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0. Introduction

Let Mn be an oriented smooth manifold, and let Diff Mn be its group of orientation
preserving diffeomorphisms. Let Diff(Nn, Mn

0 ) and Diff∗ Mn be the two subgroups (with the
C∞ topology ) which consist of diffeomorphisms fixing Mn

0 = Mn−Dn ( for some embedded
disc Dn) and the base point ∗ ∈ Dn ⊂Mn respectively.

It is a common procedure when studying π∗(Diff Mn) to restrict attention to either one
of the above subgroups; it is therefore of some interest to study the homotopy braid of the
triple (Diff Mn, Diff∗ Mn, Diff(Mn, Mn

0 )).
In fact this is equivalent to considering the following ‘comparison diagram’ of principal

fibrations, constructed by the usual techniques.

(0.1). Diagram.

Diff∗ Mn d //

j

��

SO(n)

jP

��

((PPPPPPPPPPPP

Diff(Mn, Mn
0 )

i′
77nnnnnnnnnnnn

i ''PPPPPPPPPPPP
B Diff(Mn, Mn

0 )

Diff Mn

π
%%JJJJJJJJJJ

e // Pτ(Mn)

66nnnnnnnnnnnn

π
zzttttttttt

Mn

Here d is the derivative map at ∗, Pτ(Mn) is the total space of the oriented smooth
principal tangent bundle to Mn, e maps f ∈ Diff Mn to the derivative at ∗ of the restriction
f |Dn, and π is evaluation at ∗.

The only fibration on display above which is not well documented is the lower horizontal
one, i. e.

Diff(Mn, Mn
0 ) −→

i
Diff Mn −→

e
Pτ(Mn) (F)

Its existence follows from the fibration

Diff(Mn, Mn
0 ) −→

i
Diff Mn −→

e′
E(Dn, Mn),

1
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where E( , ) denotes the space of orientation preserving smooth embeddings on Dn. But
E(Dn, Mn) may be identified with Pτ(Mn) , since

E∗(Dn, Mn)→ E(Dn, Mn)→Mn

is a model for the principal tangent bundle of Mn via the derivative map.
The homotopy braid of (0.1) gives rise to two interlaced problems. Firstly, to what ex-

tent does the ‘linearization’ jP determine the map j; and secondly, to what extent does d
determine e?

We shall discuss the second of these questions in the special case of Mn an exotic sphere
Σn. In this case, (F) generalizes an exact sequence described by R. Schultz [6]. In particular
we study the difference between the boundary maps associated to d and to e, and reduce
the detection of a certain class of ‘stable’ homotopy element so arising to an interesting, but
apparently unsolved, problem in the homotopy groups of spheres.

Throughout, we shall write Sn
β for the exotic sphere given by an element β ∈ πn(Top /O),

n ≥ 7. Such β arises from an isotopy class of diffeomorphisms β ∈ Diff Sn−1, so any Sn
β can

be represented as Dn
0 ∪β Dn

c , where 0 ∈ Dn
0 is the basepoint, and Dn

c is the complementary
disc.

We are grateful to Dick Lashof for a helpful letter.

1. The fibration

Our fibration (F) of §0 can be further simplified when Mn = Sn
β . For it has long been

known that, whatever β, Pτ(Sn) = SO(n + 1). It is most convenient to describe this fact by
means of

(1.1). Lemma. There is a homeomorphism of degree 1, say h : Sn
β → Sn, such that the

diagram

Sn

τ(Sn)

$$IIIIIIIII

B SO(n)

Sn
β

h

OO

τ(Sn
β )

;;vvvvvvvvv

homotopy commutes. Thus Pτ(Sn
β ) is homeomorphic to SO(n+1) via an SO(n) equivariant

map,

Proof. Since Sn
β is stably parallelizable, τ(Sn

β ) lifts to Sn. We can choose the lift h to have de-
gree 1 by appealing to the euler characteristic if n is even, and the Kervaire semicharacteristic
if n is odd �
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(1.2). Note. The resulting homeomorphism h̄ : Pτ(Sn
β )→ SO(n + 1) is defined only up to

alteration by any map Sn
β → SO(n).

Proof. Since Sn
β is stably parallelizable, τ(Sn

β ) lifts to Sn. We can choose the lift h to
have degree 1 by appealing to the euler characteristic if n is even, and the Kervaire semi-
characteristic if n is odd. �

We can now construct our special version of (0.1) as follows:

(1.3). Diagram.

Diff∗ Sn
β

d //

j

��

SO(n)

jP

��

∂′

''PPPPPPPPPPPP

Diff(Dn, ∂)

i &&NNNNNNNNNN

i′
88qqqqqqqqqqq

B Diff(Dn, ∂)

Diff Sn
β

ε //

π
$$HH

HH
HH

HH
H

SO(n + 1)

π
yytttttttttt

g(β)

77nnnnnnnnnnnn

Sn

Note that we have labeled h̄ ◦ e as ε, and the classifying map of ε as g(β). Of course jP

is precisely the standard inclusion, and the homotopy commutativity of the central square
is assured by construction.

(1.4). Definitions. (i) Let W∗(S
n) ⊂ π∗(Diff Sn) be the graded subgroup Im i′∗∩ker j∗.

(ii) Let X∗(S
n) ⊂ π∗(SO(m + 1)) be the graded set of elements x with the property that

π∗(x) 6= 0 6= g(β)∗(x).

Thus W∗(S
n
β ) is a measure of the extent to which jP fails to determine j, and X∗(S

n
β ) is

a measure of the extent to which ∂′ fails to determine g(β). Also 0 6= x ∈ W∗(S
n
β ) yields

(i′)−1(w) ∈ X∗(S
n
β ).

We investigate X∗(S
n
β ) below. Note that, if k < n, then Wk(S

n
β ) = 0 and Xk(S

n
β ) = ∅.

Also, W∗( ) and X∗( ) are defined for arbitrary Mn.
If Sn

β is the standard sphere Sn, then (1.3) ‘collapses’. For the symmetry of Sn allows
splitting Diff Sn ←− SO(n + 1) of (F), which restricts to a splitting of the upper fibration.
Thus W∗(S

n) = 0 and X∗(S
n) = ∅.

Hence the cardinalities of W∗() and X∗() in some sense reflect the asymmetry of Sn
β . We

develop below a detection procedure for ‘stable’ elements in X∗( ).
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2. Detecting elements in X∗()

We first summarize some information from [6] concerning the map ∂′ of (1.3). Before so
doing, however, it is convenient to recall some familiar notation which will also be useful for
the remainder of this section.

We shall write Top Sn for the group of orientation preserving homeomorphisms of Sn, so
that we have the following commutative diagram:

SO // S Top // Top /O

��

S Top(n)

ggPPPPPPPPPPPP

k

wwnnnnnnnnnnnn

SO(n + 1)

OO

��

i // Top Sn

j ''OOOOOOOOOOOO

Ωn+1
1 Sn+1

wwoooooooooooo

SO
J // Ω∞

1 S∞ = SG // G/O

Here i is the standard inclusion, j is the suspension, and k is one-point compactification.
Now according to [1], the composite π∗(S Top(n))→ π∗(Top /O) is epic, so we may suppose

that Sn
β is represented by a map Sn → S Top(n) (tantamount to choosing a framing for

Sn
β ); or, via k∗, a map β̄ : Sn → Top Sn. Continuing around the diagram, we also obtain

β̃ ∈ πn(G/O) as the image of both β̄ and β. Moreover β̃ lies in the summand πn(G)/ Im J .
We can now state

(2.1). Theorem. (R. Schultz). Given α ∈ πk(SO(n)), then ∂′∗α 6= 0 in πk(B Diff(Dn, ∂))

whenever β̃J(α) 6= 0 in πS
n+k/ Im J .

Our result concerning X∗( ) is in the same spirit, and can be stated thus:

(2.2). Theorem. Given x ∈ π(SO(n + 1)), then x ∈ Xk(S
n
β ) whenever β̃2 · H(x) 6= 0 in

πS
n+k/ Im J .

Here H(x) ∈ πk(S
n) is represented by the composite Sk x−→ SO(n + 1)

π−→ Sn (π being the
usual projection), which is proven in [2] to be the Hopf invariant (up to sign and suspension)
of the element J(x) ∈ πk+n+1(S

n+1).
Elements so detectable constitute a stable subset SX∗(S

n
β ) ⊂ X∗(S

n
β ). Unfortunately, we

know of no non-zero classes of the form y2 ·H(x) in any stem mod Im J . The experts seem to



A FIBRATION FOR DIFFΣn 5

regard this as a potentially accessible, but unsolved , problem of homotopy theory. Certainly,
all x ∈ πn+t(SO(n + 1)) give y2 ·H(x) = 0 for all y when t is small.

There are two main steps involved in establishing (2.2): these follow below as (2.3) and
(2.4).

The first includes generalizing a diagram of [6, p. 240]. Since in (1.3) we have set up a
map ε : Diff Sn → SO(n + 1) (which depends on the choice of h̄ in (1.2)), it is important to
relate ε with the standard inclusion of both Diff Sn and SO(n + 1) in Top Sn. This is done
by

(2.3). Lemma. The following diagram is homotopy commutative:

Diff Sn
β

� � //

e

��
ε

##

Top Sn
β

χh

��
Pτ(Sn)

h̄
��

Top Sn

cβ

��
SO(n + 1) � � i // Top Sn

Here χh is conjugation by the homeomorphism h, whereas cβ is the composition

Top Sn −−→
π×1

Sn × Top Sn −−→
β̄×1

Top Sn × Top Sn −→
µ

Top Sn

where π projects a homeomorphism onto its value at 0 ∈ Sn = Rn∪{∞}, and µ is composition
of functions. Note that π ◦β (f) = π(f) ∈ Sn for all f , and that cβ is a homeomorphism with
inverse c−β.

The proof of (2.3) proceeds by passing between three equivalent versions of PTopτ(Sn),
the oriented principal topological tangent bundle of Sn. These may be displayed by the
commutative diagram of (principal) fibrations

S Top(n)
σ1 //

��

Top∗ Sn

��

σ2 // ETop
∗ (Dn, Sn)

��
PTopτ(Sn)

π

��

ϕ1 // Top Sn

π

��

ϕ2 // ETop(Dn, Sn)

π′

��
Sn 1 // Sn 1 // Sn

The maps σ1 and ϕ1 are induced by compactification, and σ2 and ϕ2 be restricting a homeo-
morphism of Rn ∪ {∞} to Dn.

To introduce the second ingredient in the proof of (2.2), let us return to our fibration of
(1.3). Suppose that α : Y → SO(n + 1) is a map of some reasonable space into the base.
If α does not factor through ε : Diff Sn → SO(n + 1) and does not lift to SO(n), then it
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represents a class with the properties we are seeking for X∗(S
n
β ) (in case Y is a sphere). We

thus wish to discuss the obstruction to lifting α to Diff Sn
β .

We may assume without loss of generality that the suspension S1 ∧ Y is given as an open
subset of some euclidean space Rn; in other words as an open smooth manifold. Now let
α∗γβ be the topological Sn bundle over S1 ∧ Y which arises by adjoining the composite

Y
α// SO(n + 1)

i //

γβ &&MMMMMMMMMM
Top Sn

c−β

��
Top Sn

Then if α lifts to Diff Sn
β , (2.3) tells us that the total space E(α∗γβ) admits a smoothing

which restricts to β on each fibre.
In fact it is most useful to work universally, and to consider the case of Y = SO(n + 1)

and α the identity map. Then E(γβ can be constructed by first choosing the ‘core’ plus a
single fibre, i. e. Sn ∪C SO(n + 1), where the attaching map is π ◦ γβ = π. To this we must
further attach a cone on the join Sn−1 ∗ SO(n + 1) by a suitable map η. We therefore have
a cofibre sequence

Sn ∧ SO(n + 1)
η−→ Sn ∪π C SO(n + 1)

θ−→ E(γβ) (C)

But E(γβ) is a topological manifold, fibered by Sn’s and over a smooth base. As such it
admits a S Top(n) bundle of tangents along the fibres, say

TopτF
: E(γβ)→ BS Top(n).

Our aim is to determine the extent to which E(γβ) admits a smoothing fibred by Sn
β ’s, or

equivalently to which it carries an n-plane bundle τF , agreeing with TopτF
topologically and

restricting to τ(Sn
β ) on each fibre.

Now from §1, τβ : Sn
β → B SO(n) extends to some bundle τ̄β over Sn

β ∪π C SO(n+1). Thus

we may construct τF at least over Sn ∪π C SO(n + 1), by composing τ̄β with h̄−1.
Returning to our cofibration (C), we can consider η∗τF over Sn ∧ SO(n + 1). This is

topologically trivialized by the existence of TopτF
, so we have a map σ(β) : Sn∧SO(n+1)→

Top(n)/O(n) which fits into the following homotopy commutative diagram

Sn ∧ SO(n + 1)

σ(β)

��

η // Sn ∪π C SO(n + 1)

τF

��

θ // E(γβ)

TopτF
��

Top(n)/O(n) // B SO(n) // BS Top(n)

So σ(β). which we shall confuse with its adjoint SO(n + 1) → Ω(Top(n)/O(n)), is the
obstruction to extending τF over the whole of E(γβ).
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Thus in terms of our original α∗γβ we deduce that if α : Y → SO(n + 1) lifts to Diff Sn
β

then the composite

Y
α−→ SO(n + 1)

σ(β)−−→ Ω(Top(n)/O(n))

is null-homotopic.
We have shown only that this map is a necessary obstruction to lifting α. In the light of the

celebrated Morlet equivalence B Diff(Dn, ∂) ' Ω(Top(n)/O(n)) (e. g. see [3]) it seems highly
likely that σ(β) and g(β) of (1.3) are the same map. Note that on homotopy groups σ(β)
induces a non-bilinear extension to πk(SO(n+1)) of the Milnor pairing ( ; β) : πk(SO(n))→
πk+n(Top /O).

For calculational purposes, and given the current state of the art, unstable results such as
we have obtained are not especially helpful. We must therefore show

(2.4). Lemma. The stabilization

sσ(β) : SO(n + 1)
σ(β)−−→ Ωn(Top(n)/O(n)→ Ωn(Top /O)

may be described as

SO(n + 1) −→
γβ

Top Sn −→
J

Ωn+1Sn+1 −−−−→
Ωn+1β

Ωn+1B(Top /O)

This formula follows simply from stabilizing the bundles in our discussion above.
To complete the proof of (2.2), we must choose Y = Sk and α to represent a class

x ∈ πk(SO(n + 1)) such that π∗(x) 6= 0 in πk(S
n). Then by (2.4), x ∈ Xk(S

n) if

Sk −→
x

SO(n + 1) −−→
σ(β)

Ωn(Top /O)

is not null-homotopic. The usual detection procedure for such a map is then to pass to
Ωn(G/O), and to compute its value in the summand πS

n+k/ Im J ⊂ πk+n(G/O).
In our case the maps involved can be unraveled to give sσ(β)∗x module Im J as

Sk x−→ SO(n + 1)
π×J−−→ Sn ×G

−β̃×1−−−→ G×G
◦−→ G

◦β̃−→ ΩnG.

This represents β̃ ◦ (J(x)− β̃(π ◦ x)) in πS
n+k/ Im J . But π ◦ x = H(x), whilst Novikov [5]

and Kosinski [4] have shown that β̃ ◦ J(x) ∈ Im J whenever k > 1
2
n + 1 (which is certainly

the case here).
We can now deduce our detection formula (2.2) in the form

sσ(β)∗x = ±β̃2 ·H(x) in πS
n+k/ Im J.

Note that if Sn
β bounds a parallelizable manifold, then β̃ = 0 by definition. So SX∗(S

n
β ) =

∅. We conclude with a result which is a more subtle version of this same fact

(2.5). Proposition. Let S ′X∗(S
n
β ) be the intermediate set SX∗(S

n
β ) ⊂ S ′X∗(S

n
β ) ⊂ X∗(S

n
β )

of elements detected by σ(β)∗x ∈ πn+k(Top /O). Then S ′X∗(S
n
β ) = ∅ if Sn

β bounds a paral-
lelizable manifold.
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Proof. By choice, β ∈ πn+k(B Top /O)) lifts to πn(G/ Top). But localized at 2, G/ Top is a
product of Eilenberg-MacLane spaces, and at odd primes is equivalent to BO. In either case
β ◦ f = 0 for any f ∈ πk+n+1(S

n+1). �

This may be one more way of saying that such Sn
β ’s are the most symmetric of exotic

spheres.
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