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0. Introduction

There are a number of geometrically defined transfer homomorphisms relating finiteness
obstructions, Whitehead torsions, concordances, surgery obstructions etc. in a bundle. It
is the purpose of this paper to relate these various homomorphisms. As an example of the
kind of results we obtain consider a bundle F → Y → X of finite complexes. If two of
these satisfy Poincaré duality then the third does as announced by Quinn in [16]. Since
then a proof has appeared by Gottlieb [7]. However in both accounts Poincaré torsion is
disregarded. The Poincaré torsion of a finite Poincaré Duality pair (X, ∂X) denoted τ(X) is
defined to be the torsion of the chain homotopy equivalence [X] ∩ − : C](X) → C](X, ∂X)
(see §3 for sign convention) We prove

Theorem A. Let F → (Y, ∂Y ) → (X, ∂X) be a bundle of Poincaré complexes. Let f ∗ :
Wh(π1X) → Wh(π1Y ) be the Whitehead transfer homomorphism of Anderson [1] (see §1.II
for definition) then

τ(Y ) = (−1)|F | · f ∗(τ(X)) + χ(X) · τ(F ).

Here |F | denotes the dimension of F and χ(X) the Euler characteristic of X.

Remark. The assumption that (Y, ∂Y ) is a Poincaré pair is actually redundant. In course of
computing τ(Y ) we actually prove (Y, ∂Y ) is a Poincaré pair thus generalizing the results of
Quinn and Gottlieb to the relative case.

We start by introducing the homomorphisms we want to consider.

1. Geometric Transfer Homomorphisms

I. The L-group Transfer. Let F → E → B be a topological bundle with fibre F a man-
ifold and wB a double cover of B. We obtain a double covering wE of E as follows:
Let π1F → Z/2Z be the orientation homomorphism and H(F, ∗) basepoint preserving
homotopy equivalences of F . Then π1F → Z/2Z factors π1F → π0H(F, ∗) → Z/2Z
and π1F → π0H(F, ∗) factors π1F → π1E → π0H(F, ∗) so there is a canonical exten-
sion of π1F → Z/2Z to π1E → Z/2Z. We add this homomorphism to the composite

π1E → π1B
wB−−→ Z/2Z to obtain a homomorphism wE : π1E → Z/2Z. This homomorphism

defines an isomorphism class of Z/2Z-bundles over E. We choose one such bundle and de-
note this by wE Consider an element of La(π1B; wB) where a stands for s, h or p, simple,
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finite or projective surgery problems (we may also consider surgery problems with certain
restrictions on torsions or finiteness obstructions). This element is represented [21, Ch. IX]
by a degree 1 normal map with a reference map to B

νM

��

// νX

��
M

f // X
φ // B

where f is a degree 1 map with respect to fundamental classes [X] and [M ] in homology
with respect to an integral coefficient system given by wB. Pulling back everything to E
defines a transfer homomorphism

τL : La
n(π1B, wB) → La′

n+|F |(π1E, wE)

where a may or may not be equal to a′. This is the Wall group transfer homomorphism as
defined by Quinn and Wall [15, 21] with the modifications that were observed to be necessary
by Farrell and Hsiang [6]. It is essentially only computable in case of a product bundle or
more generally in case the fundamental groups behave as in a product bundle [12]. The case
of S1-bundles will be described in a forthcoming joint work with Munkholm [11].

II. The Whitehead Torsion Transfer. Consider a bundle F → E → B of finite complexes.
Anderson [1] defines a transfer homomorphism

τ1 : Wh(π1B) → Wh(π1E)

such that if

F

i

��

f // F1

��
E

��

g // E1

��
B

h // B1

is a commutative diagram of bundles with f , g and h homotopy equivalences, then the
Whitehead torsions are related by

t(g) = τ1(t(h)) + i∗(t(f)) · χ(B)

where χ(B) is the Euler characteristic of B. When no confusion is possible we will some
times denote τ1 by p∗ where p : E → B.

III. The K̃0-finiteness Obstruction Transfer. Let F → E → B be a fibration of finitely
dominated spaces. Ehrlich [5] defines a transfer homomorphism

τ0 : K̃0(Zπ1B) → K̃0(Zπ1E)
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relating the finiteness obstructions of F , E and B according to the formula

σ(E) = τ0(σ(B)) + i∗(σ(F ))χ(B).

As in the Wh-case we will denote τ0 by p∗ when there is no chance of confusion, p : E → B.

IV. A K−i Transfer. Let F → E → B be a bundle of finite complexes. It is proved by
Munkholm and Pedersen [10] that the diagram

Wh(π1E × Z) // K̃0(Zπ1E)

Wh(π1B × Z)

τ1

OO

// K̃0(Zπ1B)

τ0

OO

is commutative.
Here the horizontal maps are the Bass-Heller-Swan homomorphisms [3] and the vertical

maps are the Wh- and K̃0-transfers.

Since by definition K−n(Z(π×Zn)) is the intersection of various inclusions of K̃0(Z(π×Zn))
in Wh(π × Zn+1) this implies there is a well defined homomorphism

τ−n : K−n(Zπ1B) → K−n(Zπ1E)

associated with this bundle such that the diagram

Wh(π1E × Zn+1) // K−n(Zπ1E)

Wh(π1B × Zn+1

OO

// K−n(Zπ1B)

τ−n

OO

commutes. The left hand vertical map is the Wh-transfer associated with F → E×T n+1 →
B × T n+1. The diagram associated with the finiteness obstruction transfer of the bundle
F → E × T n → B × T n

K̃0(Z(π1E × Zn)) // K−n(Zπ1E)

K̃0(Z(π1B × Zn))

OO

// K−n(Zπ1B)

OO

will also be commutative. Thus τ−n will inherit all properties known of the K̃0- transfer e. g.
the composite f∗ · τ−n is multiplication by a generalized Euler characteristic, see [14], and
τ−n only depends on the homotopy fundamental group data of the bundle [12].

V. The Concordance Transfer. Consider a bundle of closed manifolds F → E → B. Transfers
of concordance spaces have been defined by Burghelea and Lashof, Hatcher and others [4, 8].
These transfers are maps of concordance spaces, which are topological groups, so we get
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induced homomorphisms on π0 of these spaces, the isotopy classes of concordances. For a
special class of concordances these isotopy classes are completely described by Anderson and
Hsiang [2] as follows: Let h : M ×Rn+2 × I → M ×Rn+2 × I be a concordance bounded in
the Rn+2 factor (with usual metric). Then the isotopy class of h is completely determined by
an invariant in K−n(Zπ1M) for n ≥ 0 and in Wh(π1M) for n = −1. We have the following
definition: Let

E ×Rn+2 × I

��

k // E ×Rn+2 × I

��
B ×Rn+2 × I

h // B ×Rn+2 × I

be a commutative diagram of bounded concordances. There is a homomorphism

τc : K−n(Zπ1B) → K−n(Zπ1E)

relating the concordance invariants of h and k, i. e. τc(σ(h)) = σ(k). We need to show that
τc is everywhere defined and well defined. That it is everywhere defined follows from e. g.
[8] and well definedness will be shown in the next section.

2. The Concordance Transfer

Let F → E → B b a bundle of manifolds. We wish to show that the concordance transfer
is well defined

Theorem 2.1. Assume we have a commutative diagram of bounded concordances

E ×Rn+2 × I

��

k // E ×Rn+2 × I

��
B ×Rn+2 × I

h // B ×Rn+2 × I

Then σ(k) = τ−n(σ(h)) where τ−n : K−n(Zπ1B) → K−n(Zπ1E) is the homomorphism IV.

This shows that the concordance transfer is well defined since τc = τ−n.

Proof of Theorem 2.1. The invariant σ(h) of Hsiang and Anderson is computed as follows:
Wrapping around a torus [17] produces a concordance

h : B × T n+1 ×R× I → B × T n+1 ×R× I

such that the cover of h, h̃ agrees with h on an open subset of Rn+1 crossed with B×R× I.
Choosing c sufficiently big, the space between B × T n+1 × 0 × I and h(B × T n+1 × c × I)
is an h-cobordism with a torsion on Wh(π1B ×Zn+1). Now Hsiang and Anderson show this
invariant actually lies in the summand K−n(Zπ1B) and completely determines the isotopy
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class of the concordance. However, wrapping around a torus is functorial, so we may obtain
a commutative diagram

k : E × T n+1 ×R× I

��

// E × T n+1 ×R× I

��

h : B × T n+1 ×R× I // B × T n+1 ×R× I

and it is now evident that the invariants become related by the Wh-transfer which restricts
to the K−n-transfer. �

We obtain the following

Corollary 2.2. Let M → E → B be a bundle with M a closed manifold. Then the Wh-
transfer of M → E × T n+2 → B × T n+2 preserves the K−i summands of the Wh-groups of
the fundamental groups.

We also obtain the result that all known information on Wh- and K0-transfers hold for con-
cordance transfers as well. One of these results is that the concordance transfer only depends
on the fundamental group data. This result has also been proved by Burghelea and Lashof
[4] by a geometrical argument. We however further obtain that the various computational
results for K0- and Wh-transfers [10, 12, 14] extend to the concordance transfer.

3. Poincaré Torsion

Let (X; ∂1X, ∂2X) be a finite Poincaré triple in the sense of Wall [20]. The homotopy
equivalence

[X] ∩ − : C](X, ∂1X) → C](X, ∂2X)

of based chain complexes over Zπ1X has a well defined torsion τ(X, ∂1X), the Poincaré
torsion. We need a sign convention in computing this torsion, and we choose the degrees of
the cochain complex i. e. we think of Ci(X, ∂2X) as degree |X| − i. Clearly τ(X, ∂1X) only
depends on the simple homotopy type of (X; ∂1X, ∂2X). The Poincaré torsion in a bundle
is determined by the following

Theorem 3.1. Let F → (Y, ∂Y ) → (X, ∂X) be a bundle of finite complexes. Then

τ(Y ) = (−1)|F | · f ∗(τ(X)) + χ(X) · τ(F )

where f ∗ is the Wh-transfer of §2.II.

To prove this theorem we need a number of lemmas and various results about different
ways to compute torsion. When we have an exact sequence 0 → A → B → C → 0 of based
chain complexes we shall allow ourselves to think of 0 → B → C → sA → 0 as a short
exact sequence of based chain complexes even though C should really be replaced by the
simply homotopy equivalent mapping cylinder of B → C. We use ∗ to denote duality in the
Whitehead group as well as in modules.
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Lemma 3.2. Let f : A → B be a homotopy equivalence of based chain complexes with
torsion τ . The torsion of f ∗ : B∗ → A∗ is then −τ ∗.

Proof. trivial �

Lemma 3.3. Let (X, ∂1X, ∂2X) be a Poincaré triple. Then

τ(X, ∂1X) = −(−1)|X| · τ(X, ∂2X)∗

Proof. The dual of
C](X, ∂1X) → C](X, ∂2X)

is
C](X, ∂2X) → C](X, ∂1X)

We get the factor (−1)|X| since we change the way we count degrees by |X|. �

Lemma 3.4. Let (X; ∂1X, ∂2X) be a Poincaré triple. Then

τ(X, ∂2X) = τ(X)− i∗τ(∂2X).

Proof. Noting that ∂∂1X = ∂1X ∩ ∂2X = ∂∂2X we have a diagram of short exact sequences

0 C](∂2X, ∂∂2X)oo

[∂2X]∩−
��

C](X, ∂1X)oo

[X]∩−
��

C](X, ∂X)oo

[X]∩−
��

0oo

0 s(C](∂2X))oo C](X, ∂2X)oo C](X)oo 0oo

giving τ(X, ∂1X) = τ(X, ∂X) + i∗τ(∂2X, ∂∂2X). Using Lemma 3.3 and dualizing we get the
result. �

We note that in case ∂2X = ∂X, ∂1X = ∅ we obtain the usual

τ(∂X) = τ(X)− τ(X, ∂X) = τ(X) + (−1)|X|τ(X)∗.

We also need the following Mayer-Vietoris type result.

Lemma 3.5. Let (A; ∂1A, ∂2A) and (B; ∂1B, ∂2B) be Poincaré triples with ∂1A = ∂1B =
A∩B. Then (A∪B, ∂2A∪∂2B) is a Poincaré pair and τ(A∪B) = τ(A)+ τ(B)− τ(A∩B).

Proof. We have Mayer-Vietoris short exact sequences

0 C](A ∩B, ∂(A ∩B))oo

��

C](A ∪B, ∂(A ∪B))oo

��

C](A, ∂A)⊕ C](B, ∂B)oo

��

0oo

0 sC](A ∩B)oo C](A ∪B)oo C](A)⊕ C](B)oo 0oo

giving
τ(A ∪B, ∂(A ∪B)) = τ(A ∩B, ∂(A ∩B)) + τ(A, ∂A) + τ(B, ∂B).

Now use Lemma 3.3 and dualize. �
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Lemma 3.6. Let F be a Poincaré duality space. Then τ(F ×Dm) = τ(F ) and τ(F ×Sm) =
(1 + (−1)m) · τ(F ).

Proof. It is easy to see that τ(F × Dm) = τ(F ). It now follows from Lemma 3.5 that
τ(F × Sm) = τ(F ) + τ(F )− τ(F × Sm−1) which completes the proof using induction. �

Lemma 3.7. Let (A, ∂A) be a Poincaré duality pair which is the union of (B, ∂B) and
Dm × F , where (B, ∂B) is a Poincaré duality pair and F is a Poincaré space and

B ∩Dm × F = ∂B ∩ Sm−1 × F = Si−1 ×Dm × F.

Then
τ(A) = τ(B) + (−1)iτ(F ).

Proof. Follows trivially from Lemma 3.5 and 3.6. �

The main application of this lemma is

Proposition 3.8. Let F → (E, ∂E) → (W, ∂W ) be a bundle with F a Poincaré space and
W a manifold. Then τ(E) = χ(W ) · τ(F ) (where χ(W ) is the Euler characteristic of W ).

Proof. W has a handlebody decomposition and the bundle restricted to a handle is trivial.
Now use Lemma 3.7 �

Let (A, ∂A) → X be a map of CW-complexes with homotopy fibre of homotopy type
(Dm, Sm−1). We may use Stasheff’s construction [19] to construct a pair of CW-complexes
(EA, ∂EA) and a homotopy commutative diagram

(A, ∂A)
f

((PPPPPPPP

X

(EA, ∂EA)

E(f)

OO

66nnnnnnnn

such that E(f) is a homotopy equivalence and such that the inverse image of the interior
of all Dn in X under (EA, ∂EA) → X is homeomorphic to Dn × (Dm, Sm−1). Even though
(EA, ∂EA) → X is not a fibration we do have a Thom isomorphism

C](X) → C](EA, ∂EA).

Assume X, A and ∂A are finite complexes. Then (EA, ∂EA) is a finite pair and the Thom
isomorphism C](X) → C](EA, ∂EA) is clearly simple, sending a basis to a basis. The diagram

C](X) //

&&MMMMMMMMMMM
C](EA, ∂EA)

C](A, ∂A)

E(f)∗

OO
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shows that the torsion of the Thom isomorphism C](X) → C](A, ∂A) is the tors ion of
E(f)∗. We are now ready for

Proof of Theorem 3.1. Consider the following diagram

F

��

F

��

F

��

(Y, ∂Y )

f

��

((V, ∂V ), (∂2V, ∂∂2V ))oo

��

'

**UUUUUUUUUUUUUUUUUUUUUUUU

(X, ∂X) ((W, ∂1W ), (∂2W, ∂∂2W ))oo

'

**UUUUUUUUUUUUUUUUUUUUUUUU
((EV , E∂1V ), (E∂2V , E∂∂2V ))

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

��
((EW , E∂1W ), (E∂2W , E∂∂2W ))

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

which we proceed to explain. We embed (X, ∂X) in halfspace Hn, some big n such that
X ∩Rn−1 = ∂X. Now W is a regular neighborhood of X in Hn meeting Rn−1 regularly in
∂2W = W∩Rn−1. We define ∂1W = closure(∂W−∂2W ), so ∂1W∩∂2W = ∂∂2W . According
to Spivak [18] the homotopy fibre of (W, ∂1W ) → X and (∂2W, ∂∂2W ) → ∂X is (Dm, Sm−1)
where m = n−|X|. We pull everything back to total space level to get ((V, ∂1V ), (∂2V, ∂∂2V ))
and note that Stasheff’s construction on ((EW , E∂1W ), (E∂2W , E∂∂2W )) pulled back to total
space level gives Stasheff’s construction on ((V, ∂1V ), ∂2V, ∂∂2V )). We have a Thom iso-
morphism H∗(X, ∂X) → H∗(W, ∂W ) which at chain level (with Zπ1X-coefficients) is given
by cup product with some element [U ] representing the Thom class. We get the homotopy
commutative diagram

C](W, ∂W )
[W ]∩−

// C](W )

C](EW , E∂W )

66nnnnnnnnnnnn

C](X, ∂X)

[U ]∪−

hhPPPPPPPPPPPP

[U ]∪−

OO

[X]∩−
// C](X)

OO

where E∂W = E∂1W ∪ E∂2W .
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The torsions of the various homotopy equivalences are as indicated in the diagram

• 0 // •

•

??~~~~~~~

•
0

__@@@@@@@

OO

τ(X,∂X)
// •

0

OO

We conclude that the torsion of C](EW , E∂W ) → C](W, ∂W ) is (−1)m · τ(X, ∂X) (the factor
(−1)m because of the degree shift in the Thom isomorphism). It follows from Lemma 3.2
that the torsion of C](W, ∂W ) → C](EW , E∂W ) is

−(−1)mτ(X, ∂X)∗ = (−1)m · (−1)|X| · τ(X).

By definition of the Wh-transfer homomorphism the torsion of C](V, ∂V ) → C](EV , E∂V )
where E∂V = E∂1V ∪E∂2V is f ∗((−1)m(−1)|X| ·τ(X)). In the homotopy commutative diagram
at totalspace level

C](V, ∂V ) // C](V )

C](EV , E∂V )

77ooooooooooo

C](Y, ∂Y )

ggOOOOOOOOOOO

OO

// C](Y )

OO

the torsions are

• τ(V,∂V )
// •

•

β
??~~~~~~~

•
0

__@@@@@@@

α

OO

τ(Y,∂Y )
// •

0

OO

where −β∗ = f ∗((−1)m · (−1)|X| · τ(X)).
We get α = (−1)m · β and

α + (−1)mτ(V, ∂V ) = τ(Y, ∂Y )

using Proposition 3.8 to prove τ(V ) = χ(X) · τ(F ) and dualizing we get

τ(Y ) = (−1)|F | · f ∗(τ(X)) + χ(X) · τ(F ).

�
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4. Comparing L-Group and Wh-Transfers

We obtain the following result on L-group transfers: Let M → E → B be a bundle, M a
closed manifold of dim n, π1(E) = π, π1B = ρ.

Theorem. There are commutative diagrams of Rothenberg exact sequences

(*)

// Ls
i (ρ) //

��

Lh
i (ρ)

��

// Ĥ(Z2; Wh ρ)

��

//

// Ls
i+n(π) // Lh

i+n(π) // Ĥ i+n(Z2; Wh π) //

(**)

// Lh
i (ρ)

��

// Lp
i (ρ)

��

// Ĥ i(Z2; K̃0(Z[π]))

��

//

// Lh
i+n(π) // Lp

i+n(π) // Ĥ i+n(Z2; K̃0(Z[π])) //

where the vertical maps are (induced by) the Wall-group, K0- and (−1)n times the Wh-
transfer.

Proof. According to [13] Ĥ(Z2; K̃0(Zπ)) is represented by surgery problems on finitely dom-
inated Poincaré complexes with finite boundary. It follows then from the definition of the

K̃0-transfer that Ĥ i(Z2, K̃0(Zρ)) → Ĥ i+n(Z2; K̃0(Zπ)) is induced by the K̃0-transfer. To see

that Ĥ i(Z2, Wh ρ) → Ĥ i+n(Z2, Wh π) is induced by (−1)n times the Wh-transfer we now use

the similar geometric representation of Ĥ i(Z2, Wh ρ) as surgery problems on simple Poincaré
complexes with finite boundary, and Theorem 3.1. �

Final Remarks. Consider an orientable bundle S1 → E → B, π1B = ρ, π1E = π both finite.

Then the K̃0-transfer is trivial [10] so we get a transfer homomorphism Lp(Zρ) → Lh(Zπ).
This and similar situations pose some interesting problems concerning what happens in the
Rothenberg exact sequence.
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