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1. Introduction

The theorem of Novikov [21], that the rational Pontrjagin classes of a smooth manifold
are invariant under homeomorphisms, was a landmark in the development of the topology of
manifolds. The geometric techniques introduced by Novikov were built upon by Kirby and
Siebenmann [19] in their study of topological manifolds. At the same time the problem was
posed by Singer [30] of developing an analytical proof of Novikov’s original theorem.

The first such analytic proof was given by Sullivan and Teleman [33, 32, 34], building
on deep geometric results of Sullivan [31] which showed the existence and uniqueness of
Lipschitz structures on high-dimensional manifolds. (It is now known that this result is false
in dimension 4 — see [10].) However, the geometric techniques needed to prove Sullivan’s
theorem are at least as powerful as those in Novikov’s original proof1. For this reason,
the Sullivan-Teleman argument (and the variants of it that have recently appeared) do not
achieve the objective of replacing the geometry in Novikov’s proof by analysis.

In an unpublished but widely circulated preprint [35], one of us (S.W.) suggested that
this objective might be achieved by the employment of techniques from coarse geometry.
A key part in the proposed proof is played by a certain homotopy invariance property
of the ‘coarse analytic signature’ of a complete Riemannian manifold. We will explain in
section 2 below what the coarse analytic signature is, in what sense it is conjectured to
be homotopy invariant, and how Novikov’s theorem should follow from the conjectured
homotopy invariance. In section 3 we will prove the homotopy invariance modulo 2-torsion
in the case that the control space is a cone on a finite polyhedron. This suffices for the proof
of the Novikov theorem. In section 4 we will show how the methods of this paper can be
improved to obtain homotopy invariance ‘on the nose’.

Although the coarse signature is an index in a C∗-algebra, our proof is not a direct gen-
eralization of the standard proof of the homotopy invariance of signatures over C∗-algebras,
as presented for example in [17]. (The assertion to the contrary in [35] is, unfortunately, not
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1See the discussion on page 666 of [8].
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correct as it stands.) The problem is this: in the absence of any underlying uniformity such
as might be provided by a group action, it becomes impossible to prove that the homotopies
connecting two different signatures are represented by bounded operators on some Hilbert
space. We circumvent this problem by comparing two theories, a ‘bounded operator’ theory
and an ‘unbounded’ theory, by means of a Mayer-Vietoris argument. Homotopy invariance
can be proved in the ‘unbounded’ theory, but since the two theories are isomorphic, it must
hold in the ‘bounded’ theory as well. A somewhat similar argument was used by the first
author in a different context [23].

Our ‘unbounded’ theory is just boundedly2 controlled L-theory as defined in [26, 25], and
to keep this paper to a reasonable length we will freely appeal to the results of this theory.
We do not claim, therefore, that this paper gives a ‘purely analytic’ proof of Novikov’s
theorem; indeed, if one is prepared, as we are, to appeal to the homological properties of
controlled L-theory, then one can prove Novikov’s theorem quite directly and independently
of any analysis (see [25], for example). Our point is rather the following. Conjecture 2.2
is a natural analogue of theorems about the homotopy invariance of appropriate kinds of
symmetric signatures in other contexts. But those theorems have simple general proofs,
whereas in our case the proof is indirect and depends strongly on the hypothesis that the
control space possesses appropriate geometric properties, of the kind which can also be used
to show the injectivity of the assembly map (compare [5]). Moreover, although 2.2 is a
conjecture about C∗-algebras, it appears to be necessary to leave the world of C∗-algebras in
order to prove it. It may be that conjecture 2.2 is in fact false for more general control spaces
X, and, if this were so, then it would suggest the existence of some new kind of obstruction
to making geometrically bounded problems analytically bounded also.

It is possible that the special case of conjecture 2.2 that is proved in this paper might be
approachable by other, more direct, analytic methods, such as a modification of the almost
flat bundle theory of [7, 16]; but it seems that similar questions about gaining appropriate
analytic control would have to be addressed.

This paper provides a partial answer to a problem that was raised, in one form or another,
by several of the participants at the Oberwolfach conference; see (in the problem session)
Ferry-Weinberger, problem 1, Rosenberg, problem 2, and Roe, problems 1 and 2.

We are grateful to Nigel Higson and Jonathan Rosenberg for helpful discussions and
comments.

2. The coarse signature

Let X be a proper metric space. We refer to [28, 15, 14] for the construction of the
C∗-algebra C∗(X) of locally compact finite propagation operators and of the assembly map
µ : K∗(X) → K∗(C

∗(X)). We recall that the groups K∗(C
∗(X)) are functorial under coarse

2Notice that there are two senses in which the word ‘bounded’ is used in this paper; we may distinguish
them as geometrically bounded and analytically bounded.
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maps, that is, proper maps f such that the distance between f(x) and f(x′) is bounded by
a function of the distance between x and x′. Such maps need not be continuous; but on the
subcategory of continuous coarse maps the groups K∗(X) are functorial also, and assembly
becomes a natural transformation.

If X is a proper metric space, a (smooth) manifold over X is simply a manifold3 M
equipped with a control map c : M → X; c must be proper but it need not be continuous.
It is elementary that any such manifold M can be equipped with a complete Riemannian
metric such that the control map c becomes a coarse map, and that any two such Riemannian
metrics can be connected by a path of such metrics.

2.1. Definition. Let (M, c) be a manifold over X. The coarse analytic signature of M over
X is defined as follows: equip M with a Riemannian metric such that c becomes a coarse
map, let DM denote the signature operator on M . According to [28] this operator has a
‘coarse index’ Ind(DM) ∈ K∗(C

∗(M)), which is in fact the image of the K-homology4 class
of D under the assembly map µ. We define

SignX(M) = c∗(IndDM) ∈ K∗(C
∗(X)).

Remark. For clarity we should make explicit what is meant by the ‘signature operator’,
especially on an odd-dimensional manifold. We use the language of Dirac operators on
Clifford bundles (see [27], for example). Let C be the bundle of Clifford algebras associated
to the tangent bundle TM , and let ω ∈ C be the volume form. Then ω2 = ±1, the sign
depending on the dimension of M modulo 4, and so there is a decomposition of C into two
eigenspaces C+⊕C− of ω. If the dimension of M is even, ω anticommutes with the Clifford
action of TM on C, and so C becomes a graded Clifford bundle, and we define the signature
operator to be the associated graded Dirac operator. If the dimension of M is odd, then ω
commutes with the action of TM , and so C+ and C− individually are Clifford bundles; we
define the signature operator in this case to be the (ungraded) Dirac operator of C+.

It is implicit in the definition of the coarse analytic signature that c∗(Ind DM) is inde-
pendent of the choice of Riemannian metric on M . This may be proved by the following
development of the theory of [14]. Recall that in that paper the assembly map µ was defined
to be the connecting map in the six-term K-theory exact sequence arising from an extension
of C∗-algebras

0 → C∗(X) → D∗(X) → D∗(X)/C∗(X) → 0,

where D∗(X) is the C∗-algebra of pseudolocal finite propagation operators. Using Pashcke’s
duality theory [22], it was shown that theK-theory of the quotient algebraD∗(X)/C∗(X) was
isomorphic to the (locally finite) K-homology of X. Now let us generalize the whole set-up

3All manifolds will be assumed to be oriented.
4In this paper, we define the K-homology of a locally compact metrizable space M to be the Kasparov

group [18] KK(C0(M), C); this is the same as the locally finite Steenrod K-homology of X as defined in
algebraic topology.
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to the case of a manifold M over X, which we write
(

M
↓
X

)
. We define algebras C∗

(
M
↓
X

)
and D∗

(
M
↓
X

)
to be the (completions of) the algebras of locally compact and pseudolocal

operators, respectively, on M , that have finite propagation when measured in X. Then

it is not hard to see on the one hand that the K-theory of C∗
(

M
↓
X

)
maps canonically to

the K-theory of C∗(X) (in fact it is equal to it if the range of the control map is coarsely

dense), and on the other hand that the K-theory of D∗
(

M
↓
X

) /
C∗

(
M
↓
X

)
is canonically

isomorphic to the (locally finite) K-homology of M . Thus we obtain an assembly map
µ : K∗(M) → K∗(C

∗(X)) which is independent of any choice of Riemannian metric on M ;
and naturality of the construction shows that µ(DM) coincides with the coarse signature as
defined above for any choice of metric.

The usual notions of algebraic topology may be formulated in the category of manifolds
over X. In particular we have the concepts of boundedly controlled map, boundedly controlled
homotopy, and boundedly controlled homotopy equivalence. A map

M1

c1 !!B
BB

BB
BB

B

ϕ // M2

c2}}||
||

||
||

X

is thus boundedly controlled if ϕ is continuous, and c1 is at most a uniformly bounded
distance from c2 · ϕ. Similarly a boundedly controlled homotopy is a boundedly controlled
map

M1 × I

c1·p ##HHHHHHHHH
H // M2

c2}}||
||

||
||

X

where p is projection on the first factor. Notice this means that c2(H(m× I)) has uniformly
bounded diameter. The notion of a boundedly controlled homotopy equivalence now follows
in an obvious manner.

The following is the homotopy invariance property that we wish to use:

2.2. Conjecture. If two smooth manifolds M and M ′ over X are homotopy equivalent
by a boundedly controlled orientation-preserving homotopy equivalence, then their coarse
analytic signatures agree:

SignX(M) = SignX(M ′) ∈ K∗(C
∗(X)).

We make a few comments on the difficulty in proving this along the lines of the analytic
proof in [17]. One wants to construct chain homotopies which intertwine the L2-de Rham
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complexes ofM andM ′ (or some simplicial L2-complexes constructed from an approximation
procedure). Because we are working in the world of C∗-algebras, everything has to be a
bounded operator on appropriate L2-spaces. This means that one needs suitable estimates
on the derivatives of the maps and homotopies involved, and such estimates do not seem
automatically to be available unless one works in a ‘bounded geometry’ context. This would
be appropriate for a proof of the bi-Lipschitz homeomorphism invariance of the Pontrjagin
classes, but not, it seems, of the topological invariance.

We will now show that conjecture 2.2 implies Novikov’s theorem. In fact, we will show a
little more, namely that the conjecture implies that the K-homology class of the signature
operator of a smooth manifold is invariant under homeomorphism. This is also the conclusion
of Sullivan and Teleman’s proof [32, 33] which uses Lipschitz approximation. To simplify
the later proofs a little, we work away from the prime 2.

2.3. Proposition. Suppose that Conjecture 2.2 is true modulo 2-torsion for control spaces
X which are open cones on finite polyhedra. Then, if N and N ′ are homeomorphic compact
smooth manifolds, the K-homology signatures of N and N ′ are equal in K∗(N)⊗ Z[1

2
].

2.4. Corollary. In the situation above, the rational Pontrjagin classes of M and M ′ agree.

Proof. By the Atiyah-Singer index theorem [2], the homology Chern character of the signa-
ture class is the Poincaré dual of the L-class (which is the same as the Hirzebruch L-class
except for some powers of 2); the rational Pontrjagin classes can be recovered from this. �

Proof. (of the Proposition): We begin by considering manifolds M and M ′ which are
smoothly N × R and N ′ × R respectively. Let gij be a Riemannian metric on N . We equip
M with a warped product metric of the form

dt2 + ϕ(t)2gijdx
idxj,

where ϕ(t) is a smooth function with ϕ(t) = 1 for t < −1 and ϕ(t) = t for t > 1. The exact
form of the metric is not especially important, provided that it has one cylinder-like and
one cone-like end, so that N+ (that is, N with a disjoint point added) is a natural Higson
corona of M . Let X = M considered as a metric space. Then M is obviously boundedly
controlled over X (via the identity map!). We use the homeomorphism between N and N ′

to regard M ′ as boundedly controlled over X as well. A simple smoothing argument shows
that M and M ′ are boundedly controlledly (smoothly) homotopy equivalent over X; thus
by the conjecture their coarse analytic signatures agree.

We now identify the coarse analytic signature of M with the ordinary K-homology signa-
ture of N . To do this recall from [28, 14] that there is a natural map defined by Paschke
duality

b : K∗(C
∗(M)) → K̃∗−1(N

+) = K∗−1(N),

with the property that b(IndD), for any Dirac-type operator D on M , is equal to ∂[D], where
∂ : K∗(M) → K∗−1(N) is the boundary map in K-homology. (In fact, b is an isomorphism
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for cone-like spaces such as M , but this fact will not be needed here.) On the other hand, it
is a standard result in K-homology that ‘the boundary of Dirac is Dirac’ [13, 36]. It is not
true that ‘the boundary of signature is signature’, but this is true up to powers of 2. In fact
∂[DM ] = k[DN ] , where [DN ] is the class of the signature operator of N and k is 2 if M is
even-dimensional, 1 if M is odd-dimensional. We will discuss the factor k in section 4.

By a similar argument we may identify the coarse analytic signature of M ′ with k times
the ordinary K-homology signature of N ′, pulled back to K∗(N) via the homeomorphism
N ′ → N . The desired result therefore follows from the equality of these two signatures. �

Remark. With a little more effort, this argument might be made to work with the hypothesis
that N and N ′ are ε-controlled homotopy equivalent for all ε, rather than homeomorphic.
Of course one knows from the α-approximation theorem [6] that N and N ′ are in fact
homeomorphic under this hypothesis, but the point is that one can avoid appealing to this
geometric result.

In the next section we will need to know that the coarse analytic signature is bordism
invariant. In other words, we will require

2.5. Proposition. Suppose that N is an X-bounded manifold which is the boundary of an X-
bounded manifold-with-boundary M . Then SignX(N) is a 2-torsion element in K∗(C

∗(X)).

Proof. Let M◦ denote the interior of M . A portion of the exact sequence of K-homology is

K∗+1(M
◦) → K∗(N) → K∗(M).

As remarked above, there is an integer k equal to 1 or 2 such that ∂[DM◦ ] = k[DN ], and it
follows from exactness that the image of [DN ] in K∗(M) is a k-torsion element. But from
the naturality of the assembly map there is a commutative diagram

K∗(N)

&&MMMMMMMMMM
// K∗(M)

xxqqqqqqqqqqq

K∗(C
∗(X))

in which both vertical arrows are assembly maps. Therefore the image of [DN ] under the
assembly map, that is the coarse analytic signature, is k-torsion. �

3. Proof of homotopy invariance modulo 2-torsion

We begin by recalling the definition of the Lh-groups of an additive category with
involution[26]. Given an additive category U an involution on U is a contravariant functor
∗ : U → U, sending U to U∗, and a natural equivalence ∗∗ ∼= 1. One of the defining properties
of an additive category is that the Hom-sets are abelian groups, that is Z-modules. All the
categories that we will consider will have the property that the Hom-sets are in fact modules
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over the ring Z[i, 1
2
], and we will make this assumption from now on. This yields two simpli-

fications in L-theory: the existence of i =
√
−1 makes L-theory 2-periodic, since dimensions

n and n+2 get identified through scaling by i, and the existence of 1
2

removes the difference
between quadratic and symmetric L-theory. We therefore get the following description of
L-theory. In degree 0 an element is given as an isomorphism ϕ : A→ A∗ satisfying ϕ = ϕ∗.
Elements of the form B⊕B∗ ∼= B∗⊕B, with the obvious isomorphism, are considered trivial,
and Lh

0 is the Grothendieck construction determining whether a selfadjoint isomorphism is
stably conjugate to a trivial isomorphism. In the definition of Lh

2 the condition ϕ = ϕ∗ is
replaced by ϕ = −ϕ∗ but in the presence of i these groups become scale equivalent. In odd
degrees the groups are given as automorphisms of trivial forms.

Remark. Suppose the additive category U is the category of finitely generated projective
modules over a C∗-algebra A and the involution is given by the identity on objects and the
∗-operation on morphisms. One defines the projective L-groups Lp

∗(A) to equal Lh
∗(U) for this

category U. In this situation, the availability of the Spectral Theorem for C∗-algebras allows
one to separate out the positive and negative eigenspaces of a non-degenerate quadratic form
and thus to assign a signature in K∗(A) (a formal difference of projections) to any element
of Lp

∗(A). This construction goes back to Gelfand and Mischenko [11], and a very careful
account may be found in Miller [20]; the exposition in Rosenberg [29] is couched in language
similar to ours, and also includes a proof that one obtains in this way a homomorphism
Lp
∗(A) → K∗(A), which becomes an isomorphism after inverting 2.

Remark. Notice that we are using projective modules in the above statement, so one calls
the corresponding L-group Lp(A) . In general Lp of an additive category with involution
is just Lh of the idempotent completion of the category. To simplify these issues we will
work modulo 2-torsion, so from now on when we write L(A) without upper index we shall
mean Lh(A)⊗ Z[1

2
], noting that by the Ranicki-Rothenberg exact sequences tensoring with

Z[1
2
] removes the dependency on the upper decoration. To retain the above mentioned

isomorphism we obviously have to tensor K-theory with Z[1
2
] as well.

We now recall the (geometrically) bounded additive categories defined in [24]. Let X be a
metric space, and R a ring with anti-involution. This turns the category of left R-modules
into an additive category with involution, since the usual dual of a left R-module is a right
R-module, but by means of the anti-involution this may be turned into a left R-module.

The reader should keep in mind the model case in which X is the infinite open cone O(K)
on a complex K ⊆ Sn ⊂ Rn+1 and R = C. The category CX(R) is defined as follows:

3.1. Definition. An object A of CX(R) is a collection of finitely generated based free right
R-modules Ax, one for each x ∈ X, such that for each ball C ⊂ X of finite radius, only
finitely many Ax, x ∈ C, are nonzero. A morphism ϕ : A→ B is a collection of morphisms
ϕx

y : Ax → By such that there exists k = k(ϕ) such that ϕx
y = 0 for d(x, y) > k.



8 ERIK KJÆR PEDERSEN, JOHN ROE, AND SHMUEL WEINBERGER

The composition of ϕ : A → B and ψ : B → C is given by (ψ ◦ ϕ)x
y =

∑
z∈X ψ

z
yϕ

x
z . Note

that (ψ ◦ ϕ) satisfies the local finiteness and boundedness conditions whenever ψ and ϕ do.

3.2. Definition. The dual of an object A of CX(R) is the object A∗ with (A∗)x = A∗
x =

HomR(Ax, R) for each x ∈ X. A∗
x is naturally a left R-module, which we convert to a right

R-module by means of the anti-involution. If ϕ : A→ B is a morphism, then ϕ∗ : B∗ → A∗

and (ϕ∗)x
y = h ◦ ϕy

x, where h : Bx → R and ϕy
x : Ay → Bx. ϕ∗ is bounded whenever ϕ is.

Again, ϕ∗ is naturally a left module homomorphism which induces a homomorphism of right
modules B∗ → A∗ via the anti-involution.

If we choose a countable set E ⊂ X such that for some k the union of k-balls centered
at points of E covers X, then it is easy to see that the categories CE(R) and CX(R) are
equivalent.

It is convenient to assume that such a choice has been made once and for all. Then we
may think of the objects of CX(C) as based complex vector spaces with basis a subset of
E×N satisfying certain finiteness conditions. Any based complex vector space has a natural
inner product, and therefore a norm, and we define a morphism in CX(C) to be analytically
bounded if it becomes a bounded operator when its domain and range are equipped with
these natural `2 norms.

3.3. Definition. The category Cb.o.
X (C) has the same objects as CX(C), but the morphisms

have to satisfy the further restriction that they define analytically bounded operators on
`2(E × N)

It is apparent that there is a close connection between the category Cb.o.
X (C) and the C∗-

algebra C∗(X). In fact, the way we have arranged things any object A in the category Cb.o.
X (C)

can be thought of as a projection in C∗(X) defined by the generating set for A and hence as a
projective C∗(X)-module, and an endomorphism of A respects the C∗(X)-module structure.
Since the involution on Cb.o.

X (C) is given by duality, it corresponds to the ∗-operation on
C∗(X). Hence we get a map

L∗(C
b.o
X (C)) → L∗(C

∗(X)) = K∗(C
∗(X)).

Similarly the forgetful functor Cb.o.
X (C) → CX(C) induces a map

L∗(C
b.o
X (C)) → L∗(CX(C)).

Notice that whenever we have a manifold
(

M
↓
X

)
bounded over a metric space X, we may

triangulate M in a bounded fashion so the cellular chain complex of M can be thought
of as a chain complex in CX(Z) and, more relevantly, the chain complex with complex
coefficients can be thought of as a chain complex in CX(C). Poincaré duality thus gives
rise to a self-dual map and hence an element σX [M ] ∈ L0(CX(C)), the bounded symmetric
signature of the manifold. The bounded symmetric signature is an invariant under bounded
homotopy equivalence, since a bounded homotopy equivalence gives rise to a chain homotopy
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equivalence in the category CX(C) and the L-groups by their definition are chain homotopy
invariant [26].

As mentioned above we get maps

K∗C
∗(X) L∗(C

b.o.
X (C))

αoo β // L∗(CX(C))

3.4. Theorem. In case X = O(K), the open cone on a finite complex, the map β is an
isomorphism. Moreover, SignO(K)M = αβ−1σO(K)[M ]

Proof. Let F be any of the functors

K 7→ L∗(C
b.o.
O(K)(C)), K 7→ L∗(CO(K)(C)).

Then F is a reduced generalized homology theory on the category of finite complexes. In
case F(K) = L∗(CO(K)(C)) this is proved by Ranicki [26]. In the case F(K) = L∗(C

b.o.
O(K)(C))

the proof needs the extensions to Ranicki’s results provided in [5] but goes along exactly the
same lines, noting that restricting the morphisms to the ones defining analytically bounded
operators does not prevent Eilenberg swindles5, and thus the basic Karoubi filtration tech-
nique goes through. Moreover, β is plainly a natural transformation of homology theories6,
and it is an isomorphism for K = ∅, so it is an isomorphism for all finite complexes. This
proves the first statement.

To prove the second statement note that if M has a bounded triangulation of bounded
geometry (meaning that for each r > 0 there is a number Nr such that the number of
simplices meeting c−1(B(x; r)), for any x ∈ X, is at most Nr), then the natural representative
of σO(K)[M ] is in fact an analytically bounded operator (since Poincaré duality is given by
sending a cell to its dual cell combined with appropriate subdivision maps). Moreover, by
following the line of proof given by Kaminker and Miller [17, 20], and using the de Rham
theorem in the bounded geometry category [9], one may show that this bounded operator
passes under α to the class of the signature operator in K∗(C

∗(O(K)) (compare [17], theorem
5.1). In case M is not of bounded geometry we need to notice that both σO(K)[M ] and
SignO(K)[M ] are O(K)-bordism invariants modulo 2-torsion, the latter by proposition 2.5,

and that any manifold
( M

↓
O(K)

)
is O(K)-bordant to a bounded geometry manifold. To see

this latter statement make M → O(K) transverse to a level t · K ⊂ O(K), and let V be
the inverse image of (≥ t) · K, W the inverse image of (≤ t) · K. We then get a bordism
from M to W ∪∂W ∂W × [0,∞) by M × I ∪V V × [0,∞) and the map p extends to a proper
map from the bordism to O(K) by sending (m, t) ∈M × I to p(m) and (v, s) ∈ V × [0,∞)
to (s + u) · k where u · k = p(v). This is easily seen to be a proper map, and we do get a
bordism over O(K) to a manifold of bounded geometry. �

5The key point is that the operator norm of an orthogonal direct sum is the supremum of the operator
norms of its constituents. See [15] for the details of an Eilenberg swindle in the analytic situation.

6We do not assert that α is a natural transformation of homology theories.
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Remark. In the above argument we needed to reduce the manifold M to bounded geometry,
and to do this we used the fact that it is always possible to split M over an open cone. If
one could similarly reduce a homotopy equivalence bounded over an open cone to a bounded
geometry homotopy equivalence, the proof of our theorem would be considerably simplified.
However, it appears that the proof of such a result would require a lengthy excursion into
bounded geometry surgery [3].

3.5. Corollary. In the situation above SignO(K)(M) is an invariant modulo 2-torsion under
boundedly controlled homotopy equivalence.

As has already been explained, this suffices for a proof of Novikov’s theorem.

4. Integral homotopy invariance

In the previous section we worked modulo 2-torsion, for simplicity. We will now justify
the title of this paper by showing that it is not in fact necessary to invert 2 in corollary 3.5.
In this section we will therefore, of course, suspend the convention made previously that all
L and K groups are implicitly tensored with Z[1

2
].

There are two points at which 2-torsion issues were neglected: the proof of the bordism
invariance of the signature in section 2, and the identification of the various decorations on
L-theory in section 3. We will address these in turn.

Bordism invariance. We begin by discussing in somewhat greater detail the reason for
the appearance of the factor k in the formula for the boundary of the signature operator.
The informal statement that ‘the K-homology boundary of Dirac is Dirac’ can be expressed
more precisely as follows:

4.1. Proposition. Let M be a manifold with boundary N , C a bundle of Clifford modules
on M , DC the corresponding Dirac operator. If M is even-dimensional, we assume that C
is graded by a grading operator ε. Let n be a unit normal vector field to N . Define a bundle
of Clifford modules ∂C on N as follows:

(1) If M is odd-dimensional, ∂C = C, graded by Clifford multiplication by in;
(2) If M is even-dimensional, ∂C is the +1 eigenspace of the involution inε on C (which

commutes with the Clifford action of TN).

Then the boundary, in K-homology, of the class of the Dirac operator [DC ] is the class of
the Dirac operator of ∂C.

While this particular statement does not appear to be in the literature, related results are
proved in [12, 13, 36]. Now let us take C to be the bundle of Clifford modules that defines
the signature operator on M (see the remark after definition 2.1). Then a simple calculation
shows that if M is odd-dimensional, ∂C defines the signature operator on N , but that if M
is even-dimensional, ∂C defines the direct sum of two copies of the signature operator on N .
Hence the factor k in 2.3 and 2.5.
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To get rid of the factor 2 in the even-dimensional case we employ an idea of Atiyah [1].
Suppose that the normal vector field n extends to a unit vector field (also called n) on
M , and define an operator Rn on C by right Clifford multiplication by in. Then Rn is an
involution and its ±1 eigenspaces are bundles of (left) Clifford modules. Let DC+ be the
Dirac operator associated to the +1 eigenbundle of Rn. Using the result above, we find that
∂[DC+ ] is exactly the signature operator of N . Thus, the same method of proof as that of
2.5 gives us

4.2. Proposition. Suppose that N is an X-bounded manifold which is the boundary of an
X-bounded manifold-with-boundary M . In addition, if M is even-dimensional, suppose that
the unit normal vector field to N extends to a unit vector field on M . Then SignX(N) = 0
in K∗(C

∗(X)).

Now we remark that there is no obstruction to extending the field n over any non-compact
connected component ofM . Moreover, provided that the control spaceX is non-compact and
coarsely geodesic, there is no loss of generality in assuming that every connected component
of M is non-compact; for, in any compact component, we may punch out a disc, replace
it with an infinite cylinder, and control this cylinder over a ray in X. Thus we conclude
that over any such space X, and in particular over an open cone on a finite polyhedron, the
coarse signature is bordism invariant on the nose.

Decorations. With the issue of bordism invariance settled, the integral boundedly con-
trolled homotopy invariance of the coarse analytic signature will follow (as in section 3)
from:

4.3. Theorem. The functors K 7→ Lh
∗(C

b.o.
O(K)(C)) and K 7→ Lh

∗(CO(K)(C)) are isomorphic

homology theories (under the forgetful map).

Proof. All we need to do is to prove that both functors are homology theories, since they
agree on ∅. Since C is a field we have K−i(C) = 0 for i > 0 [4, Chap. XII]. Hence

Lh
∗(CO(K)(C)) = L−∞∗ (CO(K)(C))

is a homology theory. To prove Lh
∗(C

b.o.
O(K)(C)) is also a homology theory we use the excision

result [5, Theorem 4.1]. Combining this with [5, Lemma 4.17] we only need to see that
idempotent completing any of the categories Cb.o.

O(K)(C) does not change the value of Lh i. e.
that K0 of the idempotent completed categories is trivial. This is the object of the next
proposition. �

4.4. Proposition. With terminology as above we have

K0(C
b.o.
O(K)(C)∧) = 0

for K a non-empty finite complex.
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Proof. The proof follows the methods in [23] and [24] quite closely, and the reader is supposed
to be familiar with these papers. Let L be a finite complex, K = L ∪α D

n. Consider the
category U = Cb.o.

O(K)(C) and the full subcategory A = Cb.o.
O(K)(C)O(L) with objects having

support in a bounded neighborhood of O(L). A is isomorphic to Cb.o.
O(L)(C), and U is A-filtered

in the sense of Karoubi, so following [24], we get an exact sequence

. . . K1(U) → K1(U/A) → K0(A
∧) → K0(U

∧) →

but U/A is isomorphic to

Cb.o.
O(Dn)(C)/Cb.o.

O(Sn−1)(C)

which has the same K-theory as Cb.o.
Rn (C). So by induction over the cells in K, it suffices to

prove that

K1(C
b.o.
Rn (C)) = 0 n > 1

and

K0(C
b.o.
Rn−1(C)∧) = 0 n > 1

but following the arguments in [23] it is easy to see these groups are equal. Now consider
the ring C[t1, t

−1
1 , . . . , tk, t

−1
k ]. The category

Cb.o.
Rn (C[t1, t

−1
1 , . . . , tk, t

−1
k ])

with geometrically bounded morphisms, inducing analytically bounded operators on the
Hilbert space where the ti powers are also used as basis has a subcategory

Cb.o.,t1,...,tk
Rn (C[t1, t

−1
1 , . . . , tk, t

−1
k ])

where the morphisms are required to use uniformly bounded powers of the ti’s. Turning
ti-powers into a grading produces a functor

Cb.o.,t1,...,tk
Rn (C[t1, t

−1
1 , . . . , tk, t

−1
k ]) →

C
b.o.,t1,...,ti−1,ti+1,...,tk
Rn+1 (C[t1, t

−1
1 , . . . , ti−1, ti+1, . . . , tk, t

−1
k ]).

We claim this is a split epimorphism on K1. Consider the automorphism βti which is
multiplication by ti on the upper half of Rn+1 and the identity on the lower half. Here
upper and lower refers to the coordinate introduced when the ti-powers were turned into a
grading. The splitting is given by sending an automorphism α to the commutator [α, βti ] and
restricting to a band. Since both the bounded operator and the bounded t-power conditions
are responsive to the Eilenberg swindle arguments used in [23] the argument carries over to
this present situation. From this it follows there is a monomorphism

K1(C
b.o.
Rn (C)) → K1(C

b.o.,t1,...,tn
∗ (C[t1, t

−1
1 , . . . , tn, t

−1
n ])).

But the bounded t-power condition is vacuous, when the metric space is a point, and the
uniformity given by the Zn-action renders the bounded operator condition vacuous too. Since
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the inclusion maps given by the commutator with βti commute up to sign we find that the
image of K1(C

b.o.
Rn (C)) is contained in

K−i(C) ⊂ K1(C[t1, t
−1
1 , . . . , tn, t

−1
n ])

which is 0 since C is a field and we are done. �
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