GEOMETRICALLY DEFINED TRANSFERS, COMPARISONS

ERIK KJZAR PEDERSEN

0. INTRODUCTION

There are a number of geometrically defined transfer homomorphisms relating finiteness
obstructions, Whitehead torsions, concordances, surgery obstructions etc. in a bundle. It
is the purpose of this paper to relate these various homomorphisms. As an example of the
kind of results we obtain consider a bundle F' — Y — X of finite complexes. If two of
these satisfy Poincaré duality then the third does as announced by Quinn in [16]. Since
then a proof has appeared by Gottlieb [7]. However in both accounts Poincaré torsion is
disregarded. The Poincaré torsion of a finite Poincaré Duality pair (X, 0X) denoted 7(X) is
defined to be the torsion of the chain homotopy equivalence [X] N — : C*(X) — Cy(X,0X)
(see §3 for sign convention) We prove

Theorem A. Let F — (Y,0Y) — (X,0X) be a bundle of Poincaré complexes. Let f* :
Wh(m X) — Wh(mY) be the Whitehead transfer homomorphism of Anderson [1] (see §1.11
for definition) then

7(Y) = (=) fH(7(X)) + x(X) - 7(F).
Here |F| denotes the dimension of F' and x(X) the Euler characteristic of X .

Remark. The assumption that (Y, 0Y) is a Poincaré pair is actually redundant. In course of
computing 7(Y) we actually prove (Y,9Y") is a Poincaré pair thus generalizing the results of
Quinn and Gottlieb to the relative case.

We start by introducing the homomorphisms we want to consider.

1. GEOMETRIC TRANSFER HOMOMORPHISMS

I. The L-group Transfer. Let F' — E — B be a topological bundle with fibre F' a man-
ifold and wg a double cover of B. We obtain a double covering wg of E as follows:
Let mF — Z/2Z be the orientation homomorphism and H(F,*) basepoint preserving
homotopy equivalences of F. Then mF — Z/27Z factors mF — mwoH(F,*) — Z/27Z
and mF — moH(F,*) factors mF — mE — moH(F,*) so there is a canonical exten-
sion of mF — Z/27Z to mFE — Z/2Z. We add this homomorphism to the composite
mE — m B =5 Z/27Z to obtain a homomorphism wg : m F — Z/2Z. This homomorphism
defines an isomorphism class of Z/2Z-bundles over E. We choose one such bundle and de-

note this by wg Consider an element of L*(m B;wg) where a stands for s, h or p, simple,
1
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finite or projective surgery problems (we may also consider surgery problems with certain
restrictions on torsions or finiteness obstructions). This element is represented [21, Ch. IX]
by a degree 1 normal map with a reference map to B

Unpyg —UVUx
M—t-x-2.p

where f is a degree 1 map with respect to fundamental classes [X] and [M] in homology
with respect to an integral coefficient system given by wg. Pulling back everything to E
defines a transfer homomorphism

11 Ly (mB,wg) — LZC’_|F‘<7T1E,1UE)

where a may or may not be equal to a’. This is the Wall group transfer homomorphism as
defined by Quinn and Wall [15, 21] with the modifications that were observed to be necessary
by Farrell and Hsiang [6]. It is essentially only computable in case of a product bundle or
more generally in case the fundamental groups behave as in a product bundle [12]. The case
of S'-bundles will be described in a forthcoming joint work with Munkholm [11].

II. The Whitehead Torsion Transfer. Consider a bundle F — E — B of finite complexes.
Anderson [1] defines a transfer homomorphism

71 : Wh(m B) — Wh(m E)
such that if
F *f> F1

is a commutative diagram of bundles with f, g and A homotopy equivalences, then the
Whitehead torsions are related by

t(g) = mu(t(h)) + i.(t(f)) - x(B)
where y(B) is the Euler characteristic of B. When no confusion is possible we will some
times denote 7y by p* where p: F — B.

III. The I?O—ﬁm'teness Obstruction Transfer. Let FF — E — B be a fibration of finitely
dominated spaces. Ehrlich [5] defines a transfer homomorphism

T0 : [?O(ZmB) — [?O(ZmE)
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relating the finiteness obstructions of ', E and B according to the formula
o(E) = 10(0(B)) + ix(o(F))x(B).
As in the Wh-case we will denote 7y by p* when there is no chance of confusion, p: £ — B.

IV. A K_; Transfer. Let F — E — B be a bundle of finite complexes. It is proved by
Munkholm and Pedersen [10] that the diagram

Wh(m E X Z) — Ko(Zm, E)

Wh(m B x Z) — K(Zm, B)

1s commutative.

Here the horizontal maps are the Bass-Heller-Swan homomorphisms [3] and the vertical
maps are the Wh- and I?O—transfers.

Since by definition K _,,(Z(wx Z")) is the intersection of various inclusions of Ko(Z(mx Z"))
in Wh(m x Z™*1) this implies there is a well defined homomorphism

Top: K p(ZmB) — K_,(Zm E)
associated with this bundle such that the diagram
Wh(’ﬂ'lE X Zn+1) E—— K_n(ZTFlE)

| a

Wh(ﬂ'lB X Zn+1 e K,n(Zﬂ'lB)

commutes. The left hand vertical map is the Wh-transfer associated with ' — E x 77! —
B x T™*!. The diagram associated with the finiteness obstruction transfer of the bundle
F—-ExT"— BxT"

Ko(Z(m E x Z")) —= K_,(Zm E)

|

Ko(Z(m B x Z")) — K_,(Zm B)

will also be commutative. Thus 7_,, will inherit all properties known of the [N(O— transfer e. g.
the composite f, - 7_, is multiplication by a generalized Euler characteristic, see [14], and
7_, only depends on the homotopy fundamental group data of the bundle [12].

V. The Concordance Transfer. Consider a bundle of closed manifolds /' — E — B. Transfers
of concordance spaces have been defined by Burghelea and Lashof, Hatcher and others [4, 8].
These transfers are maps of concordance spaces, which are topological groups, so we get
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induced homomorphisms on 7y of these spaces, the isotopy classes of concordances. For a
special class of concordances these isotopy classes are completely described by Anderson and
Hsiang [2] as follows: Let h: M x R"™ x [ — M x R""2 x [ be a concordance bounded in
the R™"*2 factor (with usual metric). Then the isotopy class of h is completely determined by
an invariant in K_,(Zm M) for n > 0 and in Wh(m; M) for n = —1. We have the following
definition: Let

ExR™2x[—>FExR™2x [

l !

BxR"™2x[—>BxR"™2x]

be a commutative diagram of bounded concordances. There is a homomorphism
T.: K ,(ZmB) — K_,(ZmFE)

relating the concordance invariants of h and k, i. e. 7.(c(h)) = o(k). We need to show that
T. is everywhere defined and well defined. That it is everywhere defined follows from e. g.
[8] and well definedness will be shown in the next section.

2. THE CONCORDANCE TRANSFER

Let ' — E — B b a bundle of manifolds. We wish to show that the concordance transfer
is well defined

Theorem 2.1. Assume we have a commutative diagram of bounded concordances

ExR™2x[—>FExR™2x [

i !

BxR™ x [ —~>BxR"x [
Then o(k) = 17_,(c(h)) where 7_,, : K_,,(ZmB) — K_,,(Zm E) is the homomorphism IV.
This shows that the concordance transfer is well defined since 7. = 7_,,.

Proof of Theorem 2.1. The invariant o(h) of Hsiang and Anderson is computed as follows:
Wrapping around a torus [17] produces a concordance

h:BXT'""'xRxI—=BxT""'xRxI

such that the cover of h, h agrees with A on an open subset of R"*! crossed with B x R x I.
Choosing ¢ sufficiently big, the space between B x T""! x 0 x I and h(B x T""' x ¢ x I)
is an h-cobordism with a torsion on Wh(mr; B x Z"*1). Now Hsiang and Anderson show this
invariant actually lies in the summand K_,(Zm B) and completely determines the isotopy
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class of the concordance. However, wrapping around a torus is functorial, so we may obtain
a commutative diagram

EExTIxRxI—=ExT"H'xRxI

| |

Rh:BXxT ! xRxI—>=BxT" ' xRxI

and it is now evident that the invariants become related by the Wh-transfer which restricts
to the K_,-transfer. ]

We obtain the following

Corollary 2.2. Let M — E — B be a bundle with M a closed manifold. Then the Wh-
transfer of M — E x T"? — B x T"*?2 preserves the K_; summands of the Wh-groups of
the fundamental groups.

We also obtain the result that all known information on Wh- and K-transfers hold for con-
cordance transfers as well. One of these results is that the concordance transfer only depends
on the fundamental group data. This result has also been proved by Burghelea and Lashof
[4] by a geometrical argument. We however further obtain that the various computational
results for Ky- and Wh-transfers [10, 12, 14] extend to the concordance transfer.

3. POINCARE TORSION

Let (X;0:X,3,X) be a finite Poincaré triple in the sense of Wall [20]. The homotopy

equivalence
[(X]N—: CHX,0,X) — Cy(X, 0 X)

of based chain complexes over Zm X has a well defined torsion 7(X,0,X), the Poincaré
torsion. We need a sign convention in computing this torsion, and we choose the degrees of
the cochain complex i. e. we think of C;(X, 0;X) as degree | X| —i. Clearly 7(X, 0;X) only
depends on the simple homotopy type of (X;0;X,0;X). The Poincaré torsion in a bundle
is determined by the following

Theorem 3.1. Let ' — (Y,0Y) — (X,0X) be a bundle of finite complexes. Then
7(Y) = (=) f5(r(X)) + x(X) - 7(F)
where f* is the Wh-transfer of §2.11.

To prove this theorem we need a number of lemmas and various results about different
ways to compute torsion. When we have an exact sequence 0 — A — B — C' — 0 of based
chain complexes we shall allow ourselves to think of 0 — B — C' — sA — 0 as a short
exact sequence of based chain complexes even though C' should really be replaced by the
simply homotopy equivalent mapping cylinder of B — C. We use * to denote duality in the
Whitehead group as well as in modules.
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Lemma 3.2. Let f : A — B be a homotopy equivalence of based chain complexes with
torsion 7. The torsion of f*: B* — A* is then —7*.

Proof. trivial O
Lemma 3.3. Let (X,0,X,0:X) be a Poincaré triple. Then
(X, 0 X) = —(=1)¥ . 7(X,0,X)*

Proof. The dual of
CH(X,0,X) — Cy(X,0,X)

l CH(X,05X) — Cy(X,0,X)
We get the factor (—1)I¥I since we change the way we count degrees by |X|. O
Lemma 3.4. Let (X;0,X,0,X) be a Poincaré triple. Then
T(X,0:X) = 7(X) — i.7(0:X).

Proof. Noting that 00, X = 01 X N0, X = 00, X we have a diagram of short exact sequences

0<~— CHD0,X,00,X) <~— C¥X,0,X) =— C¥X,0X)<=—0

i[BQX]ﬂ l[X]ﬂ i[X]ﬂ
0 <——5(C4(0: X)) =—— Cy(X, 0. X) Cy(X) 0

giving 7(X, 01 X) = 7(X,0X) + 1,7(0: X, 00, X). Using Lemma 3.3 and dualizing we get the
result. 0
We note that in case 0, X = 90X, 9; X = () we obtain the usual
7(0X) = 7(X) — 7(X,0X) = 7(X) + (- )X 7 (X)*.
We also need the following Mayer-Vietoris type result.

Lemma 3.5. Let (A;01A,0,A) and (B;0,B,0,B) be Poincaré triples with 01A = 0,B =
ANB. Then (AUB,0,AU0,B) is a Poincaré pair and T(AUB) = 7(A)+7(B)—7(ANB).

Proof. We have Mayer-Vietoris short exact sequences
0~—C*ANB,0(ANB))<~— C*AUB,0(AUB))<— C*(A,0A) ® C*(B,0B) <— 0

| | !

0 SCﬁ(AﬂB) Cﬂ(AUB) Cﬁ(A)@Cu(B)

giving

T(AUB,0(AUB)) =7(ANB,0(ANB))+ 7(A,0A) + 7(B,0B).
Now use Lemma 3.3 and dualize. O
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Lemma 3.6. Let F' be a Poincaré duality space. Then 7(F x D™) = 7(F) and 7(F x S™) =
1+ (=1)7) - 7(F).
Proof. 1t is easy to see that 7(F x D™) = 7(F). It now follows from Lemma 3.5 that
7(F x 8™) =7(F)+ 7(F) — 7(F x S™ ') which completes the proof using induction. [
Lemma 3.7. Let (A,0A) be a Poincaré duality pair which is the union of (B,0B) and
D™ x F, where (B,0B) is a Poincaré duality pair and F' is a Poincaré space and

BND"x F=0BNS™ ' xF=5"1xD"xF
Then '

T7(A) =7(B) + (=1)'7(F).

Proof. Follows trivially from Lemma 3.5 and 3.6. U

The main application of this lemma, is

Proposition 3.8. Let F — (E,0FE) — (W,0W) be a bundle with F' a Poincaré space and
W' a manifold. Then 7(E) = x(W) - 7(F) (where x(W) is the Euler characteristic of W ).

Proof. W has a handlebody decomposition and the bundle restricted to a handle is trivial.
Now use Lemma 3.7 U

Let (A,0A) — X be a map of CW-complexes with homotopy fibre of homotopy type
(D™, S™1). We may use Stasheff’s construction [19] to construct a pair of CW-complexes
(Ea,0E4) and a homotopy commutative diagram

(A, aA)f\
B(f) X

/

(Ea,0E,)

such that F(f) is a homotopy equivalence and such that the inverse image of the interior
of all D" in X under (Ea,0FE4) — X is homeomorphic to D" x (D™, S™!). Even though
(Ea,0FE4) — X is not a fibration we do have a Thom isomorphism

Cﬁ(X) - Cﬁ(EA,ﬁEA).

Assume X, A and 0A are finite complexes. Then (E4,0FE4) is a finite pair and the Thom
isomorphism C*(X) — C*(Ea, OF,) is clearly simple, sending a basis to a basis. The diagram

Cﬁ(X) I Cﬁ<EA,aEA)

. Jr

CH(A, 0A)
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shows that the torsion of the Thom isomorphism C*(X) — C*(A4,0A) is the tors ion of
E(f)*. We are now ready for

Proof of Theorem 3.1. Consider the following diagram

F F F

(Y,0Y) ((V,0V), (0:V,00,V'))

f \\

(X? aX) S ((VV? alW)? (aQI/Va 882W)) ((EV7 EalV)v <E32V7 E332V))

\

((EBw, Ea,w), (Es,w, Ess,w))

which we proceed to explain. We embed (X,0X) in halfspace H", some big n such that
X NR"! =09X. Now W is a regular neighborhood of X in H™ meeting R"! regularly in
OeW = WNR" 1. We define 0, W = closure(dW — 9, W), so O, WNRW = 09, W. According
to Spivak [18] the homotopy fibre of (W, ;W) — X and (9,W, 09, W) — 90X is (D™, S™ 1)
where m = n—|X|. We pull everything back to total space level to get ((V, V), (0.V, 00,V))
and note that Stasheft’s construction on ((Ew, Egw), (Es,w, Fas,w)) pulled back to total
space level gives Stasheff’s construction on ((V,0,V),3:V,00,V)). We have a Thom iso-
morphism H*(X,0X) — H*(W,0W) which at chain level (with Zm X-coefficients) is given
by cup product with some element [U] representing the Thom class. We get the homotopy
commutative diagram

CHIW, 0W) — " C,(W)
CH Ew, Egw) U]~
k X)n—
CH(X,0X) Cy(X)

where an = E81W U E@2w.
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The torsions of the various homotopy equivalences are as indicated in the diagram

0
[ ] [ ]
) 0
N
o [ )
7(X,0X)

We conclude that the torsion of C*(Ey, Eaw ) — C*HW,0W) is (—1)™-7(X, 0X) (the factor
(—1)™ because of the degree shift in the Thom isomorphism). It follows from Lemma 3.2
that the torsion of Cy(W,0W) — Cy(Ew, Eaw) is

—(=1)"7(X,0X)" = (=)™ (=) 7(X).

By definition of the Wh-transfer homomorphism the torsion of Cy(V,0V) — Cy(Ey, Esy)
where Egy = Ep vUEg,y is f*((—1)™(—=1)*1.7(X)). In the homotopy commutative diagram
at totalspace level

|

CH(V,0V) Cy(V)
Cﬂ(EVa E@V)
CHY, Y Cy(Y)
the torsions are
T(V,0V)

[ J [ ]
7
0
7(Y,0Y)
[ [ ]

where —* = f*((—1)" - (—1)X1 - 7(X)),
We get « = (—1)" - 5 and

a+ (—1)"r(V,0V) =7(Y,9Y)
using Proposition 3.8 to prove 7(V) = x(X) - 7(F') and dualizing we get
7(Y) = (=D f*(7(X)) + x(X) - 7(F).
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4. COMPARING L-GROUP AND Wh-TRANSFERS

We obtain the following result on L-group transfers: Let M — E — B be a bundle, M a
closed manifold of dim n, m(E) =7, mB = p.

Theorem. There are commutative diagrams of Rothenberg exact sequences

A

— Li(p) — L (p) H(Zy; Whp) —

© L |

- Lf+n(7r) - L?Jrn(ﬂ-) - PIH"(ZQ; Wh 7T) -

—— L(p) L (p) H(Zo; Ko(Z[w])) —

- L |

= Ll (1) — L2 (1) —= H0(Zy; Ko (Z[])) —

where the vertical maps are (induced by) the Wall-group, Ky- and (—1)" times the Wh-
transfer.

Proof. According to [13] H (Zy; I?()(ZW)) is represented by surgery problems on finitely dom-
inated Poincaré complexes with finite boundary. It follows then from the definition of the
Ko-transfer that H(Zy, Ko(Zp)) — H*"(Zy; Ko(Z7)) is induced by the Ko-transfer. To see
that H(Zy, Wh p) — H*""(Z,, Wh) is induced by (—1)" times the Wh-transfer we now use
the similar geometric representation of H {(Zy, Wh p) as surgery problems on simple Poincaré
complexes with finite boundary, and Theorem 3.1. OJ

Final Remarks. Consider an orientable bundle S!' - E — B, mB = p, mFE = 7 both finite.
Then the Ky-transfer is trivial [10] so we get a transfer homomorphism LP(Zp) — L"(Zr).
This and similar situations pose some interesting problems concerning what happens in the
Rothenberg exact sequence.
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