A FIBRATION FOR DIFF Σ^n

ERIK KJÆR PEDERSEN AND NIGEL RAY

0. INTRODUCTION

Let M^n be an oriented smooth manifold, and let $\text{Diff } M^n$ be its group of orientation preserving diffeomorphisms. Let $\text{Diff}(N^n, M_0^n)$ and $\text{Diff}_* M^n$ be the two subgroups (with the C^{∞} topology) which consist of diffeomorphisms fixing $M_0^n = M^n - D^n$ (for some embedded disc D^n) and the base point $* \in D^n \subset M^n$ respectively.

It is a common procedure when studying $\pi_*(\text{Diff } M^n)$ to restrict attention to either one of the above subgroups; it is therefore of some interest to study the homotopy braid of the triple (Diff M^n , Diff_{*} M^n , Diff (M^n, M_0^n)).

In fact this is equivalent to considering the following 'comparison diagram' of principal fibrations, constructed by the usual techniques.

(0.1). DIAGRAM.

Here d is the derivative map at $*, P\tau(M^n)$ is the total space of the oriented smooth principal tangent bundle to M^n , e maps $f \in \text{Diff } M^n$ to the derivative at * of the restriction $f|D^n$, and π is evaluation at *.

The only fibration on display above which is not well documented is the lower horizontal one, i. e.

$$\operatorname{Diff}(M^n, M^n_0) \xrightarrow{} \operatorname{Diff} M^n \xrightarrow{} P\tau(M^n)$$
 (F)

Its existence follows from the fibration

$$\operatorname{Diff}(M^n, M_0^n) \xrightarrow[i]{} \operatorname{Diff} M^n \xrightarrow[e']{} \mathcal{E}(D^n, M^n),$$

where $\mathcal{E}(,)$ denotes the space of orientation preserving smooth embeddings on D^n . But $\mathcal{E}(D^n, M^n)$ may be identified with $P\tau(M^n)$, since

$$\mathcal{E}_*(D^n, M^n) \to \mathcal{E}(D^n, M^n) \to M^n$$

is a model for the principal tangent bundle of M^n via the derivative map.

The homotopy braid of (0.1) gives rise to two interlaced problems. Firstly, to what extent does the 'linearization' j_P determine the map j; and secondly, to what extent does d determine e?

We shall discuss the second of these questions in the special case of M^n an exotic sphere Σ^n . In this case, (F) generalizes an exact sequence described by R. Schultz [6]. In particular we study the difference between the boundary maps associated to d and to e, and reduce the detection of a certain class of 'stable' homotopy element so arising to an interesting, but apparently unsolved, problem in the homotopy groups of spheres.

Throughout, we shall write S_{β}^{n} for the exotic sphere given by an element $\beta \in \pi_{n}(\text{Top }/O)$, $n \geq 7$. Such β arises from an isotopy class of diffeomorphisms $\beta \in \text{Diff } S^{n-1}$, so any S_{β}^{n} can be represented as $D_{0}^{n} \cup_{\beta} D_{c}^{n}$, where $0 \in D_{0}^{n}$ is the basepoint, and D_{c}^{n} is the complementary disc.

We are grateful to Dick Lashof for a helpful letter.

1. The fibration

Our fibration (F) of §0 can be further simplified when $M^n = S^n_{\beta}$. For it has long been known that, whatever β , $P\tau(S^n) = SO(n+1)$. It is most convenient to describe this fact by means of

(1.1). LEMMA. There is a homeomorphism of degree 1, say $h : S^n_\beta \to S^n$, such that the diagram

homotopy commutes. Thus $P\tau(S^n_\beta)$ is homeomorphic to SO(n+1) via an SO(n) equivariant map,

Proof. Since S^n_{β} is stably parallelizable, $\tau(S^n_{\beta})$ lifts to S^n . We can choose the lift h to have degree 1 by appealing to the euler characteristic if n is even, and the Kervaire semicharacteristic if n is odd

(1.2). NOTE. The resulting homeomorphism $\bar{h} : P\tau(S^n_\beta) \to \mathrm{SO}(n+1)$ is defined only up to alteration by any map $S^n_\beta \to \mathrm{SO}(n)$.

Proof. Since S_{β}^{n} is stably parallelizable, $\tau(S_{\beta}^{n})$ lifts to S^{n} . We can choose the lift h to have degree 1 by appealing to the euler characteristic if n is even, and the Kervaire semicharacteristic if n is odd.

We can now construct our special version of (0.1) as follows:

(1.3). DIAGRAM.

Note that we have labeled $\bar{h} \circ e$ as ε , and the classifying map of ε as $g(\beta)$. Of course j_P is precisely the standard inclusion, and the homotopy commutativity of the central square is assured by construction.

(1.4). DEFINITIONS.
(i) Let W_{*}(Sⁿ) ⊂ π_{*}(Diff Sⁿ) be the graded subgroup Im i'_{*} ∩ ker j_{*}.
(ii) Let X_{*}(Sⁿ) ⊂ π_{*}(SO(m + 1)) be the graded set of elements x with the property that π_{*}(x) ≠ 0 ≠ g(β)_{*}(x).

Thus $W_*(S^n_\beta)$ is a measure of the extent to which j_P fails to determine j, and $X_*(S^n_\beta)$ is a measure of the extent to which ∂' fails to determine $g(\beta)$. Also $0 \neq x \in W_*(S^n_\beta)$ yields $(i')^{-1}(w) \in X_*(S^n_\beta)$.

We investigate $X_*(S^n_\beta)$ below. Note that, if k < n, then $W_k(S^n_\beta) = 0$ and $X_k(S^n_\beta) = \emptyset$. Also, $W_*()$ and $X_*()$ are defined for arbitrary M^n .

If S^n_{β} is the standard sphere S^n , then (1.3) 'collapses'. For the symmetry of S^n allows splitting Diff $S^n \leftarrow SO(n+1)$ of (F), which restricts to a splitting of the upper fibration. Thus $W_*(S^n) = 0$ and $X_*(S^n) = \emptyset$.

Hence the cardinalities of $W_*()$ and $X_*()$ in some sense reflect the asymmetry of S^n_β . We develop below a detection procedure for 'stable' elements in $X_*()$.

2. Detecting elements in $X_*()$

We first summarize some information from [6] concerning the map ∂' of (1.3). Before so doing, however, it is convenient to recall some familiar notation which will also be useful for the remainder of this section.

We shall write Top S^n for the group of orientation preserving homeomorphisms of S^n , so that we have the following commutative diagram:

Here i is the standard inclusion, j is the suspension, and k is one-point compactification.

Now according to [1], the composite $\pi_*(S \operatorname{Top}(n)) \to \pi_*(\operatorname{Top}/O)$ is epic, so we may suppose that S^n_{β} is represented by a map $S^n \to S \operatorname{Top}(n)$ (tantamount to choosing a framing for S^n_{β}); or, via k_* , a map $\bar{\beta} : S^n \to \operatorname{Top} S^n$. Continuing around the diagram, we also obtain $\tilde{\beta} \in \pi_n(G/O)$ as the image of both $\bar{\beta}$ and β . Moreover $\tilde{\beta}$ lies in the summand $\pi_n(G)/\operatorname{Im} J$. We can now state

(2.1). THEOREM. (R. Schultz). Given $\alpha \in \pi_k(SO(n))$, then $\partial'_*\alpha \neq 0$ in $\pi_k(B \operatorname{Diff}(D^n, \partial))$ whenever $\tilde{\beta}J(\alpha) \neq 0$ in $\pi^S_{n+k}/\operatorname{Im} J$.

Our result concerning $X_*()$ is in the same spirit, and can be stated thus:

(2.2). THEOREM. Given $x \in \pi(\mathrm{SO}(n+1))$, then $x \in X_k(S^n_\beta)$ whenever $\tilde{\beta}^2 \cdot H(x) \neq 0$ in $\pi^S_{n+k}/\mathrm{Im} J$.

Here $H(x) \in \pi_k(S^n)$ is represented by the composite $S^k \xrightarrow{x} SO(n+1) \xrightarrow{\pi} S^n$ (π being the usual projection), which is proven in [2] to be the Hopf invariant (up to sign and suspension) of the element $J(x) \in \pi_{k+n+1}(S^{n+1})$.

Elements so detectable constitute a stable subset $SX_*(S^n_\beta) \subset X_*(S^n_\beta)$. Unfortunately, we know of no non-zero classes of the form $y^2 \cdot H(x)$ in any stem mod Im J. The experts seem to

regard this as a potentially accessible, but unsolved, problem of homotopy theory. Certainly, all $x \in \pi_{n+t}(\mathrm{SO}(n+1))$ give $y^2 \cdot H(x) = 0$ for all y when t is small.

There are two main steps involved in establishing (2.2): these follow below as (2.3) and (2.4).

The first includes generalizing a diagram of [6, p. 240]. Since in (1.3) we have set up a map ε : Diff $S^n \to SO(n+1)$ (which depends on the choice of \bar{h} in (1.2)), it is important to relate ε with the standard inclusion of both Diff S^n and SO(n+1) in Top S^n . This is done by

(2.3). LEMMA. The following diagram is homotopy commutative:

Here χ_h is conjugation by the homeomorphism h, whereas c_β is the composition

$$\operatorname{Top} S^n \xrightarrow[\pi \times 1]{} S^n \times \operatorname{Top} S^n \xrightarrow[\bar{\beta} \times 1]{} \operatorname{Top} S^n \times \operatorname{Top} S^n \xrightarrow[\mu]{} \operatorname{Top} S^n$$

where π projects a homeomorphism onto its value at $0 \in S^n = \mathbb{R}^n \cup \{\infty\}$, and μ is composition of functions. Note that $\pi \circ_{\beta} (f) = \pi(f) \in S^n$ for all f, and that c_{β} is a homeomorphism with inverse $c_{-\beta}$.

The proof of (2.3) proceeds by passing between three equivalent versions of $P^{\text{Top}}\tau(S^n)$, the oriented principal topological tangent bundle of S^n . These may be displayed by the commutative diagram of (principal) fibrations

The maps σ_1 and φ_1 are induced by compactification, and σ_2 and φ_2 be restricting a homeomorphism of $\mathbb{R}^n \cup \{\infty\}$ to D^n .

To introduce the second ingredient in the proof of (2.2), let us return to our fibration of (1.3). Suppose that $\alpha : Y \to SO(n+1)$ is a map of some reasonable space into the base. If α does not factor through $\varepsilon : Diff S^n \to SO(n+1)$ and does not lift to SO(n), then it represents a class with the properties we are seeking for $X_*(S^n_\beta)$ (in case Y is a sphere). We thus wish to discuss the obstruction to lifting α to Diff S^n_β .

We may assume without loss of generality that the suspension $S^1 \wedge Y$ is given as an open subset of some euclidean space \mathbb{R}^n ; in other words as an open smooth manifold. Now let $\alpha^* \gamma_\beta$ be the topological S^n bundle over $S^1 \wedge Y$ which arises by adjoining the composite

Then if α lifts to Diff S^n_{β} , (2.3) tells us that the total space $E(\alpha^* \gamma_{\beta})$ admits a smoothing which restricts to β on each fibre.

In fact it is most useful to work universally, and to consider the case of Y = SO(n + 1)and α the identity map. Then $E(\gamma_{\beta} \text{ can be constructed by first choosing the 'core' plus a$ $single fibre, i. e. <math>S^n \cup C \operatorname{SO}(n+1)$, where the attaching map is $\pi \circ \gamma_{\beta} = \pi$. To this we must further attach a cone on the join $S^{n-1} * \operatorname{SO}(n+1)$ by a suitable map η . We therefore have a cofibre sequence

$$S^n \wedge \mathrm{SO}(n+1) \xrightarrow{\eta} S^n \cup_{\pi} C \mathrm{SO}(n+1) \xrightarrow{\theta} E(\gamma_\beta)$$
 (C)

But $E(\gamma_{\beta})$ is a topological manifold, fibered by S^n 's and over a smooth base. As such it admits a S Top(n) bundle of tangents along the fibres, say

$$\operatorname{Top}_{\tau_{F}}: E(\gamma_{\beta}) \to BS \operatorname{Top}(n).$$

Our aim is to determine the extent to which $E(\gamma_{\beta})$ admits a smoothing fibred by S_{β}^{n} 's, or equivalently to which it carries an *n*-plane bundle τ_{F} , agreeing with $\text{Top}_{\tau_{F}}$ topologically and restricting to $\tau(S_{\beta}^{n})$ on each fibre.

Now from §1, $\tau_{\beta} : S_{\beta}^n \to B \operatorname{SO}(n)$ extends to some bundle $\bar{\tau}_{\beta}$ over $S_{\beta}^n \cup_{\pi} C \operatorname{SO}(n+1)$. Thus we may construct τ_F at least over $S^n \cup_{\pi} C \operatorname{SO}(n+1)$, by composing $\bar{\tau}_{\beta}$ with \bar{h}^{-1} .

Returning to our cofibration (C), we can consider $\eta^* \tau_F$ over $S^n \wedge SO(n+1)$. This is topologically trivialized by the existence of $\operatorname{Top}_{\tau_F}$, so we have a map $\sigma(\beta) : S^n \wedge SO(n+1) \to \operatorname{Top}(n)/O(n)$ which fits into the following homotopy commutative diagram

So $\sigma(\beta)$. which we shall confuse with its adjoint $SO(n + 1) \rightarrow \Omega(Top(n)/O(n))$, is the obstruction to extending τ_F over the whole of $E(\gamma_\beta)$.

A FIBRATION FOR $\mathrm{DIFF}\Sigma^n$

Thus in terms of our original $\alpha^* \gamma_\beta$ we deduce that if $\alpha : Y \to SO(n+1)$ lifts to Diff S^n_β then the composite

$$Y \xrightarrow{\alpha} \mathrm{SO}(n+1) \xrightarrow{\sigma(\beta)} \Omega(\mathrm{Top}(n)/O(n))$$

is null-homotopic.

We have shown only that this map is a necessary obstruction to lifting α . In the light of the celebrated Morlet equivalence $B \operatorname{Diff}(D^n, \partial) \simeq \Omega(\operatorname{Top}(n)/O(n))$ (e. g. see [3]) it seems highly likely that $\sigma(\beta)$ and $g(\beta)$ of (1.3) are the same map. Note that on homotopy groups $\sigma(\beta)$ induces a non-bilinear extension to $\pi_k(\operatorname{SO}(n+1))$ of the Milnor pairing $(;\beta):\pi_k(\operatorname{SO}(n)) \to \pi_{k+n}(\operatorname{Top}/O)$.

For calculational purposes, and given the current state of the art, unstable results such as we have obtained are not especially helpful. We must therefore show

(2.4). LEMMA. The stabilization

$$s\sigma(\beta): \mathrm{SO}(n+1) \xrightarrow{\sigma(\beta)} \Omega^n(\mathrm{Top}(n)/O(n) \to \Omega^n(\mathrm{Top}/O)$$

may be described as

$$SO(n+1) \xrightarrow{\gamma_{\beta}} Top S^n \xrightarrow{J} \Omega^{n+1} S^{n+1} \xrightarrow{\Omega^{n+1}\beta} \Omega^{n+1} B(Top / O)$$

This formula follows simply from stabilizing the bundles in our discussion above.

To complete the proof of (2.2), we must choose $Y = S^k$ and α to represent a class $x \in \pi_k(\mathrm{SO}(n+1))$ such that $\pi_*(x) \neq 0$ in $\pi_k(S^n)$. Then by (2.4), $x \in X_k(S^n)$ if

$$S^k \xrightarrow[x]{} \operatorname{SO}(n+1) \xrightarrow[\sigma(\beta)]{} \Omega^n(\operatorname{Top}/O)$$

is not null-homotopic. The usual detection procedure for such a map is then to pass to $\Omega^n(G/O)$, and to compute its value in the summand $\pi^S_{n+k}/\operatorname{Im} J \subset \pi_{k+n}(G/O)$.

In our case the maps involved can be unraveled to give $s\sigma(\beta)_*x$ module Im J as

$$S^k \xrightarrow{x} \mathrm{SO}(n+1) \xrightarrow{\pi \times J} S^n \times G \xrightarrow{-\tilde{\beta} \times 1} G \times G \xrightarrow{\circ} G \xrightarrow{\circ \tilde{\beta}} \Omega^n G$$

This represents $\tilde{\beta} \circ (J(x) - \tilde{\beta}(\pi \circ x))$ in $\pi_{n+k}^S / \text{Im } J$. But $\pi \circ x = H(x)$, whilst Novikov [5] and Kosinski [4] have shown that $\tilde{\beta} \circ J(x) \in \text{Im } J$ whenever $k > \frac{1}{2}n + 1$ (which is certainly the case here).

We can now deduce our detection formula (2.2) in the form

$$s\sigma(\beta)_*x = \pm \tilde{\beta}^2 \cdot H(x)$$
 in $\pi^S_{n+k}/\operatorname{Im} J.$

Note that if S^n_{β} bounds a parallelizable manifold, then $\tilde{\beta} = 0$ by definition. So $SX_*(S^n_{\beta}) = \emptyset$. We conclude with a result which is a more subtle version of this same fact

(2.5). PROPOSITION. Let $S'X_*(S^n_{\beta})$ be the intermediate set $SX_*(S^n_{\beta}) \subset S'X_*(S^n_{\beta}) \subset X_*(S^n_{\beta})$ of elements detected by $\sigma(\beta)_*x \in \pi_{n+k}(\text{Top}/O)$. Then $S'X_*(S^n_{\beta}) = \emptyset$ if S^n_{β} bounds a parallelizable manifold. Proof. By choice, $\beta \in \pi_{n+k}(B \operatorname{Top} / O)$ lifts to $\pi_n(G / \operatorname{Top})$. But localized at 2, G / Top is a product of Eilenberg-MacLane spaces, and at odd primes is equivalent to BO. In either case $\beta \circ f = 0$ for any $f \in \pi_{k+n+1}(S^{n+1})$.

This may be one more way of saying that such S^n_β 's are the most symmetric of exotic spheres.

References

- D. Burghelea and R. Lashof, The homotopy type of the space of diffeomorphisms II, Trans. Amer. Math. Soc. 196 (1974), 37–50.
- M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. (2) 69 (1959), 345–365.
- R. Kirby and L. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings and Triangulations, Annals of Mathematics Studies, vol. 88, Princeton Univ. Press, 1977.
- 4. A. Kosinski, On the inertia group of π -manifolds, Amer. J. Math. 89 (1967), 227–248.
- 5. S. P. Novikov, Differentiable sphere bundles, Izv. Akad. Nauk SSSR, Ser. Mat. 29 (1965), 1–96.
- R. Schultz, Improved estimates for the degree of symmetry of certain homotopy spheres, Topology 10 (1971), 227–235.

MATEMATISK INSTITUT, ODENSE UNIVERSITET, 5000 ODENSE, DENMARK

MATHEMATICS DEPARTMENT, THE UNIVERSITY, MANCHESTER M13 9PL, ENGLAND