφ(x)

for all x. Then define β by β(x) = Uφ(x). This gives the required rigid covering. �

Lemma 4.5. For every β ∈ RC(X) and closed subset Y , there is an open set U , with
Y ⊆ U , and a refinement β∗ ∈ RC(X), β∗ ≥ β, so that for every x ∈ U , β∗(x) ⊆ β(y) for
some y ∈ Y .

Proof. Consider β|Y ∈ RC(X, Y ). We first construct an open set V and β̃ ∈ RC(X) so that

β̃|Y = β|Y , and so that for all x ∈ V , β̃(x) ⊆ β̃(y) for some y. Let U =
⋃

y∈Y β(y). This
is an open set containing Y . Since X is compact Hausdorff, there is an open set V , with
Y ⊆ V ⊆ V ⊆ U . Consider the open covering consisting of all the sets β(y) together with
X−V . Again since X is compact Hausdorff, we may select an open covering {Zy}y∈Y ∪{W}
so that Zy ⊆ β(y) and W ⊆ X−V . For every x ∈ X−Y , choose β̃(x) to be either (i.) β(y),
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where y is such that x ∈ Zy, or (ii.) X−V if x ∈ W . (Note that both possibilities can occur

simultaneously, so the construction of β∗ involves choices.) If x ∈ Y , set β̃(x) = β(x). With

this choice of V and β̃, we clearly have that if x ∈ V , β̃(x) ⊆ β(y) for some y ∈ Y . Now set

β∗ = β̃ ×X β. With the same choice of V , this clearly has the required properties. �

Lemma 4.6. Let X be a compact Hausdorff space, and Y ⊆ X a closed subspace. Let
β ∈ RC(X, Y ). Then there is a rigid covering β̂ ∈ RC(X) so that β̂|Y = β.

Proof. Let Z denote the open set
⋃

y∈Y β(y) ⊆ X. Of course, Y ⊆ Z. Since X is compact
Hausdorff and Y is closed, we may choose an open set V , so that V ⊇ X − Z, and so that
V ∩ Y = ∅. Let {Uα}α∈A be an indexing of the sets which occur in the image of β, together
with V , so A is finite. Since X is compact Hausdorff and Y is closed, there is a family of
open sets {Wα}α∈A with Wα ⊆ Uα and Wα ⊇ β−1(Uα) for all α ∈ A, and so that {Wα}α∈A

is a covering of X. For each y ∈ Y , set β̂(y) = β(y). For each x ∈ X − Y , find an α ∈ A so

that x ∈ Uα, and set β̂(x) = Uα. This construction gives the required rigid covering. �

Lemma 4.7. Let X be a compact Hausdorff space, and let Y ⊆ X be a closed subspace. Let
β be any rigid covering. Then there is a rigid covering β∗ ≥ β, so that

β∗(x1) ∩ . . . ∩ β∗(xk) = ∅ =⇒ β∗(x1) ∩ . . . ∩ β∗(xk) = ∅
for all {x1, . . . , xk}. Further, β∗ can be chosen so that

β∗(x1) ∩ . . . ∩ β∗(xk) ∩ Y = ∅ =⇒ β∗(x1) ∩ . . . ∩ β∗(xk) ∩ Y = ∅

Proof. Let {Uα}α∈A be a finite listing of all the subsets of the form β(x) for some x ∈ X.

Let Vα ⊆ Uα be β−1(Uα) ⊆ Uα. Since X is compact Hausdorff, we can choose open sets Wα,
so that Vα ⊆ Wα ⊆ Wα ⊆ Uα, and define a new rigid covering β(1) by β(1)(x) = Wα if and
only if β(x) = Uα. Note that

β(x1) ∩ . . . ∩ β(xk) ∩ Y = ∅ =⇒ β(1)(x1) ∩ . . . ∩ β(1)(xk) ∩ Y = ∅
Note also thatW = {Wα}α∈A is now a finite covering, and the identity map on A produces an
inclusion of finite simplicial complexes ΣW ↪→ ΣU . Repeating this process gives a descending
chain of finite simplicial complexes on the same vertex set A, which must eventually stabilize.
This means that we have open sets W ′

α and Wα, with

Vα ⊆ W ′
α ⊆ W ′

α ⊆ Wα ⊆ Wα ⊆ Uα

so that

W ′
α1
∩ . . . ∩W ′

αk
= ∅ =⇒ Wα1 ∩ . . . ∩Wαk

= ∅
which implies that W ′

α1
∩. . .∩W ′

αk
= ∅. Define β∗ by β∗(x) = W ′

α if and only if β(x) = Uα. �

Definition 4.8. Let (X, x0) be a topological space, and let ΦX be the functor from RC(X)
to sS given by β −→ N. β. For any homology theory T : sS → K from based simplicial
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sets to based Kan complexes, we define the Čech homology of X with “coefficients in T” ,
ȟ(X, x0; T ), to be

holim
RC(X)

T ◦ ΦX

This defines ȟ on objects. If f : X −→ Y is a map of topological spaces, we define ȟ(f ; T )
to be the composite

holim
RC(X)

T ◦ ΦX −→ holim
RC(Y )

T ◦ ΦX ◦RC(f) −→ holim
RC(Y )

T ◦ ΦY

where the left arrow is pullback of homotopy inverse limits along the functor RC(f) and
where the right hand arrow is induced by the evident natural transformation ΦX ◦RC(f) −→
ΦY .

Notice that the basepoint x0 ∈ X determines a basepoint in ȟ(X, x0; T ), so ȟ(−; T ) can
be viewed as a functor from the category of based spaces to K. We will occasionally suppress
the basepoint when no confusion will result.

5. Excision

Throughout this section, let X denote a compact Hausdorff space and let Y ⊆ X denote
a closed subspace. Let T denote a functor from the category of based simplicial sets to the
category of based Kan complexes which is a homology theory in the sense of Definition 2.1.
Let X be any compact Hausdorff space, and let Y ⊆ X be a closed subspace. In this section,
we will prove “strong excision ” for the functor ȟ(−; T ), i. e. that the sequence of maps

ȟ(Y, y0; T ) −→ ȟ(X, x0; T ) −→ ȟ(X/Y, [y0]; T )

is a fibration up to homotopy in the sense that the evident map from ȟ(Y, y0; T ) to the
homotopy fiber of the map ȟ(X, x0; T )→ ȟ(X/Y, [y0]; T ) is an equivalence of Kan complexes.

We first observe that for any based pair of spaces (X, Y ), we have a commutative diagram

ȟ(Y, y0; T )

��

// ȟ(∗, ∗; T )

��

ȟ(X, x0; T ) // ȟ(X/Y, ∗; T )

Theorem 5.1. Let X be a compact Hausdorff space, and Y ⊆ X a closed subspace. Then
the above diagram is homotopy Cartesian.

Proof. The strategy will be to find a weakly equivalent diagram which is induced by a diagram
of functors over RC(X), and to apply 2.5 suitably. Let i : Y ↪→ X and j : ∗ ↪→ X/Y denote
the inclusions and let p : X −→ X/Y and q : Y −→ denote the projections onto the quotient
space. The above diagram may be written as follows.



16 GUNNAR CARLSSON AND ERIK KJÆR PEDERSEN

holim
RC(Y )

T ◦ ΦY

��

// holim
RC(∗)

T ◦ Φ∗

��
holim
RC(X)

T ◦ ΦX
// holim
RC(X/Y )

T ◦ ΦX/Y

It follows from Lemma 4.6 that the conditions of Proposition 2.4 are satisfied, so this diagram
is weakly equivalent to the new diagram

(A)

holim
RC(X)

T ◦ ΦY ◦RC(i)

��

// holim
RC(X/Y )

T ◦ Φ∗ ◦RC(j)

��
holim
RC(X)

T ◦ ΦX
// holim
RC(X/Y )

T ◦ ΦX/Y

where the vertical arrows are induced by natural transformations ΦY ◦ RC(i) −→ ΦX and
Φ∗ ◦ RC(j) −→ ΦX/Y . The horizontal arrows are pullback maps along RC(p) composed
with maps induced by the natural transformation from ΦY ◦RC(i) ◦RC(p) = ΦY ◦RC(q) ◦
RC(j) −→ Φ∗ ◦RC(j) and ΦX ◦RC(p) −→ ΦX/Y . Exhibiting only the natural transforma-
tions we get the diagram of functors and natural transformations

ΦY ◦RC(p ◦ i)

��

// Φ∗ ◦RC(j)

��
ΦX ◦RC(p) // ΦX/Y

Denoting the functor RC(Z) → sS sending β to R. Tβ by CZ for any space Z, and the
constant functor with value the one point simplicial set by E , this diagram of natural trans-
formations factors as described in the following diagram.

ΦY ◦RC(p ◦ i)

��

// CY ◦RC(p ◦ i)

��

// Φ∗ ◦RC(j)

��
ΦX ◦RC(p) // ΦX ◦RC(p) ∪ΦY ◦RC(p◦i) CY ◦RC(p ◦ i) // ΦX/Y

and consequently we have a map of diagrams from the diagram (B) below to diagram (A).
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(B)

holim
RC(X)

ΦY ◦RC(i)

��

// holim
RC(X)

CY ◦RC(i)

��
holim
RC(X)

ΦX
// holim
RC(X)

ΦX ∪ΦY ◦RC(i) CY ◦RC(i)

The maps on the left hand part of the diagram are identity maps, and the map in the upper
right hand corner is an equivalence since both entries are contractible. Further, the last
diagram is homotopy Cartesian in view of Proposition 2.5. Consequently, it suffices to show
that the map

holim
RC(X)

T ◦ (ΦX ∪ΦY ◦RC(i) CY ◦RC(i)) −→ holim
RC(X/Y )

T ◦ ΦX/Y

is an equivalence. The proof of this result is in two stages, since this map is actually a
composite of two maps, one

holim
β∈RC(X)

T (ΦX(β) ∪ΦY ◦RC(i)(β) CY ◦RC(i)(β))→

holim
β∈RC(X/Y )

T (ΦX ◦RC(p)(β) ∪ΦY ◦RC(p◦i)(β) CY ◦RC(p ◦ i)(β))

and the other

holim
β∈RC(X/Y )

T (ΦX ◦RC(p)(β) ∪ΦY ◦RC(p◦i)(β) CY ◦RC(p ◦ i)(β))→ holim
RC(X/Y )

ΦX/Y .

The first is restriction along the inclusion RC(p), and the second is induced by a natural
transformation.

We analyze the restriction map first. For any β ∈ RC(X), let β0 be the rigid covering of
Y given by β0(y) = β(y) ∩ Y . Thus, ΦY ◦ RC(i)(β) = β0. We have a natural inclusion of
simplicial complexes Σβ0 ↪→ ΣY

β . We will show first that for every β ∈ RC(X), there is a

β ≥ β so that the natural inclusion N. β
0 −→ N. β is an equivalence. To construct β, let

{Uα}α∈A be a listing, with finite index set, of the distinct subsets occurring in the image of

β0|Y , and let Wα ⊆ Uα be the closed sets (β0)−1(Uα). According to 3.6, there exist open
sets Vα in X so that Wα ⊆ Vα ∩ Y ⊆ Uα, and so that

Vα1 ∩ . . . ∩ Vαk
6= ∅ =⇒ Wα1 ∩ . . . ∩Wαk

6= ∅

Let β̃ ∈ RC(X, Y ) be defined by β̃(y) = Vα if and only if β0(y) = Uα. Then by 4.6, it is

possible to find a rigid covering β̂ of X, with β̂|Y = β̃. β will now be taken to be β ×X β̂.

β ×X β̂|Y = β̃, and from the construction of β̃, it is clear that the map Σ
β

0 −→ ΣY
β

is

an isomorphism of simplicial complexes. This is the required result. From the definition of
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homotopy pushouts, it follows that the natural map

holim
β∈RC(X)

T (R. Σβ ∪R.Σβ0 R. TβY ) −→ holim
β∈RC(X)

T (R. Σβ ∪R.ΣY
β

R. T Y
β )

is an equivalence. Further, it is clear that if β ∈ RC(X/Y ), Σβ0 = ΣY
β , and it will therefore

suffice to show that the restriction map

holim
β∈RC(X)

T (R. Σβ ∪R.ΣY
β ) R. T Y

β ) −→ holim
β∈RC(X/Y )

T (R. Σβ ∪R.ΣY
β

R. T Y
β )

is an equivalence. We will show this via a series of equivalences. We have a commutative
diagram

holim
β∈RC(X)

T (R. Σβ ∪R.ΣY
β

R. T Y
β )

��

// holim
β∈RC(X)

T (R. Σβ ∪Σ
W (Y )
β

R. T W (Y )
β )

��

holim
β∈RC(X/Y )

T (R. Σβ ∪R.ΣY
β

R. T Y
β ) // holim

β∈RC(X/Y )
T (R. Σβ ∪Σ

W (Y )
β

R. T W (Y )
β )

where the horizontal arrows are induced by natural inclusions of simplicial complexes, and
where the vertical arrows are restriction maps. We will show that the horizontal arrows are
equivalences. It will then follow that if the right hand vertical arrow is an equivalence, then
so is the left hand arrow, and we will then proceed to show that the right hand vertical arrow
is an equivalence.

To show that the upper horizontal arrow is an equivalence, it will suffice, in view of the

fact that T is a homology theory and that R. T Y
β and R. T W (Y )

β are contractible, to show
that

holim
β∈RC(X)

T (R. ΣY
β ) −→ holim

β∈RC(X)
T (R. Σ

W (Y )
β )

is an equivalence. In view of 4.5, for any β ∈ RC(X), there is a β∗ ≥ β, so that for any
x ∈ W (Y ), there is a y ∈ Y so that β∗(x) ⊆ β∗(y). From 3.4, it follows that the inclusion

ΣY
β −→ Σ

W (Y )
β induces a weak equivalence on nerves, and the result now follows from 2.6.

To see that the lower horizontal arrow is an equivalence, it similarly suffices to show that

holimβ∈RC(X/Y ) T (R. ΣY
β ) −→ holimβ∈RC(X/Y ) T (R. Σ

W (Y )
β ) is an equivalence. This follows as

above with the additional observation that we may take β∗ to lie in RC(X/Y ).
In order to prove that the restriction map

holim
β∈RC(X)

T (R. Σβ ∪Σ
W (Y )
β
T W (Y )

β ) −→ holim
β∈RC(X/Y )

T (R. Σβ ∪Σ
W (Y )
β
T W (Y )

β )

is an equivalence, consider the following commutative diagram.
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holim
β∈RC(X)

T (ΣΛW (Y )[β])

gu

''PPPPPPPPPPPP

v2

��

holim
β∈RC(X)

T (Σβ ∪Σ
W (Y )
β
T W (Y )

β )h
u

//

v1

��

fu
77ooooooooooo

holim
β∈RC(X)

T (Σβ ∪Σ
PW (Y )
β

T PW (Y )
β )

v3

��

holim
β∈RC(X/Y )

T (ΣΛW (Y )[β])

gl

''PPPPPPPPPPPP

holim
β∈RC(X/Y )

T (Σβ ∪Σ
W (Y )
β
T W (Y )

β )

f l
77ooooooooooo

hl
// holim
β∈RC(X/Y )

T (Σβ ∪Σ
PW (Y )
β

T PW (Y )
β )

The triangles at either end of the “prism” are induced by natural inclusions of simplicial
complexes, as described in section 5. The vertical arrows are all restriction maps. We wish
to show that v1 is an equivalence; for this it will suffice to show that fu, f l, and v2 are
equivalences. We first deal with fu. From the diagram, it will clearly suffice to show that hu

and gu are equivalences. To show that hu is an equivalence, we observe that in view of the

fact that T is a homology theory and the contractibility of T W (Y )
β and T PW (Y )

β it will suffice
to show that the inclusion

holim
β∈RC(X)

T (R. Σ
W (Y )
β ) −→ holim

β∈RC(X)
T (R. Σ

PW (Y )
β )

is an equivalence. Since T is a homology theory, it will suffice to show that

holim
β∈RC(X)

T (R. Σ
PW (Y )
β /R. Σ

W (Y )
β )

is contractible. For this, it will suffice by 2.6 to show that for every β ∈ RC(X), there is a
β∗ ∈ RC(X), with β∗ ≥ β, so that the map

R. Σ
PW (Y )
β∗ /R. Σ

W (Y )
β∗ −→ R. Σ

PW (Y )
β /R. Σ

W (Y )
β

is simplicially homotopic to a constant map. We first choose β′ ≥ β, so that for every x ∈ X
with β′(x) ∩ Y 6= ∅, there is a y ∈ Y with β′(x) ⊆ β(y). Now, let U be an open set, with
Y ⊆ U ⊆

⋃
{x|β′(x)∩Y 6=∅} β′(x). Also, choose V open, with Y ⊆ V ⊆ V ⊆ U . These choices

are possible since X is compact Hausdorff. Consider the open covering {U,W − V , X −U}.
Let γ be a rigid covering of X so that for each x ∈ X, γ(x) is one of these sets, the existence
of which is guaranteed by 4.4, and consider β∗ = β′ ×X γ. We have β∗ ≥ β′ ≥ β, and
furthermore it is clear from the definitions that if we let W ∗ = {x|β∗(x) ∩ Y 6= ∅} and

Ŵ = {x|β∗(x)∩W ∗ 6= ∅}, then Ŵ ⊆ W . From this it follows that we may define a function
φ from P (W (Y, β∗)) to Y so that β∗(x) ⊆ β(φ(y)). We may also insist that φ(y) = y for
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all y ∈ W (Y, β∗), since β∗ refines β. Since maps of coverings induce maps of the associated

simplicial complexes, we obtain a map of simplicial complexes Σ
PW (Y )
β∗ −→ Σ

W (Y )
β , so that

the composite

Σ
PW (Y )
β∗ −→ Σ

W (Y )
β −→ Σ

PW (Y )
β

induces a map on realizations which is simplicially homotopic, rel R. Σ
W (Y,β∗)
β∗ to the map

R. Σ
PW (Y )
β∗ −→ R. Σ

PW (Y )
β induced by the identity map on X. This clearly gives the result,

so the map hu is an equivalence. That

hl : holim
β∈RC(X/Y )

T (R. Σ
W (Y )
β ) −→ holim

β∈RC(X/Y )
T (R. Σ

PW (Y )
β )

is an equivalence follows from the same argument, again by observing that β∗ may be taken
to lie in RC(X/Y ).

We must now deal with gu. According to 2.6 and 3.5, it will suffice to construct, for every
β ∈ RC(X), a β′ ≥ β, so that for any {x1, . . . , xk} ⊆ X, with β′(xi)∩W (Y, β′) 6= ∅ for all i,

β′(x1) ∩ . . . ∩ β′(xk) 6= ∅ =⇒ β′(x1) ∩ . . . ∩ β′(xk) ∩W (Y, β′) 6= ∅

To construct β′, first construct β̂ ≥ β so that

β̂(x1) ∩ . . . ∩ β̂(xk) 6= ∅ =⇒ β̂(x1) ∩ . . . β̂(xk) 6= ∅

For each {x1, . . . , xk} such that β̂(xi)∩W (β̂, Y ) 6= ∅ for all i, and such that β̂(x1)∩. . . β̂(xk)∩
W (β̂, Y ) 6= ∅, we have the closed set β̂(x1) ∩ . . . ∩ β̂(xk). Since

β̂(x1) ∩ . . . ∩ β̂(xk) 6= ∅ =⇒ β̂(x1) ∩ . . . ∩ β̂(xk) = ∅

we see that β̂(x1) ∩ . . . ∩ β̂(xk) is disjoint from W (β̂, Y ). Let S be the family of all subsets

{x1, . . . , xk}, such that β̂(xi) ∩W (β̂, Y ) 6= ∅ for all i, and so that β̂(x1) ∩ . . . ∩ β̂(xk) = ∅.
Then

Z =
⋃

{x1,...,xk}∈S

β̂(x1) ∩ . . . ∩ β̂(xk)

is a closed set disjoint from W (β̂, Y ). Let V = X − Z, so V is an open set containing

W (β̂, Y ). Choose an open set Z1 so that

W (β̂, Y ) ⊆ Z1 ⊆ Z1 ⊆ V

and let U = X−Z1. Then {U, V } is an open covering of X, and we let γ be a rigid covering so

that γ(x) = U or V for all X. Let β′ = β̂×X γ. β′ now clearly has the required properties, so
gu is an equivalence. As usual, gl follows by the identical argument, with the observation that
β̂ and γ may be taken to be in RC(X/Y ). The conclusion is that fu and f l are equivalences.
Thus, for our purposes, it will suffice to show that v2 is an equivalence. But this follows
directly from 2.8, since it is easily checked that ΛW (Y )β is an object of RC(X/Y ) for all β.
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The point is that for any x so that (ΛW (Y )β)(x) ∩ Y 6= ∅, Y ⊆ (ΛW (Y )β)(x), so if we let βr

be the rigid covering of X/Y given by βr([x]) = p((ΛW (Y )β)(x)), then ΛW (Y )β = RC(p)(βr).
Finally, then, we must show that the natural transformation

ΦX ◦RC(p) ∪ΦY ◦RC(p◦i) CY ◦RC(p ◦ i) −→ ΦX/Y

is a weak equivalence of functors. To see this, we note that the inclusion

ΦX ◦RC(p) −→ ΦX ◦RC(p) ∪ΦY ◦RC(p◦i) CY ◦RC(p ◦ i)

is a weak equivalence of functors, since ΦY ◦ RC(p ◦ i)(β) is evidently contractible for each
β ∈ RC(X/Y ). We claim ΦX ◦RC(p) −→ ΦX/Y is a weak equivalence of functors. But this
is clear from 3.2, since ΦX ◦ RC(p)(β) is the covering obtained from ΦX/Y (β) by repeating
the set β([y0]) once for every y ∈ Y , and the natural map is the map of coverings sending
each of these copies to β([y0]). �

6. Homotopy Invariance of Čech Homology

We wish to demonstrate that the inclusion i : X × 0 ↪→ X × [0, 1] induces an equivalence
ȟ(X; T ) −→ ȟ(X × [0, 1]; T ) for any homology theory T . Lemma 4.6 shows that the con-
ditions of Proposition 2.4 are satisfied for the functor RC(i) : RC(X × I) → RC(X × 0),
hence

holim
RC(X×0)

T ◦ ΦX×0 → holim
RC(X×I)

T ◦ ΦX×0 ◦RC(i)

is a homotopy equivalence, so showing ȟ(X; T ) −→ ȟ(X×[0, 1]; T ) is a homotopy equivalence
is equivalent to the assertion that the natural transformation ΦX×0 ◦ RC(i) −→ ΦX×[0,1]

induces a homotopy equivalence

holim
RC(X×I)

T ◦ ΦX×0 ◦RC(i) −→ holim
RC(X×I)

T ◦ ΦX×[0,1].

Notice that since T is homotopy invariant T applied to a weak homotopy equivalence will
be a homotopy equivalence.

We will first establish some preliminaries.

Proposition 6.1. Let U = {Uα}α∈A and V = {Vβ}β∈B be open coverings of spaces X and
Y , respectively, and let U × V be the open covering {Uα × Vβ}(α,β)∈A×B of X × Y . Then
N. (U × V) is naturally equivalent to N.U ×N.V.

Also, for any n and ε > 0, with ε < 1
2n+1 , let Vn,ε denote the open covering of [0, 1] given by

{( k
2n−ε, k+1

2n +ε)}k=0,1,...,2n−1. Of course, (−ε, 1
2n +ε) and (1− 1

2n−ε, 1+ε) are to be interpreted

as [0, 1
2n + ε) and (1− 1

2n − ε, 1], respectively. Note that N.Vn,ε is weakly contractible.

Proposition 6.2. Let β be any rigid covering of X × [0, 1] whose underlying covering is of
the form U × Vn,ε, for some open covering U of X. Then ΦX×0 ◦ RC(i)(β) −→ ΦX×[0,1](β)
is a weak equivalence.
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Proof. Clear from the preceding proposition and the contractibility of N.Vn,ε �

Lemma 6.3. Let β be any rigid covering of a compact Hausdorff space X, and let x ∈ X.
Then there is an open set V containing x so that for all v ∈ V , V ⊆ β(v).

Proof. Let {Uα}α∈A be a non-redundant listing of all the open sets appearing as β(x) for

some x ∈ X, so A is finite. Let S(x) ⊆ A, S(x) = {α ∈ A|x ∈ β−1Uα}. Choose V to be any
open set contained inside ⋂

α∈S(x)

Uα ∩
⋂

β∈A−S(x)

(X − β−1(Uβ))

V clearly satisfies the requirements of the lemma. �

Corollary 6.4. Let X be a compact Hausdorff space, and let Y = [0, 1]. Let β be a rigid
covering of X × Y . Then there is a rigid covering β∗ ≥ β so that the underlying covering β∗

is of the form U × V, and so that N.V is contractible.

Proof. First, it is clear from 6.3 that there is a finite open covering U = {Uα}α∈A so that for
every u ∈ Uα, Uα ⊆ βu. Further, it is standard that there are open coveringsW = {Wα}α∈A

and V = {Vβ}β∈B of X and Y respectively, so that W × V refines U , and that V = Vn,ε

for some n and ε. It is clear that we may assume that the coverings W and V admit no
proper subcovers. Since X and Y are compact Hausdorff spaces, we can choose open subsets
W ′

α ⊆ Wα and V ′
β ⊆ Vβ so that W ′

α ⊆ Wα and V ′
β ⊆ Vβ, and so that W ′ = {W ′

α}α∈A and
V ′ = {V ′

β}β∈B are also open coverings of X and Y , respectively. We may take V to be Vn,ε for
some n and ε. For each point (x, y) ∈ X × Y , choose some sets W ′

α and V ′
β so that x ∈ W ′

α

and y ∈ V ′
β, and set β∗(x, y) = Wα × Vβ. It follows directly from the construction that β∗

refines β, and since W ′ and V ′ admit no proper subcovers, it is clear that the underlying
open covering of β∗ is W ×V , and N.V is weakly contractible. �

Theorem 6.5. The inclusion

holim
RC(X×I)

T ◦ ΦX×0 ◦RC(i) −→ holim
RC(X×I)

T ◦ ΦX×[0,1]

is a homotopy equivalence. Consequently, Čech homology has the homotopy invariance prop-
erty for compact Hausdorff spaces.

Proof. By the preceding corollary, it suffices to check the result on rigid coverings whose
underlying open coverings are of the formW×V , with N.V weakly contractible. The result
now follows from Proposition 6.1 and Proposition 6.2. �

7. The “Strong Wedge” Property

Let {Xi}∞i=1 be a countable family of based topological spaces. The “strong wedge” of
the X ′

is, which we by abuse of notation shall denote
∨∞

i=1 Xi, is the subspace of
∏∞

i=1 Xi
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consisting of points which have at most one coordinate away from the basepoint. There are
projection maps ȟ(

∨∞
i=1 Xi; T ) −→ ȟ(Xi; T ), and hence a map

φ : ȟ(
∞∨
i=1

Xi; T ) −→
∞∏
i=1

ȟ(Xi; T )

We wish to show that if each of the Xi’s is a compact Hausdorff space, then φ is an equiva-
lence.

We record a preliminary result.

Proposition 7.1. Let

C1 ⊆ C2 ⊆ . . . ⊆ Cn ⊆ . . .

be an increasing sequence of categories, with C∞ =
⋃

n Cn. Let F be a functor from C∞
to Kan complexes. Then holimC∞ F is naturally equivalent to holimn holimCn F |Cn. Here,
n −→ holimCn F |Cn is a contravariant functor from the partially ordered set N of positive
integers to Kan complexes.

Proof. Let Φ be the covariant functor from N to small categories, given by Φ(n) = Cn.
Then we have the “Grothendieck construction” [17] N = N o Φ, and an evident functor
s : N −→ C∞. It is readily checked that this functor satisfies the hypotheses of [3, Theorem
XI.9.2], and hence the pullback map holimC∞ F −→ holimN F ◦ s is an equivalence. How-
ever, holimN F ◦ s is easily identified with holim

n∈N holimΦ(n) F |Φ(n), which is the required
result. �

Theorem 7.2. Let {Xi}∞i=0 be a family of based compact Hausdorff spaces. Then the natural
map

φ : ȟ(
∞∨
i=1

Xi; T ) −→
∞∏
i=1

ȟ(Xi; T )

is an equivalence.

Proof. Let Z =
∨∞

i=1 Xi, and let Zj be the subspace
∨∞

i=j Xi. We have the projection

pj : Z −→ Z/Zj
∼=

∨j
i=1 Xi. Let RCj(Z) ⊆ RC(Z) denote the image of the functor RC(pj),

and let RC∞(Z) =
⋃∞

j=1 RCj(Z) ⊆ RC(Z). We claim that the restriction map

ȟ(Z; T ) ∼= holim
RC(Z)

T ◦ ΦZ −→ holim
RC∞(Z)

T ◦ ΦZ

is a weak equivalence. By 2.8, it will suffice to show that for every β ∈ RC(Z), there is a
β′ ∈ RC(Z) and a β′′ ∈ RC∞(Z), so that β′ ≥ β, β′ ≥ β′′, and so that ΦZ(β′ ≥ β′′) is a weak
equivalence of simplicial sets. Let ∗ denote the basepoint in Z. Then β(∗) is an open set
containing ∗. By the definition of the strong wedge, there is a j so that Zj ⊆ β(∗). Choose
an open set V with Zj ⊆ V ⊆ V ⊆ β(∗); this is possible since Z is compact Hausdorff.
{Z − V , β(∗)} is now an open covering of Z. By 4.4, we may choose γ ∈ RC(Z) so that
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γ(z) is equal to Z − V or β(∗) for all z ∈ Z. Note that for z ∈ Zj, γ(z) = β(∗). Let
β′ = β ×X γ. It is clear that if β′(z) ∩ Zj 6= ∅, then β′(z) ⊆ β(∗) = β′(∗). Let β′′ be defined
by β′′(z) = β′(z) if β′(z) ∩ Zj = ∅, and β′′(z) = β(∗) if β′(z) ∩ Zj 6= ∅. Define a function θ
from Z to itself by letting θ(z) = ∗ if β′(z) ∩ Zj 6= ∅ and θ(z) = z otherwise. It is clear that
β′′(z) ⊆ β′(θ(z)), and so θ is in fact a map of coverings (indexed by Z). It therefore induces
a map R. Σβ′′ −→ R. Σβ′ . In view of 3.2, this is a weak equivalence of simplicial sets. This
shows that the map holimRC(Z) T ◦ ΦZ −→ holimRC∞(Z) T ◦ ΦZ is an equivalence. But 7.1
now shows that holimRC∞(Z) T ◦ ΦZ is canonically equivalent to holimj holimRCj(Z) T ◦ ΦZ .
But it is easy to check that T ◦ΦZ |RCj(Z) is weakly equivalent to T ◦ΦZ/Zj

, and hence that

holimRCj(Z) T ◦ ΦZ ' ȟ(Z/Zj; T ). On the other hand, the excision theorem 5.1 shows that

ȟ(Z/Zj; T ) '
∏j−1

i=1 ȟ(Zi; T ). It follows that

holim
RC∞(Z)

T ◦ ΦZ ' holim
j

j−1∏
i=1

ȟ(Zi; T ) '
∞∏
i=1

ȟ(Zi; T )

which is the required result. �

8. Bornologies, Compactifications, and Group Actions

A “space” will mean a locally compact Hausdorff space. If X is a set, and B1 and B2 are
subsets of X × X, we write B1 ◦ B2 = {(x1, x2) ∈ X × X|∃x′ ∈ X, with (x, x′) ∈ B1 and
(x′, x2) ∈ B2}. Also, let Bop

1 = {(x1, x2)|(x2, x1) ∈ B1}.

Definition 8.1. A bornology on a space X is a family B of subsets of X ×X, satisfying the
following four conditions.

(1) B ∈ B ⇒ ∆ ⊆ B, where ∆ denotes the diagonal in X ×X.
(2) B ∈ B and ∆ ⊆ B′ ⊆ B ⇒ B′ ∈ B.
(3) B1, B2 ∈ B ⇒ B1 ◦B2 ∈ B.
(4) B ∈ B ⇒ Bop ∈ B.

A space equipped with a bornology will be referred to as a bornological space.

To get a category we need to specify the maps.

Definition 8.2. Let (X1,B1) and (X2,B2) be bornological spaces, and let f : X1 −→ X2

be a (perhaps non-continuous) map. We say f is bornological if it satisfies the following
conditions:

(1) For every B ∈ B1, f × f(B) ∈ B2.

(2) For every compact subset K ⊂ X2, f−1(K) is compact.

The associated category of bornological spaces will be denoted by Born.

Example 8.3. The metric bornology: An important example of a bornological space occurs
when X is a metric space. If X is a metric space with metric d, we define a bornology B(d)
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on X to consist of all sets B ⊆ X ×X, containing ∆, and so that there is a real number R
so that d(x1, x2) ≤ R for all (x1, x2) ∈ B.

Definition 8.4. Let (X,B) be a bornological space. If A ⊂ X and B ∈ B, we define
B[A] = {x′ ∈ X|∃x ∈ A : (x, x′) ∈ B}. We shall write B[x] for B[{x}].

Example 8.5. The continuously controlled bornology: Let X be a space and let i : X → X
be an inclusion into a compact space. i is assumed to be a homeomorphism onto its image.
Let ∂X = X − X. We define the continuously controlled bornology B(X, ∂X) on X as
follows:

B ∈ B(X, ∂X) if and only if the following holds: For every y ∈ ∂X and for every open
neighborhood U of y in X there exists an open neighborhood V of y in X so that B[x] ⊂ U
for all x ∈ V ∩X.

Definition 8.6. Let X be a space with two bornologies B1 and B2. We shall say that B1 is
finer than B2 or equivalently B2 is coarser than B1 if B1 ⊂ B2 i. e. if the identity map from
(X,B1) to (X,B2) is a bornological map.

Definition 8.7. If X be is a bornological space imbedded as above, X thus has an abstract
bornology B and a continuously controlled bornology coming from the embedding. We say
B is “small at ∞” (relative to i) if B is finer than B(X, ∂X) i. e. if for each B ∈ B, z ∈ ∂X,
and open set U of X containing z, there is an open set V of X, with z ∈ V ⊆ U , so that for
every x ∈ V ∩X, B[x] ⊆ U .

Remark 8.8. There are many important examples of metric bornologies with compactifi-
cations that are small at infinity

(1) When X is a simply connected smooth manifold equipped with a complete Riemann-
ian metric d of nonpositive sectional curvature, then X can be compactified by rays,
and the bornology B(d) is small at ∞.

(2) If X = G/K, where G is a Lie group and K its maximal compact subgroup , then
G/K is diffeomorphic to RN for N = dim(G/K), and can be compactified by adding
an SN−1 at ∞ so that any left G- invariant Riemannian metric is small at ∞.

(3) If X is the universal cover of a finite simplicial graph, then X can be compactified
by adding a Cantor set at ∞, and the bornology associated to the simplicial metric
on X is small at ∞.

(4) When Γ is a torsion free word hyperbolic group in the sense of Gromov (see [11]),
Γ acts freely on a finite dimensional polyhedron Pd(Γ) which can be compactified
by adding its “hyperbolic boundary”, as in [11]. The polyhedron is equipped with a
metric, whose bornology is small at ∞.

Suppose now that X is a space, equipped with a properly discontinuous left action by
a group Γ, and suppose further that the action is “cocompact”, i. e. X/Γ is a compact
Hausdorff space. Γ also acts on X × X via the formula γ · (x, x′) = (γx, γx′). We say a
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subset Z ⊆ X×X is Γ-compact if Z/Γ ⊆ X×X/Γ is a compact set; note that ∆X ⊆ X×X
is Γ-compact, since X/Γ is compact. We now define a family BΓ of subsets of X × X by
declaring B ⊆ X × X is an element of BΓ if ∆X ⊆ B and B is contained in a Γ-compact
subset of X ×X.

Proposition 8.9. Suppose Γ acts freely on X. Then BΓ is a bornology on X.

Proof. Only condition 3 requires verification. Let π1, π2 : X × X/Γ −→ X/Γ be given by
π1([x, x′]) = [x] and π2([x, x′]) = [x′], respectively. Let Z ⊆ (X × X/Γ) × (X × X/Γ) be
given by Z = {(α, β)|π2α = π1β}. There is a continuous map θ : Z −→ X × X/Γ given
by θ([x, x′], [x′′, x′′′]) = [x, γx′′′], where γ is the unique element of Γ so that γx′′ = x′. Let
B1, B2 ∈ B,and let B1 and B2 be Γ-invariant elements of BΓ, so that Bi/Γ ⊆ X × X/Γ is
compact for each i, and so that Bi ⊇ Bi for each i. It is easy to see that such Bi’s exist.
Now, p(B1 ◦B2) ⊆ p(B1 ◦B2) = θ(Z ∩ (pB1× pB2)), and Z ∩ (pB1× pB2) is a closed subset
of the compact set pB1× pB2, and so θ(Z ∩ (pB1× pB2)) is compact. Consequently, B1 ◦B2

is contained in a Γ-compact set, which is the result. �

Definition 8.10. If in this situation X is compactified to X, we say that the group action
is small at infinity if BΓ is small at infinity

Definition 8.11. If (X,BX) and (Y,BY ) are bornological spaces we define the product
bornology BX×Y on X × Y to consist of those subsets of

(X × Y )× (X × Y ) ∼= (X ×X)× (Y × Y )

which contain the diagonal and are contained in subsets of the form B1 × B2 ⊆ X × X ×
Y × Y ∼= (X × Y )× (X × Y ), where B1 ∈ BX and B2 ∈ BY .

Definition 8.12. If Y is a bornological space with bornology B and f : X → Y we define
the pullback bornology on X to be

f ∗(B) = {(f × f)−1(B)|B ∈ B}.

In the following let (X, ∂X) be a pair of Hausdorff spaces, ∂X closed in X and X − ∂X
dense in X. Let U be a subset of ∂X. We define the bornology BU of control with respect
to U as follows:

Definition 8.13. B ∈ BU if and only if for every closed subset Z of X with Z ∩ ∂X ⊂ U
we have B[Z] ∩ ∂X ⊂ U .

Said with words BU has to satisfy that if a closed set intersecting ∂X inside U is expanded
by an element B ∈ BU then the closure of the expansion also intersects ∂X inside U .

Definition 8.14. If A = {Uα} is a collection of subsets of ∂X then we define

BA = ∩U∈ABU .
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Remark 8.15. It is easy to see that continuous control is control with respect to the col-
lection of all open subsets of ∂X. Hence the continuously controlled bornology is finer than
the bornology defined by any collection of open sets.

Definition 8.16. Assume X is a bornological space compactified to X. A subset Z of ∂X
is bornologically saturated with respect to a given bornology if the bornology is finer than
BZ . In case X is a metric space we say the set is boundedly saturated. In this case a closed
subset of X with closure meeting ∂X inside Z still meets ∂X inside Z after being expanded
a bounded amount.

Remark 8.17. Given a collection of boundedly saturated sets A = {Uα} we clearly get a
map from the metric bornology to BA. This will be used in the final section where we prove
assembly map splittings.

9. Bounded K-theory and K-theory with Continuous Control at ∞

Let (X,B) be a bornological space, and let R be a ring. By an X-labeled R-module, we
mean a based free R-module (F, Φ), embedded as a submodule of the free R-module with
basis X × N. We get a corresponding “labeling function” φ : Φ −→ X, and require that for
every compact subset K ⊂ X , φ−1(K) is finite. If (F1, Φ1, φ1) and (F2, Φ2, φ2) are X-labeled
R-modules, then a linear transformation f : F1 −→ F2 is said to be bounded with respect
to B if there is an element B ∈ B so that for any θ ∈ Φ1, f(θ) ∈ Span(φ−1

2 (B[φ1x])). As in
[15], the category of X-labeledR-modules and bounded linear transformations is symmetric
monoidal, being an additive category. We shall denote this category by C(X,B; R). The
subcategory of isomorphisms is also symmetric monoidal and has an associated spectrum
Spt(iso(C(X,B, R))) will be denoted by K(X,B, R). Note that if B is the bornology associ-
ated to a metric, then C(X,B; R) coincides with the bounded category C(X; R) of [15] applied
to the metric space X. If B(X, ∂X) is the continuously controlled bornology associated to
a compactification X of X then C(X,B(X, ∂X); R) is the continuously controlled category
B(X, ∂X; R) of [2] and [5]. For brevity we shall continue to use the notation B(X, ∂X; R)
for C(X,B(X, ∂X); R).

Let BE denote the bornology associated to the standard Euclidean metric on E. Let BEn

denote the n-fold product bornology BE×...×E, described above. Then as in [4] or [5], we
obtain a directed system

K(X,BX , R) −→ ΩK(X × E,BX×E, R) −→ · · ·
· · · −→ ΩnK(X × En,BX×En , R) −→ · · ·

of spectra, and K(X × En,BX×En , R) is a component of ΩK(X × En+1,BX×En+1 , R), so
increasing n introduces new negative homotopy groups, but keeps the homotopy groups in
positive degrees. The homotopy colimit of this system will be written K−∞(X,B, R),
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We briefly examine the functoriality properties of this construction. Consider a map

(X1,B1)
f−→ (X2,B2) of bornological spaces.

Proposition 9.1. The constructions K(X,B, R) and K−∞(X,B, R) are functorial for maps
of bornological spaces.

Proof. Clear from the definitions. �

We now examine the functoriality of these constructions, when a bornology is small at
infinity.

Definition 9.2. Let (X, ∂X) and (X ′, ∂X ′) be pairs of locally compact Hausdorff spaces.
X = X − ∂X and X ′ = X ′ − ∂X ′. A set map f : (X, ∂X) −→ (X ′, ∂X ′) is eventually
continuous if the following conditions hold.

(1) f(X) ⊆ f(X ′).
(2) If K is a compact subset of X ′, then the closure of f−1(K) in X is compact.
(3) f is continuous at points of ∂X.

We denote the category with objects compact Hausdorff pairs and morphisms eventually
continuous maps by CE

Now suppose that we are given a bornological space (X,B), and an inclusion i : X −→ X,
where X is compact. ∂X will denote X − X, and i is assumed to be a homeomorphism
onto its image. Then it is clear that the object sets of C(X,B; R) and C(X,B(X, ∂X; R)) =
B(X, ∂X; R) are identical. If we further assume that the bornology B is small at ∞, then
it is also clear from the definitions that if a linear transformation of X-labeled R-modules
is bounded with respect to B, then that same linear transformation is controlled at all
points of ∂X. The conclusion is that we have a symmetric monoidal functor C(X,B; R) −→
B(X, ∂X; R), and hence maps of spectra K(X,B, R) −→ K(X, ∂X, R) and K−∞(X, Y, R) −→
K−∞(X, ∂X; R). This map turns out to be a natural transformation of functors on an ap-
propriate category, which we now describe. The objects are triples (X, ∂X,B), where X is
a compact space, ∂X ⊆ X is a closed subspace, and B is a bornology on X = X − ∂X,
which is small at ∞ relative to the inclusion X −→ X. A morphism in the category from

(X, ∂X,B) to (X ′, ∂X ′,B′) is a set map (of pairs) (X, ∂X)
f−→ (X ′, ∂X ′) which is eventually

continuous and so that f |X is bornological.
We call this category S. We say an object (X, ∂X,B) of S is finite if ∂X = ∅ and B

consists of all subsets of X ×X.

Proposition 9.3. The maps of spectra

K(X,B; R) −→ K(X, ∂X; R)

and

K−∞(X,B; R) −→ K−∞(X, ∂X; R)
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form natural transformations of functors on S. We refer to the natural transformation as
η. η(X, ∂X,B) is a weak equivalence of spectra when (X, ∂X,B) is finite.

Proof. The naturality is evident. When (X, ∂X,B) is finite, both functors clearly take the
value K(R) and K−∞(R) respectively and the map η is clearly an equivalence. �

10. K-theory with Continuous Control at Infinity

We shall examine the excision properties of the continuously controlled construction.
As usual, let (X, ∂X) be a pair of spaces, with X compact Hausdorff and ∂X closed.

For any set Z ⊆ X, let the accumulation set of Z, A(Z), be the set of all points x ∈ X
so that every open neighborhood of x contains infinitely many points of Z. Note that if Z
has the property that every compact subset of X contains only finitely many points of Z,
then A(Z) is contained in ∂X. As in [5], for any subset U ⊆ ∂X, let B(X, ∂X; R)U denote
the full subcategory on B(X, ∂X; R) on the objects (F, B, φ) for which A(φ(B)) ⊆ U . We
denote the corresponding K-theory spectrum by K(X, ∂X; R)U , and also construct, the
spectrum K−∞(X, ∂X; R)U by giving X × En the product bornology and consider objects
with accumulation points in ∂X × En contained in U × En. If V ⊆ U , we also define
B(X, ∂X; R)V

U to be the category whose objects are the same as those of B(X, ∂X; R)U , but
where two morphisms f and g from (F1, B1, φ1) to (F2, B2, φ2) in B(X, ∂X; R)U are identified
if there is a neighborhood W of V so that f(b) = g(b) for all b ∈ B1 such that φ(b) ∈ W . We
get corresponding K-theory spectra K(X, ∂X; R)V

U and K−∞(X, ∂X; R)V
U . The key result

is now as follows.

Proposition 10.1. Let C ⊆ D be closed subsets of ∂X. Then there is a sequence of maps
of spectra

K−∞(X, ∂X; R)C −→ K−∞(X, ∂X; R)D −→ K−∞(X, ∂X; R)D−C
D

which is a fibration up to homotopy.

Proof. For the case D = ∂X, this is [5, Corollary 1.30]. The proof for a general D is
identical. �

Remark 10.2. This is the key excision result. In L-theory a result of this type is proved
in [5, Lemma 5.2]. In A-theory this is proved in [7, Proposition 2.12], and in topological
K-theory this is proved in [12, Proposition 9.2]. Given an excision result of this type it is
formal to generalize the rest of the methods in this paper to these other theories.

Definition 10.3. Let C1 and C2 be two closed subsets of ∂X. We say the pair (C1, C2) is
excisive if we can find an open set V in X so that C2 − C1 ⊆ V and V ∩ C1 ⊆ C2. For
two arbitrary subsets U1 and U2 of ∂X we say the pair (U1, U2) is excisive if every compact
subset C of U1∪U2 is contained in C1∪C2 where (C1, C2) is an excisive pair of closed subsets
with Ci ⊂ Ui.
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Recall a set C ⊆ X is called functionally closed if there is a continuous function f : X →
[0, 1] with C = f−1(0).

Lemma 10.4. Assume Ci ⊂ ∂X ⊂ X and Ci are functionally closed in X. Then (C1, C2)
is an excisive pair.

Proof. Choose functions fi so that Ci = f−1
i (0). Put V = {x|f2(x) < f1(x)} �

Proposition 10.5. Let X be a compact Hausdorff space, and let ∂X ⊆ X be closed. Then
any pair of open subsets U1, U2 ⊆ ∂X is excisive.

Proof. Let C ⊆ U1 ∪ U2. Consider the closed subset C − U2 ∩ C of ∂X. C − U2 ∩ C ⊆ U1,
and it is a standard fact from point set topology that there is an open subset V1 of ∂X, with
C − U2 ∩ C ⊆ V1 and V1 ⊆ U1. Note that C ⊆ V1 ∪ U2. Now consider the closed subset
C − V1 ∩ C of ∂X. As before, we choose an open subset V2 of X, with C − V1 ∩ C ⊆ V2,
and so that V2 ⊆ U2. Now let Ci = C ∩ Vi. These Ci may not form an excisive pair, but
using the Tietze extension theorem they may be enlarged to functionally closed sets hence
satisfying the conditions. �

Lemma 10.6. If Ci ⊆ ∂X are closed subsets and (C1, C2) is an excisive pair, then

K−∞(X, ∂X; R)C2−C1∩C2
C2

−→ K−∞(X, ∂X; R)C1∪C2−C1
C1∪C2

is an equivalence of spectra.

Proof. It will suffice to show that the map

K(X, ∂X; R)C2−C1∩C2
C2

−→ K(X, ∂X; R)C1∪C2−C1
C1∪C2

is an equivalence, and pass to direct limits over the directed system defining K−∞ by crossing
everything with En. But by 2.3, it will suffice to show that the map

N.B(X, ∂X; R)C2−C1∩C2
C2

−→ N.B(X, ∂X; R)C1∪C2−C1
C1∪C2

induced by the evident inclusion functor is an equivalence. Since all morphisms in both
categories are isomorphisms, it will suffice to show that every object in B(X, ∂X; R)C1∪C2−C1

C1∪C2

is isomorphic to an object of B(X, ∂X; R)C2−C1∩C2
C2

. Choose V ⊆ X an open set so that

C2 − C1 ⊆ V and V ∩ C1 ⊆ C2

We now write (F, B, φ) as a direct sum (F1, B1, φ1)⊕ (F2, B2, φ2), where B1 = φ−1(X − V )
and B2 = φ−1(V ). The inclusion (F2, B2, φ2) ↪→ (F, B, φ) is an isomorphism in the category
B(X, ∂X; R)C1∪C2−C1

C1∪C2
with inverse the projection since the composite only differs from the

identity on a submodule with support at infinity contained in C1. But, (F2, B2, φ2) is clearly
an object in B(X, ∂X; R)C1∩C2

C2
, since the support of (F2, B2, φ2) is contained in V , and

A(φ2(B2)) ⊆ V ∩ (C1 ∪ C2) ⊆ C1 . To finish off the proof we need to verify the existence of
such an open set V . Let fi : X → [0, 1] be a continuous functions so that f−1

i (0) = Ci. We
may then put V = {y|f2(y) < f1(y)}. �
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Theorem 10.7. If (U1, U2) is excisive, then there is a pushout diagram of spectra

K−∞(X, ∂X; R)U1∩U2

��

// K−∞(X, ∂X; R)U2

��

K−∞(X, ∂X; R)U1
// K−∞(X, ∂X; R)U1∪U2

Proof. The category B(X, ∂X; R)U is always the direct limit of the categories B(X, ∂X; R)C ,
where C runs over the compact subsets of U , since the set A(φ(B)) is always a closed, hence
compact, subset of ∂X. Given C ⊆ U1 ∪U2, we can find Ci so C ⊆ C1 ∩C2 with (C1, C2) an
excisive pair. From 10.1 we get a diagram of fibrations

K−∞(X, ∂X; R)C1∩C2

��

// K−∞(X, ∂X; R)C2

��

// K−∞(X, ∂X; R)C2−C1∩C2
C2

��

K−∞(X, ∂X; R)C1
// K−∞(X, ∂X; R)C1∪C2

// K−∞(X, ∂X; R)C1∪C2−C1
C1∪C2

The right hand vertical arrow is an equivalence of spectra by Lemma 10.6. This will give
the result by taking a limit over compact Ci ⊂ Ui, using the excisiveness assumption. �

Suppose {Uα}α∈A is any open covering of ∂X. Let F(A) denote the collection of nonempty
subsets of A. This is a partially ordered set under inclusion. We think of F(A) as a category
in the usual fashion, so there is a unique map from S → T if T ⊆ S. Let σ{α1, . . . , αs} =
Uα1 ∩ . . . ∩ Uαs ⊆ ∂X. Then S → K(X, ∂X; R)σ(S) and S → K−∞(X, ∂X, R)σ(S) define
functors T and T from F(A) to the category of spectra. Further, if we let E and E denote
the constant functors with values K(X, ∂X; R) and K−∞(X, ∂X; R) respectively, we have
natural transformations T → E and T → E , giving maps

hocolim
F(A)

T −→ hocolim
F(A)

E

and
hocolim
F(A)

T −→ hocolim
F(A)

E .

Since F(A) is a left filtering category , N.F(A) is clearly weakly contractible as in [16]. The
natural maps from homotopy colimits to colimits now give maps

hocolim
F(A)

E → K(X, ∂X; R)

and
hocolim
F(A)

E → K−∞(X, ∂X; R)

and hence by composition maps

hocolim
F(A)

T → K(X, ∂X; R)
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and

hocolim
F(A)

T → K−∞(X, ∂X; R).

We wish to prove that the map

hocolim
F(A)

T → K−∞(X, ∂X; R)

is a weak equivalence of spectra.

Theorem 10.8. Let A = {1, 2}, and suppose we have an open covering {U1, U2} of ∂X.
Then the map

hocolim
F(A)

T −→ K−∞(X, ∂X; R)

is an equivalence of spectra.

Proof. In this case, the homotopy colimit hocolimF(A) T is just the homotopy pushout of the
diagram

K−∞(X, ∂X; R)U1∩U2

��

// K−∞(X, ∂X; R)U2

K−∞(X, ∂X; R)U1

The result now follows from Theorem 10.7 and Proposition 10.5. �

Corollary 10.9. Let A be any finite set, and suppose we have an open covering {Uα}α∈A of
∂X. Then the natural map

hocolim
F(A)

T −→ K−∞(X, ∂X; R)

is an equivalence.

Proof. This follows in a straightforward fashion by repeated use of 10.8. �

Corollary 10.10. Suppose A is any set, and {Uα}α∈A is an open covering so that only
finitely many distinct sets occur among the Uα’s. Then the map

hocolim
F(A)

T −→ K−∞(X, ∂X; R)

is an equivalence of spectra.

Proof. Let A0 ⊆ A be any finite subset of A so that for any α ∈ A, there is an α0 ∈ A0 so
that Uα = Uα0 . Then we have a commutative diagram
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hocolim
F(A0)

T

��

))SSSSSSSSS

K−∞(X, ∂X; R)

hocolim
F(A)

T

55kkkkkkkkk

of spectra, and the diagonal arrow is an equivalence by 10.9. On the other hand, it follows
directly from 3.1 that the vertical arrow is an equivalence. This gives the result. �

Corollary 10.11. Let β ∈ RC(∂X). The natural map

hocolim
S∈F(∂X)

K−∞(X, ∂X; R)σ(S) −→ K−∞(X, ∂X; R)

is an equivalence of spectra.

This does not actually need the rigidity of the coverings, but we shall only apply it in that
case.

We now wish to construct a homotopy natural transformation from

K−∞(X, ∂X; R)→ Σȟ(∂X; R),

as functors on CE (see definition 9.2). To do this, we will need to compare various con-
structions on the category CE. A convenient framework for discussing these is given by the
following definition.

Definition 10.12. We shall use M to denote the category whose objects are quadruples
(X, ∂X, β, S), where (X, ∂X) is a compact Hausdorff pair, where β ∈ RC(∂X), and where S
is a finite subset of ∂X. A morphism from (X1, ∂X1, β1, S1) to (X2, ∂X2, β2, S2) is determined
by a morphism f : (X1, ∂X1) −→ (X2, ∂X2) in CE so that β1 refines RC(f |∂X1)(β2), and so
that f(S1) ⊆ S2. Any functor F : M −→ spectra determines a functor F̌ : CE −→ spectra
on objects via the formula

F̌ (X, ∂X) = holim
β∈RC(∂X)

hocolim
S∈F(∂X)

F (X, ∂X, β, S)

and on morphisms via evident pullback and pushforward maps of homotopy limits and
colimits, respectively. Natural transformations of functors on M determine natural trans-
formations of functors on CE, and weak equivalences determine weak equivalences.
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Let E ,T ,C,D, and D0 be defined by the following formulae.

E(X, ∂X, β, S) = K−∞(X, ∂X; R)

T (X, ∂X, β, S) = K−∞(X, ∂X; R)σβ(S)

C(X, ∂X, β, S) =

{
K−∞(R) if σβ(S) = ∅
∗ if σβ(S) 6= ∅

D(X, ∂X, β, S) =

{
∗ if σβ(S) = ∅
K−∞(R) if σβ(S) 6= ∅

D0(X, ∂X, β, S) = K−∞(R)

The effect on morphisms is defined in the evident way.

Proposition 10.13. The inclusions of spectra

K−∞(X, ∂X; R)σβ(S) ⊆ K−∞(X, ∂X; R)

induce an equivalence of functors Ť → Ě, and Ě is weakly equivalent to the functor

(X, ∂X)→ K−∞(X, ∂X; R)

on CE.

Proof. Follows directly from 10.11. �

Proposition 10.14. Ď is naturally equivalent to the functor

(X, ∂X)→ ȟ(∂X+, K−∞(R))

on CE. Similarly, Ď0 is weakly equivalent to the constant functor with value K−∞(R).

Proof. If σβ(S) = ∅ then the value of D(X, ∂X, β, T ) is ∗ on any T to the left of S, hence
we do not change the homotopy colimit by restricting to the subcategory of F(∂X) with
σβ(S) 6= ∅. Now use the standard fact that for a constant spectrum valued functor Φ with
value S on a category C, hocolimC Φ ∼= N. (C)+ ∧ S. In our first case, S = K−∞(R) and C
is the full subcategory of F(∂X) consisting of S so that σβ(S) 6= ∅, hence N. C is precisely
the nerve of the covering β. In the second case, C is the whole category F(∂X). �

Corollary 10.15. Č is naturally weakly equivalent to Σȟ(∂X, K−∞(R)).

Proof. We have a cofibration sequence of spectrum valued functors

D −→ D0 −→ C
onM. This gives a cofibration sequence

Ď −→ Ď0 −→ Č
on CE, which is the required result. �
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Finally, we define a natural transformation π : T −→ C by letting

π(X, ∂X, β, S) : K−∞(X, ∂X; R)σβ(S) −→ K−∞(R)

be induced by the forgetful functor when σβ(S) = ∅, and letting

π(X, ∂X, β, S) : K−∞(X, ∂X; R)σβ(S) −→ ∗

be the constant map when σβ(S) 6= ∅. (Note that for any object (F, B, φ) ∈ B(X, ∂X; R)∅,
F is finitely generated. Indeed, the forgetful functor which takes (F, B, φ) to F induces an
equivalence of spectra. )

Theorem 10.16. The diagram of functors

Ě ←− Ť −→ Č ←− Σȟ(−, K−∞(R))

exhibits a homotopy natural transformation from the functor

(X, ∂X)→ K−∞(X, ∂X; R)

to the functor
(X, ∂X)→ Σȟ(∂X, K−∞(R)),

which we also refer to as π. The homotopy natural transformation π is a weak equivalence
for pairs of the form (X, ∂X), of compact metric spaces.

Proof. We need to show that π induces an isomorphism on homotopy groups for (X, ∂X)
a compact metrizable pair. It was shown in [5, Corollary 1.24] that K−∞(X, ∂X; R) only
depends on ∂X when X is metrizable, and satisfies the Steenrod axioms [5, Theorem 1.36].
Since we have shown 10.11 and 5.1 that Σȟ(∂X; K−∞(R)) satisfies the Steenrod axioms, and
we clearly have an equivalence when ∂X = ∅, the result follows from [14]. �

11. Variant Čech constructions

We occasionally need to consider Čech constructions where we do not allow coverings by
all open sets. Given a family of open coverings F of a topological space X which is closed
under intersections in the sense that if {Uα} and {Vβ} belong to F then {Uα ∩Vβ} does also
belong to F . We can then consider the subcategory of the category of regular coverings of X
consisting of regular coverings with image belonging to F . This will be a partially ordered
subset RCF(X) of the partially ordered set of rigid coverings. We shall define ȟ(X,F ; T )
by taking the holim over RCF(X) rather than the full category of regular coverings. The
functorial properties of ȟ(X,F ; T ) are complicated to state, but if we have a group acting on
X and F is invariant under the group action, we do get an induced action on ȟ(X,F ; T ). In
case X is a bornological space with bornology B compactified to X by adding ∂X we define
ȟ(∂X,B; T ) by using the family of finite coverings by bornologically saturated open subsets
of ∂X. The excision results above generalize to produce a homotopy natural transformation

K−∞(X,B)→ ȟ(∂X+,B; K−∞).
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We do not state the functorial properties of this construction but once again we do get
induced actions if the bornology is invariant under a group action.

Remark 11.1. Throughout the paper we have considered coverings by open sets. Many of
the results will hold for more general kinds of coverings. The key point in constructing a
homotopy natural transformation from a controlled theory to a Čech theory is excision, so as
long as any pair of intersections of the sets in the covering is excisive we do get a homotopy
natural transformation of spectra as above.

12. Splitting assembly maps.

The purpose of this section is to show the main theorem and variations. First we remove
the metrizability condition of [5]. We do not know whether this adds any groups to the list
of groups for which assembly maps split, but it is the easiest example to demonstrate our
techniques. The following is a slightly more general statement than Theorem A

Theorem 12.1. Assume Γ is a group with a finite BΓ and that EΓ has an equivariant
compact Hausdorff compactification EΓ such that the Čech homology is trivial when using
coefficients in the relevant spectrum K−∞(R) or L−∞(R) and such that the action is small
at infinity. Then

a) If R is any ring then the assembly map

BΓ+ ∧K−∞(R)→ K−∞(RΓ)

is equivalent to an inclusion of a direct summand of spectra.
b) If R is a ring with involution such that K−i(R) = 0 for i sufficiently large then the

assembly map

BΓ+ ∧ L−∞(R)→ L−∞(RΓ)

is equivalent to an inclusion of a direct summand of spectra.

Proof. We shall continue to discuss only the algebraic K-theory case, the other case being
obvious modifications of these arguments. The reason the methods of [5] do not cover
this case is that when (EΓ, ∂EΓ) is not metrizable, we do not know how to compute the
continuously controlled K-theory of (EΓ, ∂EΓ). As far as Čech homology is concerned there
are no such restrictions. Consider the following bornologies on EΓ× (0, 1)

1) The continuously controlled bornology of (EΓ× (0, 1], EΓ× 1)
2) The pullback of the continuously controlled bornology on ([0, 1], 0 ∪ 1) via the pro-

jection map EΓ× (0, 1)→ (0, 1).
3) The pullback of the continuously controlled bornology on (EΓ, ∂EΓ) via the projec-

tion map EΓ× (0, 1)→ EΓ.
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We shall denote the intersection of all three bornologies by B(CEΓ). We denote the inter-
section of the last two mentioned bornologies by B(ΣEΓ). Finally we have the continuously
controlled bornology B(C(EΓ+), EΓ+). Consider

B(C(EΓ+), EΓ+)
a←− B(CEΓ)

b−→ B(ΣEΓ).

Without repeating the arguments of [5] it may help the understanding to think of these
bornologies in terms of three different compactifications of EΓ× (0, 1). The first compactifi-
cation is CEΓ, and the bornology B(CEΓ) expresses that we have continuous control at the
bottom of the cone and at the cone point, and along ∂EΓ × (0, 1) we only require control
in the ∂EΓ-direction. The effect is that if B is in this bornology and ((e, s), (f, t)) ∈ B,
then if s is close to 0, t has to be close to s, if e is close to a boundary point, then f has
to be close to e, and if t is close to 1, then e has to be close to f and s must be close to
t. The second compactification is induced by the first by collapsing EΓ to a point, so it
is ΣEΓ. This bornology ensures that the ends stay apart, we still have no restrictions in
the suspension coordinate. It is easy to see that this bornology is a deloop of the contin-
uously controlled bornology B((EΓ), ∂EΓ) in the sense that it is a deloop after applying
K−∞. Finally the third bornology, the continuously controlled bornology B(C(EΓ+), EΓ+)
is obtained by collapsing C(∂EΓ). It was proved in [5, Corollary 2.10] that

ΩK−∞(EΓ× (0, 1),B(CEΓ))Γ ' BΓ+ ∧K−∞(R)

as spectra and [5, Lemma 2.3]

ΩK−∞(EΓ× (0, 1),B(ΣEΓ))Γ ' K−∞(RΓ)

and the map induced by b is the assembly map [5, Section 3]. One element in the proof was
to show that

B(EΓ× (0, 1),B(CEΓ)Γ))→ B(EΓ× (0, 1),B(C(EΓ+), EΓ+)Γ))

is an equivalence of categories. This is the point where it is used that the action is small at
infinity. The fixed set consist of the equivariant maps, and the smallness then ensures that
the control conditions are automatically satisfied along ∂EΓ× [0, 1] .

Lemma 12.2. The pullback maps

ȟ(Σ∂EΓ, K−∞)→ ȟ(Σ∂EΓ,B(ΣEΓ); K−∞)

and
ȟ(C(∂EΓ) ∪ EΓ; K−∞)→ ȟ(C(∂EΓ) ∪ EΓ,B(CEΓ); K−∞)

are homotopy equivalences of spectra

Proof. The bornologies B(CEΓ) and B(ΣEΓ) are not small at infinity when we compactify
EΓ× (0, 1) by C∂EΓ∪EΓ×1 and Σ(∂EΓ) respectively. An open subset U is bornologically
saturated if and only if (x, t) ∈ ∂EΓ×(0, 1) belongs to U implies x×(0, 1) ⊂ U . The smallest
bornologically saturated open set containing the cone point will thus be C∂EΓ − EΓ. The
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smallest bornologically saturated open set containing a suspension point is the whole space
minus the other suspension point. Except for the trivial covering where one of the open sets
is the whole space we thus get that the nerve of a bornologically saturated open covering of
Σ∂EΓ is precisely the suspension of the nerve of a covering ∂EΓ �

Consider the diagram where we denote EΓ × (0, 1) by X and omit the ring R from the
notation.

K−∞(X,B(C̃EΓ+, EΓ+))

c

��

K−∞(X,B(CEΓ))

��

b //aoo K−∞(X,B(ΣEΓ))

��

ȟ(EΓ+; K−∞) ȟ(C∂EΓ ∪ EΓ,B(CEΓ)); K−∞)
koo l // ȟ(Σ∂EΓ,BΣEΓ; K−∞)

ȟ(C∂EΓ ∪ EΓ; K−∞)

d

kkVVVVVVVVVVVVVVVVVVV
e

OO

g // ȟ(Σ∂EΓ; K−∞)

f

OO

All the maps are equivariant maps. The map bΓ on fixed sets is the assembly map , and the
map aΓ is a homotopy equivalence as discussed above. By definition K−∞(X,B(C̃EΓ+, EΓ+))
is the same as K−∞(C̃EΓ+, EΓ+), and we proved in [5, Theorem 2.11] that

K−∞(C̃EΓ+, EΓ+)Γ → K−∞(C̃EΓ+, EΓ+)hΓ,

the map from the fixed set to the homotopy fixed set is a homotopy equivalence. Since
equivariant maps that are homotopy equivalences induce homotopy equivalences on homo-
topy fixed sets we will be finished once we prove that c, k and l are homotopy equivalences.
The map c is a homotopy equivalence since EΓ+ is metrizable by Theorem 10.16. We have
argued above that e and f are homotopy equivalences. The maps d and g are induced by col-
lapsing a contractible subset so by excision and homotopy invariance they induce homotopy
equivalence and we are done. �

Finally we state a more useful theorem where the proof is a slight variation of the proof
above.

Theorem 12.3. Assume Γ is a group with a finite BΓ and that EΓ has an equivariant
compact Hausdorff compactification which is Čech contractible and such that there exists a
family of coverings F of ∂EΓ by sets which are saturated with respect to the bornology BΓ

on EΓ (e. g. boundedly saturated) which is invariant under the group action and satisfies
ȟ(∂EΓ; T ) → ȟ(∂EΓ,F ; T ) is a homotopy equivalence, where T is the relevant spectrum
K−∞(R) or L−∞(R) . Then

a) If R is any ring then the assembly map

BΓ+ ∧K−∞(R)→ K−∞(RΓ)

is equivalent to an inclusion of a direct summand of spectra.
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b) If R is a ring with involution such that K−i(R) = 0 for i sufficiently large then the
assembly map

BΓ+ ∧ L−∞(R)→ L−∞(RΓ)

is equivalent to an inclusion of a direct summand of spectra.

Proof. The proof is a slight variation of the proof above using the bornology on EΓ induced by
the given collection of subsets of ∂EΓ occurring in the family F instead of the continuously
controlled bornology in point (2) above. Our condition ensure that equivariant maps are
automatically controlled with respect to this bornology even though the action may not be
small at infinity. �

Remark 12.4. The theorem above may be generalized in various ways. We do not necessar-
ily have to work with open sets. As long as the coverings satisfy that any pair of intersections
is an excisive pair, these kind of methods can be used. We shall not try to formulate the
most general theorem that can be formulated along these lines.
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