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1. Introduction

In classical surgery theory one begins with a Poincaré duality space X and a normal map

νM
f̃ //

��

ξ

��
M

f // X

The problem is to vary (M, f) by a normal cobordism to obtain a homotopy equivalence
f ′ : M ′ → X.

It is desirable to have an epsilon or controlled version of surgery theory. Thus, X comes
equipped with a reference map to a metric space K, and the aim is to produce a homotopy
equivalence f ′ : M ′ → X, which is small measured in K. The existence of such an f ′ implies
that X is a small Poincaré duality space in the sense that cells are close to their dual cells,
measured in K. That X be a small Poincaré duality space must therefore be part of the
original data.

For many applications the most interesting question is whether such a map f ′ exists with
arbitrarily small control in K. In this case, X would have to be an ε-Poincaré duality space
for all ε > 0. Unfortunately, there are technical difficulties in defining and dealing with such
ε-Poincaré duality spaces. Our approach is to work instead with a bounded surgery theory.
Our bounded surgery theory generalizes epsilon surgery theory in the same sense that simple
proper surgery theory (as developed in [39, 41, 18, 26]) generalizes classical compact surgery
theory. The fact that bounded categories are categories avoids many technical difficulties.

Consider a classical surgery problem as above. Cross with the real line and look for an
infinite simple homotopy equivalence f ′ : M ′ → X × R. Such a manifold M ′ has the form
N ′×R for some closed manifold N ′, so f ′ : N ′ → X solves the classical surgery problem. This
means that the two-ended simple surgery theory is as good for applications as the compact
theory. The two-ended theory is more general, though, since it applies to any two-ended
manifold with fundamental group equal to the fundamental group of each end.

This is our approach to epsilon surgery theory and its generalization. We consider surgery
problems parameterized over K×R, where K×R is given a metric so that K×{t} becomes
t times as big as K × {1} for t > 1. Call this space O(K+). (This description is not quite
accurate. See §2 for precise definitions and details).1

1It is easy to see that if Z is a Poincaré duality space with a map Z → K such that Z has ε-Poincaré
duality for all ε > 0 when measured in K (after subdivision), e. g. a homology manifold, then Z × R is an
O(K+)-bounded Poincaré complex. The converse (while true) will not concern us here.



EPSILON SURGERY THEORY 3

We let X be a complex with bounded Poincaré duality over this control space. Given a
proper normal map

νM
f̃ //

��

ξ

��
M

f // X // O(K+)

we study the problem of producing a proper normal cobordism to f ′ : M → X such that
f ′ is a bounded simple homotopy equivalence measured in O(K+). The obstruction groups
obtained are the desired obstruction groups for epsilon surgery. This is our codification of
the idea that an ε-Poincaré space (for all ε > 0) is a sequence of smaller and smaller Poincaré
duality spaces joined by smaller and smaller Poincaré cobordisms.

Thus, in caseX is a homology manifold (homology manifolds are naturally epsilon Poincaré
for all epsilon) with a reference map ϕ : X → K, we replace an epsilon surgery problem

νM
f̃ //

��

ξ

��
M

f // X // K

by the bounded surgery problem

νM × 1
f̃ //

��

ξ × 1

��
M × R

f //// X × R // O(K+)

If f × id is properly normally cobordant to a bounded simple equivalence f ′ : M → X × R,
we split M ′ near the end to obtain a sequence of more and more controlled solutions to
the original problem. Our approach generalizes this sort of epsilon surgery in case other
data happen to be available. For an application in which a parameterization over an open
cone appears naturally, see Theorem 18.1, which is not a bounded translation of an epsilon
problem. The other applications in §18 do, however, illustrate how one passes between the
bounded and epsilon worlds.

Naturally, we require hypothesis in addition to the general situation described above. In
the first part of the paper, our main hypotheses are that the control map X → K have
constant coefficients in the sense that it “looks like” a product on π1, and that K be a
finite complex. This restricts applicability in, say, the case of group actions, to semifree
group actions. In §14 we show how to extend the theory to treat a more general equivariant
case, but for readability, we have chosen to give most details in the special case of constant
coefficients.
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Some surprising phenomena come up. The method allows studying many more objects
than exist in the compact world. An n-manifold parameterized by Rn+k is an object of
dimension −k, so we have objects that in some sense correspond to negative dimensional
manifolds. This leads to non-connective surgery spectra. The necessary algebra for our
theory has been developed in [23, 27, 9].

Needless to say, we have benefited from discussions with many colleagues. We should like
particularly to mention Anderson, Hambleton, Hughes, Lück, Munkholm, Quinn, Ranicki,
Taylor, Weibel, Weinberger, and Williams. In fact, related theories have been developed by
Hughes, Taylor and Williams, [14], Madsen and Rothenberg [17], and Weinberger [44].

Finally we want to acknowledge that the very stimulating atmosphere of the SFB at
Göttingen has had a major effect on the developments of this paper. The first author would
also like to thank Odense University for its support in the fall of 1987.

2. Algebraic preliminaries

Let M be a metric space, and let R be a ring with anti-involution. For definiteness, the
reader should keep in mind the model case in which M is the infinite open cone O(K) on
a complex K ⊂ Sn ⊂ Rn+1 and R = Zπ, with π a finitely presented group. The category
CM(R) is defined as follows:

Definition 2.1. An object A of CM(R) is a collection of finitely generated free right R-
modules Ax, one for each x ∈ M , such that for each ball C ⊂ M of finite radius, only
finitely many Ax, x ∈ C, are nonzero. A morphism ϕ : A→ B is a collection of morphisms
ϕx

y : Ax → By such that there exists k = k(ϕ) such that ϕx
y = 0 for d(x, y) > k.

The composition of ϕ : A → B and ψ : B → C is given by (ψ ◦ ϕ)x
y =

∑
z∈M ψz

yϕ
x
z . The

composition (ψ ◦ϕ) satisfies the local finiteness and boundedness conditions whenever ψ and
ϕ do.

Definition 2.2. The dual of an object A of CM(R) is the object A∗ with (A∗)x = A∗
x =

HomR(Ax, R) for each x ∈ M. A∗
x is naturally a left R-module, which we convert to a right

R-module by means of the anti-involution. If φ : A→ B is a morphism, then φ∗ : B∗ → A∗

and (φ∗)x
y(h) = h ◦ φy

x, where h : Bx → R and φy
x : Ay → Bx. φ∗ is bounded whenever φ

is. Again, φ∗ is naturally a left module homomorphism which induces a homomorphism of
right modules B∗ → A∗ via the anti-involution.

Definition 2.3. There are functors ⊕ and Π from CM(R) to Mod(R), the category of free
modules over R. ⊕A =

⊕
x∈M Ax and ΠA =

∏
x∈M Ax. Notice that ΠA∗ = (⊕A)∗.

Definition 2.4. Consider a map p : X →M

(i) The map p : X →M is eventually continuous if there exist k and a covering {Uα} of
X, such that the diameter of p(Uα) is less than k.

(ii) A bounded CW complex over M is a pair (X, p) consisting of a CW complex X
and an eventually continuous map p : X → M such that there exists k such that
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diam(p(C)) < k for each cell C of X. (X, p) is called proper if the closure of p−1(D) is
compact for each compact D ⊂M . We consider (X, p1) and (X, p2) to be the same,
if there exists k so that d(p1(x), p2(x)) < k for all x.

Remark 2.5. We do not require the control map p to be continuous in the above definition.
It is, however, often the case that p may be chosen to be continuous. This is the case if the
metric space is “boundedly highly connected” in an appropriate sense. See Definition 5.2.

Definition 2.6. Consider a bounded CW complex (X, p)

(i) The bounded CW complex (X, p) is (−1)-connected if there is k ∈ R+ so that for
each point m ∈M , there is a point x ∈ X such that d(p(x),m) < k.

(ii) (X, p) is 0-connected if for every d > 0 there exist k = k(d) so that if x, y ∈ X and
d(p(x), p(y)) ≤ d, then x and y may be joined by a path in X whose image in M
has diameter < k(d). Notice that we have set up our definitions so that 0-connected
does not imply −1-connected.

Definition 2.7. Let p : X →M be 0-connected, but not necessarily (-1)-connected.

(i) (X, p) has trivial bounded fundamental group if for each d > 0, there exist k = k(d) so
that for every loop α : S1 → X with diam(p◦α(S1)) < d, there is a map ᾱ : D2 → X
so that the diameter of p ◦ ᾱ(D2) is smaller than k.

(ii) (X, p) has bounded fundamental group π if there is a π-cover X̃ so that X̃ →M has
trivial bounded fundamental group.

If X is a CW complex, we will denote the cellular chains of X̃ by C#(X), considered as
a chain complex of free right Z(π) modules. When p : X → M is a proper bounded CW
complex with bounded fundamental group, we can consider C#(X) to be a chain complex in
CM(Zπ) as follows: For each cell C ∈ X, choose a point c ∈ C and let D#(X)y be the free
submodule of C#(X) generated by cells for which p(c) = y. The boundary map is bounded,

since cells have a fixed maximal size. We will denote the cellular chains of X̃ by D#(X) when
we consider them as a chain complex in CM(Zπ) and by C#(X) when we consider them as
an ordinary chain complex of Zπ modules. We will denote D#(X)∗ by D#(X). If (X, ∂X)
is a bounded CW pair, D#(X, ∂X) denotes the relative cellular chain complex regarded as
a chain complex in CM(Zπ).

Lemma 2.8. When p : X →M is a proper bounded CW complex with bounded fundamental
group, we have the following formulas

(i) ⊕D#(X) = C#(X)
(ii) ⊕D#(X) = C#

cs(X) (≡ cochains with compact support)

(iii) ΠD#(X) = C lf
# (X) (≡ locally finite chains)

(iv) ΠD#(X) = C#(X).

Proof. Statement (i) is clear, and (iv) follows from the formula Π(A∗) = (⊕A)∗. Statements
(ii) and (iii) follow easily from the fact that p is proper. In case p is not proper this suggests
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an extension of the concepts of homology with locally finite chains and cohomology with
compact support to concepts requiring compactness or locally finiteness only in a designated
direction. �

We recall the open cone construction from [27]. If K is a subset of Sn ⊂ Rn+1, we define
O(K) to be the metric space O(K) = {t · x|0 ≤ t, x ∈ K} ⊂ Rn+1. Here, O(K) inherits
a metric from Rn+1. We think of this as a 1-parameter family of metrics on K, in which
distance grows larger with increasing t. We state the main result of [27]:

Theorem 2.9. Let K be of the homotopy type of a finite complex. The K-theory of the
categories CO(K)(R) is given by

K∗(CO(K)(R)) = KR∗−1(K)

where KR is the nonconnective homology theory associated to the algebraic K-theory of the
ring R.

We refer the reader to [27] for further facts about the O construction and the K-theory
of CO(K)(R).

Definition 2.10. Let R be a ring with unit. We denote Coker(K∗(CM(Z)) → K∗(CM(R)))

by K̃∗(CM(R)). If R is a group ring, R = Zπ, we denote K̃1(CM(R))/± π by WhM(π).

Definition 2.11. We define

(i) a metric space M is allowable if there exist a bounded finite-dimensional simplicial
complex K and a map p : K →M which is −1, 0- and 1-connected.

(ii) a map f : X → Y between metric spaces is eventually Lipschitz if the inverse image
of every bounded set is bounded and if there are numbers k > 0 and d > 0 so
that d(f(x), f(x′)) ≤ max(d, kd(x, x′)) for all x, x′ ∈ X. We say that X and Y are
eventually Lipschitz equivalent if there exist a number M > 0 and eventual Lipschitz
maps f : X → Y , g : Y → X so that d(f ◦ g, id) < M and d(g ◦ f, id) < M .

In connection with our study of the resolution problem, we will want to apply this theory to
open cones on compact finite-dimensional ANR’s, so we prove that such spaces are allowable.

Proposition 2.12. If X ⊂ Sn is a compact ANR, then O(X) is an allowable metric space.

Proof. Let rt : U → X be a homotopy from a neighborhood U of X in Sm to X such that
r0 = id, r1 : U → X is a retraction, and rt|X = id for all t. Let X =

⋂∞
i=1 Pi, where

P1 ⊃ P2 ⊃ . . . are finite polyhedra and rt(Pi+1) ⊂ Pi for all t ∈ [0, 1]. We may assume that
Pn ⊂ N 1

n
(X). Form the telescope K =

⋃∞
n=1O(Pn) ∩ B(n, 0), where B(n, 0) is the closed

ball of radius n around 0 ∈ Rm+1. The map r1 induces a map r̄ : K → O(X) which is −1, 0
and 1-connected. �

Remark 2.13. Notice the following
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(i) If M = O(X) is the open cone on a compact ANR and p : Z → M is a finite-
dimensional bounded CW complex, then p may be chosen to be continuous. The
argument is an induction over the skeleta of Z starting with p restricted to the 0-
skeleton.

(ii) Assume that K is a connected PL complex. Then we have

K̃1(CO(K)(R)) = K1(CO(K)(R)) and WhO(K)(π) = K̃1(CO(K)(Zπ)),

except when K is empty, in which case O(K) = pt. The argument is an Eilenberg
swindle.

Definition 2.14. Let M be a metric space and let p : X → M and q : Y → M be maps.
A map f : X → Y is said to be bounded over M (or simply bounded) if there is a number
k > 0 so that d(q ◦ f(x), p(x)) < k for all x ∈ X. We say that f is a bounded homotopy
equivalence if there exist g : Y → X and homotopies h : f ◦ g ∼ id, l : g ◦ f ∼ id so that
f, g, h and l are bounded.

Theorem 2.15. Let M be an allowable metric space and let pX : X → M , pY : Y → M
be proper bounded finite-dimensional CW complexes, both −1 and 0-connected with bounded
fundamental group π. If f : X → Y is a cellular map such that:

(i) f ◦ pY = pX .
(ii) f induces a π1-isomorphism.
(iii) f induces a (bounded) homotopy equivalence of chain complexes in CM(Zπ), f# :

D#(X)→ D#(Y ).

Then f is a bounded homotopy equivalence.

Proof. This is proved in [2] for the case of a continuous control map. An alternative approach
that works in our generality is to replace X and Y by proper regular neighborhoods N(X) ⊂
N(Y ) in some high-dimensional Euclidean space and then apply the bounded h-cobordism
theorem 2.17. The problem with torsion is solved by crossing with S1, thus killing the torsion,
thus getting a bounded homotopy equivalence of X×S1 → Y ×S1, and hence X → Y since
X is bounded homotopy to X × R which is the cyclic cover of X × S1. �

Remark 2.16. The theorem above plays a rôle in our theory which is analogous to the
Whitehead theorem’s rôle in standard surgery theory.

Finally we note that we have the bounded analogue of the s-cobordism theorem.

Theorem 2.17. (Bounded s-cobordism theorem). Assume W →M is a −1 and 0-connected
manifold with bounded fundamental group π such tha t the boundary of W has 2 components
∂0W ⊂ W and ∂1W ⊂ W , such that the inclusions are bounded homotopy equivalences. The
torsion τ of W is defined by the torsion of the contractible chain complex D#(W,∂0W ) ∈
WhM(π) see [37]. For dim(W ) > 5 we have that W is isomorphic to ∂0W × I if and only if
τ = 0.
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Proof. The s-cobordism theorem in [25] is only stated for the parameter space Rn, and in
that context a bounded and thin h-cobordism theorem is proved. As far as the bounded
s-cobordism theorem is concerned, the arguments only use that the h-cobordism is −1 and
0-connected with bounded fundamental group. �

3. Bounded Poincaré complexes

Given a bounded CW complex p : X → M with bounded fundamental group π, an
element [y] ∈ H lf

n (X,Z) induces a cap-product y∩− : D#(X)→ Dn−#(X). Here, y∩− is a
homomorphism of chain complexes in CM(Z) and is well-defined up to chain homotopy. The
formula defining y∩− is the usual one using the Alexander-Whitney diagonal approximation.
The size estimate on y ∩ − follows from the fact that the diagonal approximation takes the
generator c ∈ (Dn(X))m to a sum

∑
ci ⊗ c′i where ci ∈ (D#(X))mi

, c′i ∈ (D#(X))m′
i
, and

d(p(mi), p(m
′
i)) ≤ 2k, where k is the bound on the diameter of the cells of X as measured

in M .

Our notational conventions in the following definition are based on [43, pp. 21–22]

Definition 3.1. Let p : X → M be a proper bounded CW complex with bounded funda-

mental group π, and let X̃ → X be an orientation double covering. Then X is a bounded
n-dimensional Poincaré duality space if there is an element [X] ∈ H lf

n (X; Z), such that
[X]∩− : D#(X)→ Dn−#(X) is a bounded homotopy equivalence of chain complexes. Here,
Z is made into a left Zπ module using the anti-involution on Zπ. X is a simple bounded
Poincaré duality space if the torsion of [X] ∩ − is trivial in WhM(π). If p : X → M is
a disjoint union of spaces satisfying this condition, we shall also call X a Poincaré space.
Notice that X may have infinitely many components, but the properness of p : X → M
ensures that locally there are only finitely many components.

Definition 3.2. Let p : (X, ∂X) → M be a proper bounded CW pair so that X has
bounded fundamental group π. The pair (X, ∂X) is an n-dimensional bounded Poincaré
duality pair if ∂X is an (n − 1)-dimensional bounded Poincaré complex with orientation
double covering the pullback of the orientation double covering on X and if there is an
element [X] ∈ H lf

n (X, ∂X; Z), such that [X] ∩ − : D#(X) → Dn−#(X, ∂X) is a bounded
homotopy equivalence of chain complexes. (X, ∂X) is a simple bounded Poincaré duality
space, if the torsion of [X] ∩ − is trivial in WhM(π).

Remark 3.3. We note that [X] ∩ − is independent up to chain homotopy of the choice of
representative chain for [X]. This is true since any other choice is of the form X + δz and
(X + δz)∩ y− x∩ y = δz ∩ y = δ(z ∩ y)− z ∩ δy, so z ∩− is a chain homotopy between the
two maps X∩ and (X + δz)∩.

Example 3.4. If X happens to be a manifold with a bounded handle decomposition, the
usual proof of Poincaré duality produces a bounded Poincaré structure on X.
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Definition 3.5. Let φ : (W,∂W ) → (X, ∂X) be a map of bounded Poincaré duality pairs
such that φ∗([W ]) = [X]. We define K#(W,∂W ) to be the algebraic mapping cone of
φ∗ : D#(X, ∂X)→ D#(W,∂W ). We define K#(W,∂W ) to be the dual of K#(W,∂W ). We
have short exact sequences of chain complexes

0 // D#(X, ∂X)
φ∗ // D#(W,∂W ) // K#(W,∂W ) // 0

0 // K#(W,∂W ) // D#(W,∂W )
φ∗ //// D#(X, ∂X) // 0.

As in classical surgery theory we have the following:

Lemma 3.6. Let φ : (W,∂W )→ (X, ∂X) be a map of bounded Poincaré duality pairs such
that φ∗([W ]) = [X]. Then cap product with [W ] and [X] induces a bounded chain homotopy
equivalence from K#(W,∂W ) to Kn−#(W ).

Remark 3.7. We have

(i) This definition ofK#(W,∂W ) givesK#(W,∂W ) the same indexing as the kernel com-
plex in [4] and [43]. Except for a shift in the index and changes in signs, K#(W,∂W )
is just the algebraic mapping cone of D#(W,∂W )→ D#(X, ∂X).

(ii) Parameterizing an open manifold by the identity, our constructions give a simple proof
of Poincaré duality on open manifolds from homology with locally finite coefficients
to standard cohomology, or from cohomology with compact supports to standard
homology. One applies Π and ⊕ respectively to the chain homotopy equivalence
[X] ∩ −.

4. Spivak normal fibre space

In this section we construct the Spivak normal fibre space of a bounded Poincaré duality
space. Since bounded Poincaré complexes are certainly open Poincaré complexes in the sense
of Taylor [41], we could simply refer to [41], but for the readers’ convenience we give the
existence proof:

Construct a proper embedding of X ⊂ Rn, n−dimX ≥ 3. Let W a regular neighborhood
of X and r : W → X a retraction. W →M has a bounded fundamental group, and we can
triangulate sufficiently finely to get a bounded CW structure on W . Let F be the homotopy
fibre of the map ∂W → X.

Lemma 4.1. The fibre F is homotopy equivalent to a sphere of dimension n− dimX − 1.

Proof. By the codimension 3 condition, F is simply connected. It is clear that F is also the
fibre of the pullback to the universal cover of X, so consider the relative fibration (∗, F )→
(W̃ , ∂W̃ ) → X̃. We have at Zπ-module chain level homotopy equivalence D#(W,∂W ) ∼=
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Dn−#(W ) ∼= Dn−#(X) ∼= Ddim X−n+#(X), so applying⊕ we get C#(W,∂W ) ∼= C#+dim X−n(X).

Therefore H∗(W̃ , ∂W̃ ) = H∗+dim X−n(X̃). The usual spectral sequence argument shows that

Hi(∗, F ) =


0 i < n− dimX

Z i = n− dimX

0 i > n− dimX

and F is thus a sphere, since π1F = 0. Considering W ⊂ Rn ⊂ Rn
+ = Sn and collapsing

everything outside W produces a spherical Thom class. �

The proof of uniqueness of the Spivak normal fibre space is also standard, and is left to
the reader.

5. Surgery below the middle dimension

Our definition of “bounded surgery problem” is a straightforward translation of Wall’s
“surgery problem” [43, p. 9] into bounded topology.

Definition 5.1. Let Xn be a bounded Poincaré duality space over a metric space M and
let ν be a (TOP, PL or O) bundle over X. A bounded surgery problem is a triple (W n, φ, F )
where φ : W → X is a proper map from an n-manifold W to X such that φ∗([W ]) = [X]
and F is a stable trivialization of τW ⊕ φ∗ν. Two problems (W,φ, F ) and (W, φ̄, F̄ ) are
equivalent if there exist an (n + 1)-dimensional manifold P with ∂P = W

∐
W , a proper

map Φ : P → X extending φ and φ̄, and a stable trivialization of τP ⊕Φ∗ν extending F and
F̄ . See [43, p. 9] for further details.

We will use the notation W
φ−→ X

↓
M

to denote a bounded surgery problem. When M is

understood, we will shorten the notation to φ : W → X or even to φ. In all cases, the
bundle information is included as part of the data. Our theorem on surgery below the
middle dimension and its proof are parallel to Theorem 1.2 on p. 11 of [43]. In order to state
the theorem, we need a definition.

Definition 5.2. If p : X → M is a control map, we will say that f : Y → X is boundedly
k-connected over M if for every c > 0 there is a number d > 0 so that for each −1 ≤ l < k
and map α : Sl → Y with extension β : Dl+1 → X of f ◦ α with diam(p ◦ β(Dl+1)) ≤ c,
there exist a map γ : Dl+1 → Y and a homotopy h : Dl+1 → X with h0 = f ◦ γ, h1 = β, and
diam(p ◦ h(Dl+1 × I)) ≤ d.

Note that if X is a bounded CW complex over M , then X(k) → X is boundedly k-
connected. The notion of boundedly k-connected over M differs from the notion of bounded
connectivity of the control map discussed in §2. In particular, there is a dimension shift which
is analogous to the dimension shift one normally encounters in discussing the connectivity
of the space X as compared to the connectivity of the map X → ∗.
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Here is our theorem on surgery below the middle dimension.

Theorem 5.3. Let (Xn, ∂X) be a bounded Poincaré duality space over M , n ≥ 6, or n ≥ 5
if ∂X is empty. Consider a bounded surgery problem φ : (W,∂W ) → (Xn, ∂X). Then φ :
(W,∂W )→ (Xn, ∂X) is equivalent to a bounded surgery problem φ̄ : (W,∂W )→ (Xn, ∂X)
such that φ̄ is boundedly

[
n
2

]
-connected over M and φ̄| : ∂W → ∂X is boundedly

[
n−1

2

]
-

connected.

Proof. We start by considering the case in which ∂X = ∅. Triangulate W so that the
diameters p ◦ φ(σ), σ a simplex of W , are bounded. Replacing X by the mapping cylinder
of φ, we can assume that W ⊂ X.

We inductively define a bordism U (i), −1 ≤ i ≤
[

n+1
2

]
and maps Φ(i) : U (i) → W ∪X(i), so

that ∂U (i) = W
∐
W

(i)
and so that Φ(i) is a bounded homotopy equivalence. We begin by

setting U (−1) = W × I, and letting Φ(i) → X be φ ◦ proj. Let U (0) be obtained from U (−1)

by adding a disjoint (n + 1)-ball corresponding to each 0-cell of X −W . The map Φ(0) is
constructed by collapsing each new ball to a point and sending the point to the corresponding
0-cell of X −W .

Assume that Φ(i) : U (i) → X has been constructed in such a way that U (i) is an abstract
regular neighborhood of a complex consisting of W together with cells in dimensions ≤ i
corresponding to the cells of X −W in those dimensions. Assume further that Φ(i) is the
composition of the regular neighborhood collapse with a map which takes cells to correspond-
ing cells. Each (i + 1)-cell of X −W induces an attaching map Si → U (i). If 2i + 1 ≤ n,
general position allows us to move this map off of the underlying complex and approximate

the attaching map by an embedding Si → W
(i)

. The bundle information tells us how to
thicken this embedding to an embedding of of Si ×Dn−i and attach (i+ 1)-handles to U (i),
forming U (i+1). We extend Φ(i) to Φ(i+1) in the obvious manner. This process terminates

with the construction of U [n+1
2 ]. Turning U [n+1

2 ] upside down, we see that U [n+1
2 ] is obtained

from W
[n+1

2 ]
by attaching handles of index >

[
n+1

2

]
. Thus, the composite map W

[n+1
2 ] → X

is boundedly
[

n
2

]
-connected over M .

In case ∂X 6= ∅, the argument is similar. We first construct U over the boundary (and,
therefore, over a collar neighborhood of the boundary) and then construct U over the interior.

�

Remark 5.4. Notice the following

(i) The direct manipulation of cells and handles has replaced the usual appeals to ho-
motopy theory and the Hurewicz-Namioka Theorem. This is a general technique for
adapting arguments from ordinary algebraic topology to the bounded category.

(ii) The construction in the proof yields somewhat more – we wind up with (W,∂W ) ⊂
(X, ∂X). When n = 2k + 1, W and X are equal through the k-skeleton. When



12 STEVE FERRY AND ERIK KJÆR PEDERSEN

n = 2k, ∂W is equal to ∂X through the (k − 1)-skeleton and W contains every
k-cell of X − ∂X. Since W → X is k-connected, every k-cell in ∂X is homotopic rel
boundary to a map into W . By attaching a k+ 2-cell to this homotopy along a face,
we can guarantee that for every k-cell in ∂X there is a k+ 1-cell in X so that half of
the boundary of the k+ 1-cell maps homeomorphically onto the k-cell and the other
half maps into W .

6. Controlled cell-trading

In this section we prove bounded versions of Whitehead’s cell-trading lemma. There are
algebraic and geometric versions of this lemma. We will need to use both in this paper.
These operations apply equally well to cells in a bounded CW complex and to handles in
a bounded handle decomposition. We will use cell terminology throughout, except for the
term “handle addition.”

We need some notation. If we have a sequence

A
(f,g)−−→ B ⊕ C k+l−−→ D

of objects and morphisms, we can represent it pictorially as:

A

f

��

g

  @
@@

@@
@@

B

k
��

⊕ C

l~~~~
~~

~~
~

D

Performing the elementary operation – sliding handles corresponding to basis elements in B
over handles in C – corresponding to a bounded homomorphism m : B → C results in the
diagram

A

f
��

g+mf

  @
@@

@@
@@

B

k−lm
��

⊕ C

l~~~~
~~

~~
~

D
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We will write this operation schematically as

A

f
��

g

  @
@@

@@
@@

B

k
��

⊕m // C

l~~~~
~~

~~
~

D

and call it adding the B-cells to C via m. When the sequence A→ B ⊕C → D is a part of
a cellular Zπ-chain complex, this operation is realized geometrically by handle-addition by
taking each generator x in B and sliding it across m(x). Changing the attaching maps of
the cells this way clearly has the effect described above on the cellular chains.

The next construction is cancelation of cells. If a portion of a chain complex looks like
. . . A → B ⊕ C → D ⊕ C ′ . . . and the composite C → B ⊕ C → D ⊕ C ′ → C ′ is an
isomorphism sending generators to generators, then the chain complex is bounded chain
homotopy equivalent to . . . A→ B → D . . .. This has a geometric counterpart in cancelation
of n- and (n+1)-cells. Note that it is not sufficient that the map C → C ′ be an isomorphism.

It must send generators to generators. The complementary process of changing . . . An
∂−→

An−1 → . . . to . . . An ⊕D
∂⊕1−−→ An−1 ⊕D is called introducing cancelling n− 1 and n cells.

Here is our algebraic cell-trading lemma. This process involves introducing cells, adding
cells, and cancelling cells, and results in n-cells being “traded for” (n+ 2)-cells.

Lemma 6.1. Suppose given a bounded chain complex decomposed as modules as B# ⊕ A#

for which the boundary map has the form

B#

��

⊕ A#

{{vv
vv

vv
vv

v

��
B#−1 ⊕ A#−1

If there is a bounded chain homotopy s, with (s|B#) = 0, from the identity to a morphism
which is 0 on A# for # < k, then B# ⊕ A# is boundedly chain-homotopy equivalent to
B# ⊕ A′

# where A′
# = 0 for # < k and A′

# = A# for # ≥ k + 2.
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Proof. First introduce cancelling 1- and 2-cells corresponding to A0 to obtain

B2

��

⊕ A2

~~||
||

||
||

��

⊕ A0

��
B1

��

⊕ A1

~~||
||

||
||

��

⊕ A0

B0 ⊕ A0

Now add the new A0-cells in dimension 1 to A1 via s to obtain

B2

��

⊕ A2

~~||
||

||
||

��

⊕ A0

��
B1

��

⊕ A1

~~||
||

||
||

��

A0
⊕soo

B0 ⊕ A0

The lower map from A0 to A0 is the identity, so the lower A0 modules may be canceled to
obtain

B2

��

⊕ A2

}}{{
{{

{{
{{

��

⊕ A0

~~||
||

||
||

B1

��

⊕ A1

}}{{
{{

{{
{{

B0.

Repeat this process, and define A′
# so that B# ⊕ A′

# is the resulting chain complex. �

Lemma 6.2. Let X → M be a bounded CW complex which is 0-connected with bounded
fundamental group π, so that the cellular chain complex over Zπ is decomposed as (based)
modules B# ⊕ A# for which the boundary map has the form

B#

��

⊕ A#

zzvvvvvvvvv

��
B#−1 ⊕ A#−1.

If there is a bounded chain homotopy s with (s|B#) = 0, from the identity to a morphism
which is 0 on A# for # < k, and if A# = 0 for # ≤ 2, then X may be changed by a bounded
simple homotopy equivalence to X ′, so that the cellular chains have the form B#⊕A′

# where
A′

# = 0 for # < k and A′
# = A# for # ≥ k + 2.
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Proof. Perform the same operations as above, but do them geometrically, using handle ad-
ditions, rather than algebraically. �

In the above lemma, if k > dim(A# ⊕ B#), the cellular chain complex becomes B# in
low dimensions together with modules in some pair of adjacent high dimensions with ∂ an
isomorphism between them. The hypothesis that A# = 0 for # ≤ 2 is necessary to avoid π1

problems.

7. The bounded π-π Theorem

As in [43, Chapter 9], the π-π Theorem is the key theorem in setting up a geometric
version of bounded surgery theory.

Theorem 7.1. (Bounded π-π Theorem) Let (Xn, ∂X), n ≥ 6, be a bounded Poincaré duality
space over an allowable control space M . Consider a bounded surgery problem

(W,∂W )
φ // (Xn, ∂X)

p

��
M

with bundle information assumed as part of the notation.

If both p : X → M and p| : ∂X → M are (−1)-, and 0-connected and if the inclusion
∂X → X induces an isomorphism of bounded fundamental groups π, then we may do surgery
to obtain a bounded normal bordism from (W,∂W ) → (X, ∂X) to (W ′, ∂W ′) → (X, ∂X),
where the second map is a bounded simple homotopy equivalence of pairs.

Proof. We begin with the case n = 2k. By Theorem 5.3 we may do surgery below the middle

dimension. We obtain a surgery problem W ′ φ′−→ X so that φ′ is an inclusion which is the
identity through dimension k.

This means that cancelling cells in K#(W ′, ∂W ′) yields a complex which is 0 through
dimension k−1. Abusing the notation, we will assume that the chain complex K#(W ′, ∂W ′)
is 0 for # ≤ k− 1. The generators of Kk−1(W ) correspond to k-cells in ∂X−W . Cancelling
these against the k-cells described in Remark 5.4(ii), and leaving out the primes for notational
convenience, we have

K#(W,∂W ) = 0 # ≤ k − 1

K#(W ) = 0 # ≤ k − 1.

Since
Kn−#(W,∂W ) ' K#(W )

there is a bounded algebraic homotopy σ on K#(W,∂W ) satisfying σδ+δσ = 1 for # ≥ k+1.
Taking duals as in Definition 2.2, there is an algebraic homotopy s on K#(W,∂W ) such that
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s∂ + ∂s = 1 for # ≥ k + 1. Since K# = K#(W,∂W ) is 0 in high dimensions, the “cell
trading” procedure may be applied upside down, so that the K# is changed to

0→ K ′
k+2

∂−→ K ′
k+1

∂−→ Kk → 0

together with a homotopy s so that s∂+∂s = 1 except at degree k. We leave out the primes
for notational convenience. Corresponding to each generator of Kk+2 (and at a point near
where the generator sits in the control space) we introduce a pair of cancelling (k − 1)- and
k-handles and excise the interior of the (k − 1)-handle from (W,∂W ). The chain complex
for this modified W is

0 // Kk+2
// Kk+1

// Kk
//

⊕
0

Kk+1

All generators of Kk ⊕Kk+1 are represented by discs. We may represent any linear com-
bination of these discs by an embedded disc, and these embedded discs may be assumed to
be disjoint by the usual piping argument. See [43, p. 39]. This uses the surjective part of
the π-π condition. We do surgery on the following elements: For each generator x of Kk,
we do surgery on (x− ∂sx, sx) and for each generator y of Kk+2, we do surgery on (0, ∂y).
This time, we can think of the process as introducing pairs of cancelling k- and (k + 1)-
handles, performing handle additions with the k-handles, and then excising the k-handles
from (W,∂W ). The resulting chain complex is:

0 // Kk+2
∂ // Kk+1

//

⊕

Kk

⊕

Kk

1−∂s
;;wwwwwwwww

s //

⊕

Kk+1
// 0

Kk+2

∂
;;wwwwwwwww

which is easily seen to be contractible, the contraction being

0 Kk+2
oo Kk+1

soo

⊕

Kk
oo

1−∂s

{{wwwwwwwww
⊕

Kk

⊕

Kk+1
∂oo

s

{{www
ww

ww
ww

0oo

Kk+2
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Dualizing, we see that after surgery, K#(W,∂W ) is boundedly chain contractible. Poincaré
duality shows that K#(W ) is boundedly chain contractible. Together, these imply the
bounded chain contractibility of K#(∂W ). Using Theorem 2.15 now shows that ∂X → ∂W
and X → W are bounded homotopy equivalences. This is where the hypothesis of allowa-
bility and the full π-π condition are used. An easy argument composing deformations in the
mapping cylinder of (W,∂W ) → (X, ∂X) completes the proof that (W,∂W ) → (X, ∂X) is
a controlled homotopy equivalence.

Having obtained a homotopy equivalence of pairs, we can vary by an h-cobordism of pairs
to obtain a simple homotopy equivalence of pairs. The argument for this is easy, using
only standard facts about torsion of h-cobordisms and the fact that if φ : (Mn, ∂M) →
(Nn, ∂N) is a homotopy equivalence of pairs, then τ(f |∂M) = τ(f) + (−1)nτ(f)∗. This is
a straightforward consequence of the simplicity of Poincaré duality at the chain level. This
completes the even-dimensional case.

To obtain the π-π-Theorem in the odd-dimensional case we resort to a trick.

(i) Cross with S1 to get back to an even dimension and do the simple surgery.
(ii) Go to the cyclic cover and use the simplicity of the above homotopy equivalence to

split and obtain a homotopy equivalence of the ends. See Theorem 7.2 below.
(iii) Vary by an h-cobordism of pairs to get a simple homotopy equivalence of pairs.

This completes the proof. �

In the above, we used the following splitting theorem from [9], which is essentially a
bounded version of Quinn’s End Theorem [29, 30]. In section 12 we give a proof based on
the algebraic theory of surgery [36].

Theorem 7.2. Let (Xn, ∂X), n ≥ 6, be a bounded Poincaré duality space over M . If
both p : X → M and p| : ∂X → M are (−1), and 0-connected and if φ : (W n, ∂W ) →
(Xn, ∂X) × R is a bounded simple homotopy equivalence of pairs over M × R, where M is
allowable, then (W n, ∂W ) ∼= (Nn, ∂N)× R and φ is boundedly homotopic to φ′ × id, where
φ′ : (Nn, ∂N)→ (Xn, ∂X) is a bounded homotopy equivalence over M .

8. Manifold 1-skeleton

Our construction of bounded surgery groups is modeled on Ch. IX in Wall [43]. An
essential ingredient there is Wall’s Lemma 2.8, which says that Poincaré duality spaces have
manifold 1-skeleta.

In this and the following section we specialize to allowable metric spaces.

Proposition 8.1. Suppose that M is an allowable metric space. Given a finitely presented
group π and an integer n ≥ 4, there exists a (-1)- and 0-connected n-dimensional manifold
W →M with bounded fundamental group equal to π.
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Proof. Let N be a compact 4-manifold with fundamental group π, and let W be a regular
neighborhood of a proper embedding of the 2-skeleton ofM (or rather of a 0- and 1-connected
PL-complex mapping to M see Definition 2.11) in R5. Now ∂W × N → M satisfies the
conditions except for dimension.

By general position once again, we may embed the 2-skeleton of ∂W×N properly in Rn+1.
The boundary of a regular neighborhood mapped to M now satisfies the conditions. �

Proposition 8.2. A bounded Poincaré duality space X → M of dimension ≥ 5, with
bounded fundamental group π has a manifold 1-skeleton, i. e., there exist a manifold with
boundary (W,∂W ) → M and a bounded homotopy equivalence X ∼ W ∪∂W Y where Y is
obtained from ∂W by attaching cells of dimension 2 and higher, and (Y, ∂W ) is a bounded
Poincaré pair.

Proof of proposition. Our proof, which is modeled on Wall’s, consists of changing the CW
structure on X to make it similar to the CW structure of the dual chains in high dimensions.
We then exploit the fact that the boundary map from the (n− 1)- to the n-cells in the dual
complex has a very special form.

Let A# = Dn−#(X), a chain complex in CM(Zπ). Denote D#(X) by B#. Poincaré duality
gives a homotopy equivalence

f : A# → B#, g : B# → A#.

We start by constructing an algebraic model for the new cell structure on X. The complex
we construct will be equal to B# for # = 0, 1, 2 and A# for # ≥ 5.

Consider the 2-skeleton of B# and the mapping cylinder chain complex of g|B(2)
# : B

(2)
# →

A.
...

��
A4

��
0

��

⊕ B2

1

~~||
||

||
||

∂
��

g

  B
BB

BB
BB

B
⊕ A3

��
B2

∂
��

⊕ B1

−1

~~||
||

||
||

∂
��

−g

  B
BB

BB
BB

B
⊕ A2

��
B1

∂
��

⊕ B0

1

~~||
||

||
|| g

  B
BB

BB
BB

B
⊕ A1

��
B0 A0
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This is boundedly chain homotopy equivalent to A#. Since g is a homotopy equivalence,
we can trade cells to get a new chain complex which looks like B# through dimension 2.
Calling the resulting chain complex A# again, we begin to work geometrically. Introducing
cancelling cells, we get a space bounded homotopy equivalent to X with chain complex
changed as follows:

A4

1

  B
BB

BB
BB

B
⊕ A5 ⊕ B5

��
A3

1

  B
BB

BB
BB

B
⊕ A4 ⊕ B4

��
A3 ⊕ B3

��
B2

Adding An-cells to An−1 via ∂ for n ≥ 4 and An-cells to Bn via f for n ≥ 3 results in the
chain complex

A4

1

  B
BB

BB
BB

B
A5

⊕∂oo ⊕f // B5

��
A3

1

  B
BB

BB
BB

B
A4

⊕∂oo ⊕f // B4

��
A3

⊕f // B3

��
...

which gives the following boundary maps:

A5

∂
��

⊕ A4

1~~||
||

||
||

−∂
��

f

  B
BB

BB
BB

B
⊕ B5

∂
��

A4

∂
��

⊕ A3

1~~||
||

||
|| f

  B
BB

BB
BB

B
⊕ B4

∂
��

A3

−∂f

��

⊕ B3

∂
vvnnnnnnnnnnnnnnnn

B2
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Note that the map from An → Bn−1 is trivial for a nontrivial reason, adding An to Bn via
f makes it −∂f but then adding An to An−1 via ∂ makes it −∂f + f∂ = 0.

Finally, we add Bn to An via −g. A short computation shows that this changes the
boundary map B3 → B2 to 0 (since g : B2 → A2 is the identity) and it changes nothing else
(once again Bn → An−1 is 0 for a nontrivial reason). We now have

A5

∂
��

⊕ A4

1~~||
||

||
||

−∂
��

f

  B
BB

BB
BB

B
⊕ B5

∂
��

A4

∂
��

⊕ A3

1~~||
||

||
|| f

  B
BB

BB
BB

B
⊕ B4

∂
��

A3

−∂f
��

⊕ B3

B2

The chain complex

A4

−∂
��

f

  B
BB

BB
BB

B
⊕ B5

��
A3

f

  B
BB

BB
BB

B
⊕ B4

��
B3

is contractible, since it is the mapping cone of a homotopy equivalence. (Remember that
A# = B# in low dimensions). We may now trade up this subchain complex geometrically to
above the dimension of X. The n-skeleton of the resulting CW complex has cellular chains
equal to A# and the map to D#(X) is the given map. It follows from Theorem 2.15 that this
is a bounded homotopy equivalence, since it induces a homotopy equivalence on the cellular
chains.

The proof is now finished by observing that the algebraic boundary map from n- to (n−1)-
cells is the dual of the boundary map D1(X)→ D0(X), and that each 1-cell hits (`0± g · f0)
where `0 and f0 are 0-cells and g ∈ π. This means that if we attach the n-cells so that
the map to the (n − 1)-skeleton mod (n − 2)-skeleton reflects the algebra completely, then
the n-cells have patches on the boundary mapped homeomorphically to their images, and
the complement goes to the (n − 2) skeleton. These patches are paired off 2 and 2, so the
n-cells are identified via the (n−1)-cells to build a manifold W . This is the desired manifold
1-skeleton.
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The point is that the fundamental class is the sum of all the n-handles suitably modified
by multiplication by group elements. This is seen from the special nature of the boundary
map. Using this, let W be the union of slightly shrunken n-cells with their identifications
along (n− 1)-cells. In the diagram

0 // D#W
� � // D#X // D#(X −W,∂W ) // 0

0 // D#(W,∂W )
� � // D#(X)

[X]∩−

OO

// D#(X −W ) // 0

[X]∩ restricted to D#(W,∂W ) is seen to be an isomorphism, and it follows from arguments
similar to above (rolling up in the mapping cones) that [X]∩− induces a homotopy equiva-
lence of D#(X −W )← D#(X −W ), so we have split off a Poincaré duality complex. The
reader is referred to [42, Corollary 2.3.2] for further details. �

We finally need the following:

Lemma 8.3. Let X
p−→ M be a bounded Poincaré duality complex, and let W

f−→ X be a
degree 1 normal map of a manifold W to X. This means that W → X → M is proper,
there is a bundle ξ over X with a framing of τW ⊕ f ′ξ, and that the fundamental class

[W ] ∈ H`f
n (W ; Z) is sent to [X] ∈ H`f

n (X; Z). Then there is a normal bordism of W
f−→ X to

a manifold (which we will again call W ) so that f is a homeomorphism over the 1-skeleton
of X found in Proposition 8.2, i. e., so that f |f−1 (regular neighborhood of 1-skeleton) is a
homeomorphism.

Proof. We start with F = f ◦ proj : W × I → X and make F |W × 1 transverse to the
barycenter of each n-cell of X. Since f is degree 1, the inverse image of this point counted
with signs must be 1. On pairs of points of opposite sign we attach a 1-handle to W ×1, and
extend F over the resulting bordism, sending the core of the 1-handle to the point and the
normal bundle of the core to normal bundle of the point. The restriction of F to the new
boundary has 2 fewer double points. Continuing this process, F |(new boundary) becomes a
homeomorphism over the 0-handles of our 1-skeleton.

Now consider the 1-handles. Assuming F | transverse to the core of a 1-handle, the inverse
image must be a union of finitely many S1’s and one interval. After a homotopy the interval
may be assumed to map homeomorphically onto its image, and we only need to eliminate
the S1’s. But each S1 maps to the interior of an interval so this map is homotopy trivial.
Attaching a 2-handle to each S1 in the induced framing, extending the map to the core D2

by the null homotopy, and extending to the normal direction by the framing removes S1

from the inverse image of the 1-handle. Doing this to all of the 1-handles completes the
process. �
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9. The surgery groups

Our surgery groups are bordism groups patterned on Wall’s Chapter 9. As usual, we re-
strict ourselves to allowable metric spaces. Following [43, p. 86], we define an “n-dimensional
unrestricted object” to consist of:

(i) A bounded Poincaré pair, i. e. a pair (Y,X) with control map to M , such that
each component has bounded fundamental group and is a bounded Poincaré duality
complex in the sense of §3.

(ii) A proper map ϕ : (W,∂W ) → (Y,X) of pairs of degree 1, where W is a manifold
and ϕ| : ∂W → X is a simple homotopy equivalence, simplicity being measured in
WhM(π1(X)).

(iii) A stable framing F of τW ⊕ ϕ∗(τ).
(iv) A map ω : Y → K, where K is a pointed CW complex which is fixed with a fixed

pointed double cover K̂. It is required that the pullback of this double cover to Y be
the orientation covering.

Bordism of these objects is defined similarly. See the reference above for details. We
denote the bordism group of unrestricted objects by L1

n,M(K). Note that, as in Wall, (Y,X)

is allowed to vary along with (W,∂W ). There is a natural group structure on L1
n,M(K) with

the empty set as the 0 element and the sum represented by disjoint union. As is usual in
bordism theories, the groups are functorial in K, in the sense that a pointed map from K1

to K2 which is covered by a pointed map of double covers induces a group homomorphism.
Note that Y may have infinitely many components, but that since Y → M is proper, there
are only finitely many components locally.

Still following Wall, we define “restricted objects” by requiring that X → M be (−1)-
and 0-connected and have bounded fundamental group and that the map Y → K induce a
π1-isomorphism. We define L2

n,M(K) to be the set of restricted bordism classes of restricted
objects, i. e., we require objects as well as bordisms to be (−1)- and 0-connected and to
have the same bounded fundamental group as K. See [43, pp. 86–88]. Note that L2

n,M(K)
is only a set – we have no zero object and no sum, since the empty set is not allowed and
since disjoint union destroys 0- connectedness.

The π-π Theorem shows, just as in the classical case, that we may do surgery with a fixed
restricted target if and only if the invariant in L2

n,M(K) vanishes ([43, Theorem 9.3]).

Theorem 9.1. Let φ : (W,∂W )→ (Y,X) be a restricted surgery problem, i. e., a (−1)- and
0-connected surgery problem with bounded fundamental group π and reference map Y → K
inducing an isomorphism of fundamental groups and pulling back the orientation double cover
of Y. We assume n = dim(X) ≥ 5. Then there is a normal cobordism rel ∂W of W to a
bounded homotopy equivalence if and only if the equivalence class of φ in L2

n,M(K) vanishes.

We also have the analogue of [43, Theorem 9.4].
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Theorem 9.2. The natural map

L2
n,M(K) −→ L1

n,M(K)

is a bijection if n ≥ 5 and K has a finite 2-skeleton.

Proof. By Proposition 8.1, there exists W → M so that the fundamental group is bounded
π1K and W is (−1)-connected. The existence of a map W → K inducing an isomorphism

on π1 is assured by the construction of W . The surgery problem V
f−→ X is equivalent to

V qW fq1−−→ X qW, since crossing with I may be considered a bordism (one is allowed to
forget components that are homotopy equivalences).

Each component ofX has a manifold 1-skeleton, and after a bordism of V we may assume f
to be a homeomorphism of these 1-skeleta, by Lemma 8.3, so the stage is set for simultaneous
surgery. Attach a 1-handle from every 0-handle of X to a 0-handle of W so that the image
of this 1-handle in M is small.

Now mimic this construction in the domain by attaching a 1-handle from V to W . For
each 1-handle of X we get a path from a point in W to a point in W through the one handles
we attached above. Join up these points in W so that the loop created maps trivially to
K. This is possible, since W has bounded π1 isomorphic to π1K. Now attach 2-handles
simultaneously in the domain and range to kill these loops. Since every 0- and 1-handle of
X has been equated with some element of W , the result is a target which is (−1)-connected
and which has bounded fundamental group equal to π1K induced by the map to K. We
have thus constructed a bordism from any object to a restricted object. Injectivity is proved
using the same argument on the bordism. �

The group L1
n,M(K) and the set L2

n,M(K) can thus be given the common name Ln,M(K), or
better Ls

n,M(K) because we require simple homotopy equivalence. Naturally, the definition

may be varied by only requiring homotopy equivalence. These groups are denoted Lh
n,M(K).

We may, of course, also specify a ∗-invariant subgroup G of WhM(π) defining LG
n,M(K). We

shall sometimes suppress the upper index.

It is very important to notice that the functor Ln,M(K), as a functor in M , does not
send restricted objects to restricted objects, and that it is only for restricted objects that
the invariant measures whether or not one may do surgery to obtain a bounded homotopy
equivalence. We discuss this in the following:

Example 9.3. Consider the inclusion L ⊂ L+, where L+ is L union a disjoint basepoint.
Assume that a restricted surgery problem has an obstruction in Ln,O(L)(K) which vanishes
in Ln,O(L+)(K). To understand this geometrically, we first have to replace the image in
Ln,O(L+)(K) by a restricted object. The image is not (−1)-connected, but this may be
corrected by doing simultaneous surgery – adding a tail to the surgery problem. This doesn’t
change the surgery problem away from a compact subset of the target. This means that if
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the surgery obstruction vanishes in the new problem, then it is possible to solve the original
surgery problem “near infinity.”

Similarly, if one considers the map from L+ to L sending the extra point to some point
of L, the induced map from Ln,O(L+)(K) to Ln,O(L)(K) will hit an element which is not 0-
connected, so some simultaneous surgery has to be done before the vanishing of this invariant
implies that one can surger the source to a homotopy equivalence. Again, it is possible to do
this via a small modification of the original problem, only changing the target along a ray
out to infinity, rather than by using the more general construction of the proof of Theorem
9.2.

Notice that an analogous phenomenon occurs in classical compact surgery. A surgery
problem comes equipped with a reference map, usually to Bπ where π is the fundamental
group of the target. Given a group homomorphism π → ρ , the vanishing of the image
Lh

n(Zπ)→ Lh
n(Zρ) means that after simultaneous surgery on source and target to make the

fundamental groups equal to ρ, one can do surgery to obtain a homotopy equivalence.

Theorem 9.4. A map K1 → K2 which induces an isomorphism of fundamental groups and
which is covered by a map of based covering spaces induces an isomorphism Ln,M(K1) to
Ln,M(K2) for n ≥ 5.

Proof. Given K1 → K2 inducing an isomorphism on π1, etc., we get a long exact sequence of
bordism groups, as in any bordism theory. The relative groups are 0 by the π-π Theorem. �

As noted by Quinn [32], the proof of Theorem 9.5 of [43] can be used to prove the following:

Theorem 9.5. Given a (−1)- and 0-connected manifold V (n−1) with bounded π1 = π and
an element of α ∈ Ln,M(π), n ≥ 6, then α may be represented with V × I as target.

Proof. We may assume that α is realized by φ : (W,∂W ) → (Y,X) where X and Y are
(−1)- and 0-connected with bounded fundamental group π, and ∂W → X is a homotopy
equivalence. We may glue ∂W to X by a mapping cylinder and assume that ∂W → Y
is the identity. There is a bordism from ∂W → ∂W to V → V by equating 0- and 1-
handles. Attaching this to ∂W , we may change the representative above to be of the form
φ : (W,V )→ (X ′, V ), where φ|V = id. By the π-π Theorem, there is a bordism (P, ∂P ) not
rel V from φ to φ′ : (W ′, V ) → (X ′, V ) which is a homotopy equivalence of pairs. (P, ∂P )
may be reinterpreted to be a bordism from φ to a surgery problem with V × I as target. �

Finally, we should mention that there is an important variation of the theory where we
only ask for conditions to be satisfied near ∞. Thus, we only ask for bounded homotopy
equivalence and Poincaré duality over O(K) = {t · x|t ∈ [0,∞), x ∈ K} for t large. The
groups Ls,∞

n,O(K)(Zπ) are defined as in the beginning of this section, but everything is only

done near ∞. Spaces and maps only have to be defined near ∞, as well. It is shown in
[9] that CO(K),∞(A) → CO(K+)(A) is a homotopy equivalence, so Whitehead torsion makes
sense in this framework. We obtain the following quite useful:
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Theorem 9.6.

Ls
n,O(K+)(Zπ)→ Ls,∞

n,O(K)(Zπ)

is an isomorphism if n ≥ 5.

Proof. The map is the forgetful map taking a problem over O(K+) to its germ near infinity
over O(K).

For simplicity, assume first that n � dim(K). In this case we can form a manifold P
with a map to O(K+) as follows. Embed K in Sn−5 and let P ′ be the boundary of a regular
neighborhood of K in Sn−5. Form P by gluing together the part of O(P ′) outside the unit
sphere and a copy of (−∞, 1]×P ′. Map [0, 1]×P ′ to the part of O(K) inside the unit sphere
and send (−∞, 0]× P ′ to O(+). Form a manifold V n−1 by taking the product of P with a
closed manifold Q4 which has fundamental group π. Note that it is reasonable to talk about
“levels” in V , just as in O(K+).

To show that the forgetful map is onto, we first use a version of Theorem 9.5 near infinity
to show that we can represent a given α ∈ Ls,∞

n,O(K)(Zπ) by a map φ : (W,∂W ) → (V ×
I, ∂(V × I)) such that φ|∂W is a simple homotopy equivalence near infinity. Using the
simplicity, we can split φ over the part of V at level T for some large T , obtaining φ| :
(W0, ∂W0)→ (V × I, ∂(V × I)) ∩ (level T ) with φ|∂W0 a homotopy equivalence. Adding a
copy of (W0, ∂W0)× (−∞, T ] to the part of W outside of level T and mapping to V × I in
the obvious way produces an element of Ls

n,O(K+)(Zπ) whose image in Ls,∞
n,O(K)(Zπ) is α.

To show that the map is monic, let α ∈ Ls
n,O(K+)(Zπ) be an element which becomes trivial

in Ls,∞
n,O(K)(Zπ). Representing α by a map φ : (W,∂W ) → (V × I, ∂(V × I)) as above, φ

is bordant rel ∂ to a map φ′ : (W ′, ∂W ′) → (V × I, ∂(V × I)) which is a simple homotopy
equivalence near infinity. Using the simplicity, we can split the homotopy equivalence over
some level T . Expanding a collar around this level in the domain and sliding the remainder
of the manifold down towards the cone point and out the “tail”, O(+), produces a bordism
from φ′ to a simple homotopy equivalence. Note that we actually gain control through this
sliding process and that the bordism from φ to φ′ need only be defined on a neighborhood
of infinity for this process to succeed, since an easy transversality argument allows us to
construct a bordism from (W,∂W ) to a manifold which equals (W ′, ∂W ′) near infinity in
O(K) and (W,∂W ) over O(+).

The general case, where we do not have n� dim(K) is similar. The manifold target is less
homogeneous, though, so we represent the problem with manifold target (V ×I, ∂(V ×I)), but
here V has no good homogeneity properties, split at countably many levels going out the tail
O(+), and use the compact π-π-Theorem between the splittings to solve the surgery problem.
Alternatively, we could use the periodicity result of §12 to deduce the low-dimensional case
from the high-dimensional case treated above. �
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Remark 9.7. Of course, we are not limited to defining absolute surgery groups. The same
definition may be varied as in pp. 91–93 of [43] to define relative, or even n-ad, surgery
groups.

10. Ranicki-Rothenberg sequences, and L−∞

In this section we study the properties of Ls
n,M(Zπ) in the special case where M = O(K).

Proposition 10.1. Assume n ≥ 5. There is a long exact Ranicki-Rothenberg sequence

→ Ls
n,M(Zπ)→ Lh

n,M(Zπ)→ Ĥn(Z2 ; K̃1(CM(Z)))→

Proof. The proof is formal, the sequence is a bordism long exact sequence where the Tate
cohomology groups are identified with the relative bordism groups of surgery problems with
simple boundaries (see [26]). �

Note that O(ΣK) = O(K) × R as a metric space. This leads to the following useful
proposition.

Proposition 10.2. Assume n ≥ 5. Crossing with R produces an isomorphism

Lh
n,O(K)(Zπ)→ Ls

n+1,O(ΣK)(Zπ).

Proof. First, consider the case where K = ∅. Then O(K) = pt and O(ΣK) = R. To
see that the map is monic, let φ : (W,∂W ) → (X, ∂X) be a compact surgery problem.
Crossing with R gives φ × id : (W,∂W ) × R → (X, ∂X) × R. If φ × id represents 0 in
Ls

n+1,R(Zπ), then φ × id is normally bordant rel ∂W to a simple homotopy equivalence
φ′ × id : (W ′, ∂W ′)× R→ (X, ∂X)× R. Since the homotopy equivalence is simple, W ′ has
trivial end obstruction, so W ′ = M ′ ×R and by transversality we get W bordant rel ∂W to
M ′ ' X, showing that φ represents 0 in Lh

n,pt(Zπ).

To see that the map is an epimorphism, represent α ∈ Ls
n+1,R(Zπ) by a problem φ :

(W,∂W ) → ((V × I) × R, ∂(V × I) × R) with V n−1 a closed manifold with fundamental
group π. Since the homotopy equivalence on the boundary is simple, we can split the
homotopy equivalence over (V × ∂I)×{T} and continue the splitting over (V × I)×{T} by
transversality, getting a compact surgery problem (M,∂M)→ ((V × I), ∂(V × I)). Letting
a collar around M grow in both directions gives a bordism from the original problem to
(M,∂M)× R→ ((V × I), ∂(V × I))× R.

In case K 6= ∅, the argument is similar. One does the same things boundedly over
O(K). �

Definition 10.3. By the groups L2−k
n−k(Zπ) we shall mean Ls

n−k(Zπ) when k = 0, Lh
n−k(Zπ)

when k = 1, Lp
n−k(Zπ) when k = 2, and the negative L-groups of [34, 35] for k > 2. It is

well known that these groups are 4-periodic in the lower index.
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Theorem 10.4. When n ≥ 5

Ls
n,Rk(Zπ) ∼= L2−k

n−k(Zπ)

Lh
n,Rk−1(Zπ) ∼= L2−k

n−k(Zπ).

Proof. First, we consider the case n ≥ k+ 5. The general case will follow from 4-periodicity
which is proved algebraically in §12. We use induction on the Ranicki-Rothenberg exact
sequence.

We have an algebraically defined inclusion L−i
n (Zπ) ⊂ Ls

n+i+2(Z(π×Zi+2)). There is also a
map Ls

n+i+2(Z(π×Zi+2))→ Ls
n+i+2,Ri+2(Zπ), which is defined geometrically by taking cyclic

covers. Combining these maps, we get a map of exact sequences:

L−i+1
n (Zπ) //

��

L−i
n (Zπ) //

��

Ĥn(Z2, K−i(Zπ))

��
Ls

n+i+1,Ri+1(Zπ) // Lh
n+i+1,Ri+1(Zπ) // Ĥn(Z2, K−i(Zπ)).

Here, we are using that K1(CRi+1(Zπ)) ∼= K−i(Zπ) ([23]). Combining with the isomorphisms

Lh
i,Rn(Zπ) ∼= Ls

i+1,Rn+1(Zπ)

this inductively proves that
L−i

n (Zπ) ∼= Ls
n+i+2,Ri+2(Zπ).

�

Note that this proves that the L-groups are 4-periodic, at least when K = Si, i. e.
O(K) = Ri+1 and n ≥ i + 6. We shall now investigate Ls

n,O(K)(Zπ) as a functor of K, from
the category of finite complexes and Lipschitz morphisms.

Theorem 10.5. Ls
n,O(K)(Zπ) is homotopy invariant, n ≥ 5.

Proof. We have to show that

Ls
n,O(K)(Zπ)→ Ls

n,O(K×I)(Zπ)

is an isomorphism. By functoriality, it is a split monomorphism. To see that it is onto, we
note that a homotopy can always be viewed as an unrestricted bordism. Thus a surgery
problem parameterized by O(K × I) becomes bordant, and hence equivalent in the unre-
stricted bordism group of §9, to the induced problem parameterized by projecting to one
end. �

Continuing to investigate Ls
n,O(K)(Zπ) as a functor in K, we define

L−∞n,O(K)(Zπ) = lim
i
Ls

n+i,O(ΣiK)(Zπ)

where the maps are given by crossing with the reals.
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Theorem 10.6. L−∞n,O(K)(Zπ) is a reduced homology theory in the variable K.

Remark 10.7. This is a geometric version of Theorem 3.4 of the thesis of Yamasaki [45].
There, L−∞(Zπ) is defined abstractly as a spectrum.

To prove the theorem we need the following:

Lemma 10.8. Let C(L) be the cone on L. Then Ls
n,O(CL)(Zπ) = 0.

Proof. First, note that there is an isometry O(C(L)) ∼= O(L)× [0,∞). Let α ∈ Ls
n,O(CL)(Zπ)

be represented by a surgery problem:

(W,∂W )) // (X, ∂X)

p

��
O(L)× [0,∞)

This is the boundary of:

(W,∂W ) // (X, ∂X)

��
O(L)× [0,∞)

where q(x,t)=p(x)+t. This shows that α = 0. �

Proof of theorem. To show that the functor is half exact in the variable K, consider a cofi-
bration

L ⊂ K → K ∪ CL.
Applying O we get:

O(L)→ O(K)→ O(K ∪ C(L)) ∼= O(K) ∪O(L) O(L)× [0,∞).

The composite is the trivial map, since it factors through O(CL), so consider a surgery
problem:

(W,∂W ) // (X, ∂X)

��
O(K)

which goes to 0 in L−∞n,O(K∪C(L))(Zπ). As usual, we may assume that X is a manifold and that φ

is (-1)- and 0-connected. The vanishing of [φ] over O(K∪C(L)) ∼= O(K)∪O(L)O(L)× [0,∞)
means that after simultaneous surgery on the domain and range to obtain a (-1)- and 0-
connected φ′ : W ′ → X ′, φ′ is bordant to a bounded homotopy equivalence. Clearly, we can
do the simultaneous surgery in such a way that the parts of W ′ and X ′ over O(L)× [1,∞)
are products.
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If φ′ is bordant to a bounded simple homotopy equivalence φ′′, we can split the bordism
over O(L) × {T} for some large T using controlled splitting over the boundary and at φ′′

[9]. Projecting back to O(K), the split bordism becomes an unrestricted bordism from the
original problem to a bounded homotopy equivalence together with the inverse image of
O(L)× {T}, showing that the original problem was in the image of L−∞n,O(L)(Zπ).

If φ′ is bordant to a bounded non-simple homotopy equivalence, we cross with R to kill the
torsion and proceed as above. This torsion problem is the reason that we have to stabilize to
obtain a homology theory. In fact, this argument shows that Ls

n,O(K)(Zπ) is not half exact.

To finish the proof, note that we have already shown that there is an isomorphism
Lh

n,O(K)(Zπ) ∼= Ls
n+1,O(ΣK)(Zπ). Since L−∞

n,O(Sk)
(Zπ) is naturally 4-periodic, it follows from

half exactness that L−∞n,O(−)(Zπ) is a 4-periodic homology theory. �

Remark 10.9. We get a periodic homology theory and thus not a connective homology
theory. A geometric interpretation of this is that a (−1)-connected Mk → Rm+k behaves
like a −m-dimensional manifold.

11. The surgery exact sequence

In this section we consider the following: Let M be an allowable metric space and X →M
a 0- and -1-connected bounded Poincaré duality space with bounded fundamental group =
π, and assume there is a given lift of

B CAT

��
X // BG

where CAT = TOP, PL or O. We define the bounded structure set Sb(X) as usual in surgery
theory: An element consists of a manifold W and a bounded homotopy equivalence

W ' X

��
M
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two such being equivalent if there is a homeomorphism h : W1 → W2 such that the diagram

W1

h

��

!!B
BB

BB
BB

B

X

W2

>>||||||||

is bounded homotopy commutative. As usual we get a surgery exact sequence.

Theorem 11.1. For n ≥ 5 there is an exact sequence of surgery

· · · → Sb(X × I, δ(X × I))→ [ΣX,F/CAT]→
→ Ls

n+1,M(Zπ)→ Sb(X) −→ [X,F/CAT]→ Ls
n,M(Zπ)

and relative versions hereof.

Proof. The proof is standard as in [40]. Given a lift of X → BF to B CAT there is a
surgery problem obtained by transversality. If the obstruction to doing surgery vanishes,
we obtain a bounded homotopy equivalence. Given two elements in the structure set, they
determine two lifts to B CAT. If the lifts are fibre homotopic we obtain a normal cobordism
by transversality as in standard surgery theory. �

Given a finitely dominated Poincaré complex X, we obtain a surgery exact sequence for
X × Rk −→ Rk as follows. Cross X with S1 to obtain a finite Poincaré complex over
R, pass to the cyclic cover, and cross with Rk−1 to obtain a bounded Poincaré model for
X × Rk −→ Rk. A radial homeomorphism f : Rk −→ Rk which is Lipschitz (but whose
inverse is not necessarily Lipschitz) induces a map of the surgery exact sequences, the point
being that if a homotopy is bounded with respect to a map p to Rk, it is certainly also
bounded with respect to f · p.

Theorem 11.2. Reparameterization by a radial homeomorphism which is Lipschitz induces
the identity on the surgery exact sequence.

Proof. Since f is a radial homeomorphism, x̄+ t · f(x̄) is a homotopy of f through Lipschitz
maps to the identity, and it follows easily that f induces the identity of L-groups and
normal invariants. To see that f induces the identity on the structure set we need the
result of Chapman [7] that a map from a manifold to Rk which has the bounded homotopy
lifting property can be boundedly approximated by a map with the epsilon homotopy lifting
property for all epsilon. If W −→ X × Rk is a bounded equivalence, then the composition
W −→ Rk is boundedly approximated by an approximate fibration. There is then an
approximate fiber homotopy equivalence W −→ X×Rk boundedly homotopic to the original
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map. This approximate fiber homotopy equivalence remains bounded under arbitrary radial
reparameterization. �

12. The algebraic surgery theory

The algebraic surgery theory has been developed over a number of years by Ranicki see
[34, 35] . The extension to additive categories with involution has also been developed by
A. Ranicki (see [36]). This section depends strongly on [36]. Here are some of the basic
definitions:

An involution on an additive category A is a contravariant functor

∗ : A → A; A→ A∗

(f : A→ B)→ (f ∗ : B∗ → A∗)

together with a natural equivalence

e : idA → ∗∗

such that the coherence condition

e(A∗) = (e(A)−1)∗ : A∗ → A∗∗∗

is satisfied.

Example 12.1. Let R be an associative ring with an antiinvolution, R = ZG with Σngg =
Σw(g)ngg

−1, for example. Consider the category of finitely-generated projective R-modules.
Then duality induces an involution on the category.

Of more interest to us is the following:

Example 12.2. Let R be the category of finitely generated free R-modules with involution
as above. We get an induced involution on CM(R) for M a metric space by the prescription
(A∗)x = (Ax)

∗.

Ranicki has shown that his theory of algebraic surgery extends to additive categories
with involution, so, in particular, he has defined Lt

n(CM(Zπ)), where the decoration t is h or
corresponds to any involution-invariant subgroup of WhM(π), as is usual in L-theory. In this
setup Lp is the composite of Lh with idempotent completion of the additive category. To be
able to treat the simple L-groups Ls corresponding to the 0-subgroup of WhM(π) one needs
a system of stable isomorphisms of the objects so that composites that are automorphisms
have trivial torsion. This is obtained from an Eilenberg swindle on the objects in case
M is unbounded (and as usual a specific choice of basis in case M is bounded). In this
section we prove that these algebraically defined L-groups are the obstruction groups for
bounded surgery problems in the case where there is no boundary or that there is a homotopy
equivalence on the boundary. First recall from [36, p. 169] the basic definitions.
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Let A be an additive category with involution. A sequence of objects and morphisms

0→ A
f−→ B

g−→ C → 0 is split exact if g is split by a morphism h such that (f, h) : A⊕C → B
is an isomorphism. Let ε denote ±1. An ε-quadratic form in A is an equivalence class of
maps ψ : A→ A∗ two such being equivalent if they differ by a morphism of the form φ− εφ∗.
It is nonsingular if ψ+ εψ∗ (which only depends on the equivalence class) is an isomorphism.
A Lagrangian in a non-singular form (A,ψ) is a morphism i : B → A such that ψ · i = 0
and 0 → B → A → B∗ → 0 is split exact. Ranicki then proves that a non-singular ε
quadratic form is equivalent to the hyperbolic form (B ⊕B∗, { 0 1

0 0 }) if and only if it admits
a Lagrangian. The even L-groups are now defined as the Grothendieck construction on
isomorphism classes of non-singular quadratic forms with ε = 1 in dimensions ≡ 0(4) and
ε = −1 when the dimension is ≡ 2(4).

To define the odd L-groups one needs formations. A nonsingular ε-quadratic formation
in A, (A,ψ, F,G) is a non-singular ε-quadratic form (A,ψ) together with an ordered pair
of Lagrangians F and G. (Hε, P, P

∗) is considered a trivial formation where Hε is the
hyperbolic form on P ⊕P ∗. With the obvious notion of isomorphism Ranicki defines the odd
L-groups to be the Grothendieck construction on isomorphism classes of formations modulo
trivial formations and the relation (A,ψ;F,G) + (A,ψ;G,H) = (A,ψ;F,H), with ε = 1 in
dimensions ≡ 3(4) and ε = −1 in dimensions ≡ 1(4). Given this we now proceed along the
lines of Wall’s original method.

Theorem 12.3. Consider a bounded surgery problem

(Mn, ∂M) −→ (X, ∂X)
↓
Z

where ∂M → ∂X is a bounded simple homotopy equivalence, X is 0 and −1-connected with
bounded fundamental group π, and n ≥ 5. Then one can do surgery rel boundary to produce
a bounded simple homotopy equivalence if and only if an invariant in

Ls
n(CZ(Zπ))

vanishes. Moreover every element of Ls
n(CZ(Zπ)) is realized as the obstruction on a surgery

problem with target N × I and homotopy equivalence on the boundary for an arbitrary n− 1-
dimensional manifold N → Z which is −1 and 0-connected with bounded fundamental group
π.

Proof. First consider the even-dimensional case. We proceed as in §7 and obtain a highly
connected surgery problem. We obtain a chain complex homotopy equivalent to K#(M)
which is concentrated in 3 dimensions:

0→ Kk+2 → Kk+1 → Kk → 0
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and a contracting homotopy s (except in dimension k) which is obtained from Poincaré
duality. Introducing cancelling k + 1 and k + 2 handles, we may change this to

0 // Kk+2
// Kk+1

⊕

// Kk

⊕

Kk+2
1 // Kk+2

after adding k + 1-handles to Kk+2 along s we may cancel the Kk+2-handles to shorten this
chain complex to a 2-term chain complex which we write 0 → K ′

k+1 → K ′
k → 0. Abusing

notation we omit the primes. Notice that all generators of Kk are still represented by
immersed spheres. For each generator of Kk+1 we do a trivial surgery to get a chain complex

0 // Kk+1
// Kk

⊕

Kk+1

⊕

Kk+1

We still have the contraction s in dimension k+1, so we may add handles along s and cancel
Kk+1 to obtain a chain-complex concentrated in one degree. Recall there is a similar need to
do trivial surgeries in compact surgery theory because the homology modules are only stably
free. Denote the remaining module by A. Poincare duality produces an isomorphism φ :
A→ A∗ which determines the intersections of different generators i. e. φ(ei)(ej) determines
the intersections of ei and ej when ei and ej are different. Now total order the basis and
define a map ν : A → A∗ so that ν(ei)(ej) is 0 when i > j and the intersection counted
with sign in Zπ when i ≤ j . By symmetrization ν + εν∗ = φ, hence an isomorphism. This
represents the surgery obstruction. If this obstruction is zero, [36, Proposition 2.6] shows us
how to find a Lagrangian, and doing surgery on this Lagrangian will produce a homotopy
equivalence. More specifically [36, Proposition 2.6] tells us that after stabilization with a
hyperbolic form, we may find a Lagrangian. Using −1-connectedness we may do trivial
surgeries at points chosen such that this hyperbolic form is added to A. Once we have a
Lagrangian each basis element in the Lagrangian is a linear combination of generators in A,
so we find representations by immersed spheres by tubing up the generators in A. This uses
0-connectedness. Using the assumption that we have bounded fundamental group π we may
do the Whitney tricks to cancel double points so that the geometric intersections correspond
to the algebraic intersections meaning that the generators of the Lagrangian are represented
by framed, embedded spheres. After surgery on these spheres an easy calculation shows that
the new K#(M) is contractible.
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To see the obstruction is well defined it suffices to show that the obstruction is zero
on a boundary, but doing surgery on the bounding manifold to make it highly connected
will produce a Lagrangian as in classical surgery surgery theory. Plumbing shows that
all algebraically defined surgery obstructions are realized by some surgery problem with
boundary. This is done as follows: Let (A, ν) be an element of Ln, n ≥ 5. Choose a −1, 0
connected 2k − 1-dimensional manifold N → Z, with bounded fundamental group π, and
trivially embedded k − 1-spheres corresponding to the generators of A. Consider

(∪Sk−1)× I ⊂ N × I
Piping against the boundary N × 1 we change these embeddings to immersions having
self-intersection form defined by ν. Do surgery on the spheres embedded in M × 1, the non-
singularity of ν implies that the trace of this surgery W → N × I is a homotopy equivalence
on the boundary and realizes the given surgery obstruction (A, ν)

In odd dimensions we can dodge the problem by crossing with the reals at both the
manifold and parameter space level. Now we have a surgery problem parameterized by
O(ΣK). Since we now have an even-dimensional problem, we can translate to algebra as
above, and use the algebraic fact that

Ls
n+1(CO(ΣK)Zπ) ∼= Lh

n(CO(K)(Zπ))

[37] to finish off the proof by an application of Theorem 7.2. This gives the Lh result, but
not the Ls result. An argument that solves the odd-dimensional case directly was shown to
us by A. Ranicki. It goes as follows:

Doing surgery below the mid-dimension and furthermore proceeding as above we may
obtain a length 2 chain complex

0→ Kk+1 → Kk → 0.

Now do surgeries on embedded Sk × Dk+1’s in such a fashion that, denoting the trace of
the surgery by W , the chain complexes K#(W,M), K#(W ) and K#(W,M ′) are homotopy
equivalent to chain complexes which are zero except in dimension k+ 1. One way to do this
could be to do surgeries to all the generators of Kk. Denote the resulting manifold by M ′.
The surgery obstruction is now defined to be the following formation

(Kk+1(W,M)⊕Kk+1(W,M
′), Kk+1(W,M), Kk+1(W ))

where the first Lagrangian is the inclusion on the first factor, and the second Lagrangian is
induced by the pair of inclusions. Poincaré duality shows that these are indeed Lagrangians.
We need to see this is a well-defined element in the odd L-group. First, the choice of
embeddings of Sk × Dk+1 may be changed by a regular homotopy, but that changes the
formation by an isomorphism. Next we need to compare the effect of choosing a different set
of spheres. Let W1 and W2 be two traces satisfying the conditions above. Let W12 denote the
result of surgery by both sets of spheres. After attaching the first set of handles the second
set is attached by homotopically trivial spheres so after a regular homotopy we have that W12
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is W1 with further trivial surgeries done. It is easy to see that trivial surgeries do not change
the equivalence class of the formation, so W1 and W12 define equivalent formations. Similarly
W2 and W12 define equivalent formations and we are done. We need to see this is a normal
cobordism invariant, but given 2 highly connected normally cobordant surgery problems, we
may do surgery on the normal cobordism and cancel handles as in the even dimensional case
to obtain a normal cobordism which is just a trace of surgeries as described. This means
we have a well defined element in the L-group. If K#(M) is contractible we may choose to
do no surgeries and thus get the 0-formation which does represent 0 in the L-group. Since
the operations that are allowed on Lagrangians in the odd L-groups [36] can be mimicked
geometrically, using the −1, 0-connectedness, and bounded fundamental group assumptions
we see that surgery can be done if and only if the element is 0 in the L-group. Showing all
algebraically defined elements are realized geometrically is done by plumbing: Given a non-
singular formation we may think of it as (H⊕H∗, H,K), using the first Lagrangian to identify
the form with a hyperbolic form. Start out with a −1, 0-connected 2k-manifold N → Z, with
bounded fundamental group π and do trivial surgeries to a set of generators corresponding
to generators of H. In the resulting manifold M ′ we have the kernel Kk = H ⊕ H∗. Now
do surgeries to spheres corresponding to generators of K to obtain a homotopy equivalence
again. The union of the traces of these surgeries along M ′, W → N × I will have surgery
obstruction given by (H ⊕H∗, H,K). �

Corollary 12.4. The groups Ln,O(K)(Zπ) are 4-periodic for n ≥ 5. The isomorphism is
given by multiplication by C P2.

Proof. First, note that it suffices to prove periodicity in Lh, since the Ranicki-Rothenberg
sequence and the 5 Lemma then give Ls periodicity. (Multiplication by C P2 is an isomor-
phism on Tate cohomology since C P2 has odd Euler characteristic.) The Lh groups are
4-periodic because the algebraically defined groups only depend on n mod 4. To see that
the isomorphism is given by multiplication by C P2, one has to go through steps analogous
to the compact proof [43, Theorem 9.9, p. 96]. �

Remark 12.5. As remarked above, it would be nicer to have a direct description of a map
from the geometrically defined bordism groups to the algebraically defined bordism groups.
Note, however, that the identification of Ls

n,O(Si)(Zπ) with L1−i
n−i−1(Zπ) is independent of the

algebra of this section.

We now give a proof of theorem 7.2 based on the material in this section.

Proof of Theorem 7.2. Given the algebraic description of the surgery groups (in the case
without boundary) we may establish the surgery exact sequences of the last section without
reference to a [42, Chapter 9] type definition of the L-groups. First assume ∂X is empty.
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Consider the diagram of surgery exact sequences

· · · // Lh
n(CM(Zπ)) //

��

Sh
b (X) //

��

[X,F/TOP] //

��

. . .

· · · // Ls
n+1(CM×R(Zπ)) // Ss

b (X × R) // [X × R, F/TOP] // . . .

where the vertical maps are induced by crossing with R. On the normal invariant we clearly
get an isomorphism, and it is proved in [37] that

Lh(CM(Zπ))→ Ls(CM×R(Zπ))

is an isomorphism (see also [6]) hence an element in the simple structure set parameterized
over M ×R is the product with R with an element in Sh

b (X). The reader should note that,
as usual in surgery theory, the surgery exact sequence is not a sequence of Abelian groups
and homomorphisms. The L-groups act on the structure set and exactness at the structure
set means that two elements having the same normal invariant differ by an action of the
L-group. It is however easy to see that a version of the 5-lemma sufficient for our purposes
is valid, so we do get a 1-1 correspondence of structure sets. To get the splitting, we finally
need to refer to the bounded s-cobordism theorem 2.17.

The relative case is treated by first splitting the boundary then working relative to the
boundary. �

13. The annulus theorem, CE approximation, and triangulation

In this section we show how bounded surgery theory can be applied to give direct proofs
of Kirby’s annulus theorem and Siebenmann’s CE approximation Theorem. We also take a
look at triangulation theory through the lens of bounded topology.

Theorem 13.1. (Kirby [16]) If Cn, n ≥ 5, is a bicollared ball in Rn containing a bicollared

ball Dn in its interior, then C −
◦
D is homeomorphic to Sn−1 × [0, 1].

Proof. By the generalized Schönflies Theorem [5], [19], there is a homeomorphism h : Rn →
Rn with h(Dn) = Bn, where Bn is the standard ball. Now h : Rn → Rn is certainly a
controlled homotopy equivalence, so h defines an element of the bounded structure set

SPL
b

 Rn

↓ id
Rn

.
The surgery exact sequence in this case is

→ Ln,Rn+1(e)→ SPL
b

 Rn

↓ id
Rn

→ [Rn, F/PL]→ Ln,Rn(e)
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where there are no decorations on the L-groups because π1 is trivial and all homotopy
equivalences are therefore simple. This uses Bass-Heller-Swan and [24]. By Theorem 10.4,
Ln,Rn+1(e) = L1(e), which is zero by Kervaire-Milnor [4, p. 49]. The space F/PL is connected,
so [Rn, F/PL] is trivial.

Thus, SPL
b

( Rn

↓id
Rn

)
is trivial, which means that there is a PL homeomorphism k : Rn → Rn

which is boundedly close to h. Let Rn be compactified to Dn by adding a sphere at infinity.
We use the notation LBn to denote the ball of radius L centered at the origin in Rn. Since
k−1 ◦ h : Rn → Rn is a homeomorphism which extends to a homeomorphism k−1 ◦ h : Dn →
Dn, we see

(i) Dn−L
◦
Bn is an annulus, so k−1 ◦ h(Dn−L

◦
Bn) = Dn− (k−1 ◦ h)(L

◦
Bn) is an annulus

for all L.

(ii) This implies that (k−1 ◦ h)(LBn)−M
◦
Bn is an annulus for L�M , since the annulus

Dn−M
◦
Bn is (k−1 ◦h)(LBn)−M

◦
Bn plus the collar Dn− (k−1 ◦ h)(L

◦
Bn) and adding

a collar on the boundary of a manifold leaves the homeomorphism type unchanged.

(iii) Applying k, we see that h(LBn)− k(M
◦
Bn) is an annulus for L�M .

(iv) Since k is PL, k(M
◦
Bn)−

◦
Bn is an annulus for M large [38, p. 36] and the collaring

trick shows that h(LBn)−
◦
Bn is an annulus for very large L.

(v) Applying the collaring trick yet again shows that h(Bn)−
◦
Bn is an annulus.

�

Here is a geometric restatement of the surgery theory involved in this argument: Bundle
theory over Rn is trivial, so a transversality argument shows that the bounded PL structure
given by h is normally bordant to the identity. Repeated splitting shows that the obstruction
to surgering this bordism to a bounded h-cobordism over Rn is the codimension n surgery
obstruction over the transverse inverse images of points in Rn. This uses the π-π theorem and
periodicity, since we need to multiply the original problem by C P2 to keep the dimensions
from dropping below 5. All of the surgery groups that we use here are rel boundary, so
the problem of transferring between the geometry and algebra alluded to in the last section
does not arise in this connection. The codimension n surgery obstruction for surgering
the bordism is an odd-dimensional simply connected (ordinary) surgery obstruction and is
therefore zero. We can therefore surger to a bounded PL h-cobordism, at which point we
can apply the bounded h-cobordism theorem over Rn (see [25]) to produce the bounded PL
approximation k.

Corollary 13.2. (of the proof) Orientation-preserving homeomorphisms of Rn, n ≥ 5 are
stable.
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Proof. We assume that the reader is familiar with [16]. The homeomorphism k is stable
because it is orientation-preserving and PL, while the homeomorphism k−1 ◦ h is stable
because it is bounded. Compositions of stable homeomorphisms are stable, so h = k◦(k−1◦h)
is stable. �

Remark 13.3. This is the lone surgical ingredient in the proof of the Kirby-Siebenmann
Product Structure Theorem, which says that Mn has a PL structure if and only if M × Rk

has a PL structure for some k. See [15, p. 33]. We could also prove the product structure
theorem directly using Theorem 7.2. The existence of handle body decompositions for high-
dimensional TOP manifolds is a direct consequence. See [15, pp. 104 ff.]. It also follows
immediately by a general bundle theory argument [21] that Mn has a PL structure if and
only if the stable tangent bundle of M has a PL reduction. Thus, triangulation is a lifting
problem and the triangulation problem is reduced to determining the structure of TOP /PL.

The same lemma gives a proof of Siebenmann’s CE approximation theorem.

Theorem 13.4. If n ≥ 5 and f : M → N is a CE map, then f is a uniform limit of
homeomorphisms.

Proof. Let U ⊂ N be the interior of a bicollared ball in N . Then f : f−1(U)→ U ∼= Rn is a
bounded structure on Rn. The manifold f−1(U) is contractible, so by the Product Structure
Theorem, f−1(U) has a PL structure and the argument above shows that there is a PL
homeomorphism k : f−1(U) → U approximating f so closely that the map f̄ : M → N
defined by

f̄(x) =

{
f(x) x /∈ f−1(U)

k(x) x ∈ f−1(U)

is continuous. Performing similar modifications over all of the sets U in an open cover of
N gives a homeomorphism homotopic to f . If the open sets U are taken to be small, the
homeomorphism approximates f . �

We can approach Kirby-Siebenmann’s triangulation theory similarly. A topological home-
omorphism h : V PL → Dk × Rm, m + k = n ≥ 5, which is a PL homeomorphism over a

neighborhood of the boundary gives an element of SPL
b

(
Dk×Rm

↓id
O(Dk×Sm−1)

)
. The surgery exact

sequence is

· · · → Ln,O(Dk×Sm−1)(e)→ SPL
b

(
Dk×Rm

↓id
O(Dk×Sm−1)

)
→ [Dk × Rm, ∂;F/PL]→ Ln,O(Dk×Sm−1)(e).

By homotopy invariance, this is

· · · → Ln,O(Sm−1)(e)→ SPL
b

(
Dk×Rm

↓id
O(Dk×Sm−1)

)
→ πk(F/PL)→ Ln,O(Sm−1)(e)
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which is

πk+1(F/PL)→ Lk+1(e)→ SPL
b

(
Dk×Rm

↓id
O(Dk×Sm−1)

)
→ πk(F/PL)→ Lk(e).

The usual plumbing argument shows that the maps πk(F/PL) → Lk(e) are isomorphisms
for k 6= 4, in which case Rochlin’s Theorem shows that the map is multiplication by 2.
This shows that such structures are trivial for k 6= 3 and allows the straightening of all but
3-handles. The one nontrivial structure on D3 × Rm comes from a homotopy equivalence

f : V → Dk × Rm

which is a PL homeomorphism near the boundary and which is bounded over O(Dk×Sm−1).
Add a boundary to V to form V̄ and extend the map. This uses Quinn’s end theorem or
our bounded modification thereof and requires m + k ≥ 6. By the Generalized Poincaré
Conjecture, V̄ is a disk. The limiting map is CE and we approximate by a homeomorphism.
Coning produces a TOP homeomorphism h proper homotopic to the original f . Comparing
the bounded and proper surgery exact sequences shows that the bounded structure given by h
is equivalent to the original f , so composing h with an appropriate PL homeomorphism which
is the identity on the boundary gives a TOP homeomorphism boundedly close to f . Thus,
the nonstraightenable “bounded homotopy handle” comes from a TOP homeomorphism,
π3(TOP /PL) ∼= Z/2Z, and the development of the theory proceeds as in [15].

14. Extending the algebra

In this section we extend the bounded algebraic theory in two directions. First, we consider
the equivariant case, i.e., we extend the theory to allow non-bounded fundamental groups
coming from group action. Second, we introduce germ methods, which allow us to disregard
what happens in a bounded neighborhood of a subset of the metric space.

In the following, suppose that M is a metric space with a group G acting by quasi-
isometries.

Definition 14.1. An object of CM,G(R) is a left RG-module A together with a set map
f : A→ F (M), where F (M) is the finite subsets of M such that

(i) f is G-equivariant.
(ii) Ax = {a ∈ A | f(a) ⊆ {x}} is a finitely generated free sub R-module.
(iii) As an R-module A = ⊕x∈MAx.
(iv) f(a+ b) ⊆ f(a) ∪ f(b).
(v) The set {x ∈M | Ax 6= 0} is locally finite.

A morphism ϕ : A → B is a morphism of RG-modules so that there is a k = k(ϕ) so that
ϕm

n : Am → Bn is 0 for d(m,n) > k.

Remark 14.2. In case G is the trivial group, CM,e(R) and CM(R) are identified by sending
an object A in CM(R) to ⊕x∈MAx together with the map f : ⊕x∈MAx → F (M) picking out
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non-zero coefficients. Similarly when the action of G on M is trivial, the categories CM,G(R)
and CM(RG) may be identified.

Definition 14.3. If R is a ring with involution, the category CM,G(R) has an involution given

by A∗ = Homlf
R (A,R), the set of locally finiteR-homomorphisms. We define f ∗ : A∗ → F (M)

by f ∗(φ) = {x | φ(Ax) 6= 0}, which is finite by assumption.

Given a metric space M with an action by G and an equivariant submetric space N ⊂M ,
let us denote the k-neighborhood of N by Nk. We shall now develop germ methods “away
from N”.

Definition 14.4. The category C>N
M,G(R) has the same objects as CM,G(R), but morphisms

ϕ1, ϕ2 : A→ B are identified if there exists k such that ϕx
1y = ϕx

2y for x /∈ Nk.

Using the methods of [27] , [33], and [6] we get the following:

Theorem 14.5. Let M∪N× [0,∞) have the metric included from M× [0,∞). The forgetful
map (functor!)

CM∪N×[0,∞),G(R) // C>N×[0,∞)
M∪N×[0,∞),G(R)

C>N
M,G(R)

induces isomorphisms on algebraic K-theory and (if R is a ring with involution) on algebraic
L-theory.

Proof. Let A be the full subcategory of U = CM∪N×[0,∞),G(R) with objects 0 except for a
bounded neighborhood of N × [0,∞). Then U is A-filtered in the sense of Karoubi and
the result follows from [27] since A has an obvious Eilenberg swindle making the K-theory
trivial. �

Arguing as above with Karoubi filtrations we get the following from [27], see also [6]:

Theorem 14.6. Assume that M is a metric space with a group G acting by quasi-isometries,
and let N be an invariant subspace. Form M ∪N × [0,∞) with metric induced from M ×R
and the induced G-action. Then the sequence of categories (with morphisms restricted to
isomorphisms)

CN,G(R)→ CM,G(R)→ CM∪N×[0,∞),G(R)

induces a fibration of K-theory spectra, and hence a long exact sequence in K-theory.

In the important special case where the metric space M is O(K) for some finite complex K
with a cellular action on K, the combination of these two theorems allows the computation
(in the sense of providing exact sequences) of K∗(CO(K),G(R)). Computations are further
facilitated by the fact [13] that these functors are Mackey functors in the variable G.
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When R is a ring with involution CM,G(R) is a category with involution, so following
Ranicki the algebraic L-theory is defined. There are exact sequences similar to the above
sequences for computing L-theory. See Remark 19.4, and [6].

15. Extending the geometry

In this section, the basic setup is going to be a group G acting on a metric space M by
quasi-isometries and freely, cellularly, on a bounded CW -complex X such that the reference
map p : X → M is equivariant. We call this a free bounded G− CW complex. The cellular
chains take values in the category CM,G(Z) and will be denoted D#(X). Thus, the basic
point of view is equivariant instead of working with a fundamental group. We do however
have to worry about interference from the fundamental group of X.

Let N be an equivariant subset of M . We shall use the following language:

Definition 15.1. Let p : X → M be a bounded G-CW complex. The term away from N
means “when restricted to a subset of X whose complement under p maps to a bounded
neighborhood ofN .” Similarly, in a bounded neighborhood of N means a subset ofX mapping
to a bounded neighborhood of N under p. Similarly,

(i) p : X → M is (−1)-connected away from N if there exists k so that for every point
x in M except for a bounded neighborhood of N there exists y ∈ X such that
d(x, p(y)) < k.

(ii) The bounded CW complex (X, p) is (−1)-connected away from N if there are k, l ∈
R+ so that for each point m ∈M either there is a point x ∈ X such that d(p(x),m) <
k or d(m,N) < l.

(iii) (X, p) is 0-connected away from N if for every d > 0 there exist k and l depending on
d so that if x, y ∈ X and d(p(x), p(y)) ≤ d, then either x and y may be joined by a
path in X whose image in M has diameter < k(d) or d(x,N) < l(d) or d(y,N) < l(d).
Notice that we have set up our definitions so that 0-connected does not imply (−1)-
connected.

(iv) (X, p) is 1-connected away from N if for every d > 0, there exist k = k(d) and l = l(d)
so that for every loop α : S1 → X with d(α(1), N) > l and diam(p ◦ α(S1)) < d,
there is a map ᾱ : D2 → X so that the diameter of p ◦ (D2) is smaller than k. We
also require p : X →M to be 0-connected away from N , but not (−1)-connected.

(v) (X, p) has bounded fundamental group π away from N if there exists a π-covering of
X away from N which is 0- and 1-connected away from N . We do not require (X, p)
to be (−1)-connected away from N .

Definition 15.2. A free bounded G-CW complex X →M is a G-Poincaré duality complex
away from N if X → M is 0- and 1-connected away from N , and there is a class [X] ∈
H lf (X/G;C) so that a transfer of [X] induces a bounded homotopy equivalence [X] ∩ − :
D#(X)→ D#(X) as chain complexes in C>N

M,G(Z).
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Definition 15.3. A G-metric space M (i.e., a metric space M with a group G acting by
quasi-isometries) is allowable if there exists a finite dimensional complex K with a free
cellular G-action and a map p : K →M making K a free bounded (-1)-, 0- and 1- connected
free bounded G− CW -complex.

With these definitions, the theory detailed in the preceding sections for the case of a
boundedly constant fundamental group carries through, so we obtain the analogue of the
main theorem of this paper, the surgery exact sequence.

Theorem 15.4. Let X → M be a (−1), 0, and 1-connected n-dimensional G-Poincaré
duality complex away from N . For n ≥ 5, there is a surgery exact sequence

· · · → Sb((X × I), δ(X × I), G)>N → [ΣX/G,F/CAT]>N →
→ Ls

n+1(C>N
M,G(Z))→ Sb(X,G)→ [X,F/CAT]>N → Ls

n(C>N
M,G(Z)).

Here simpleness is measured in K1(C>N
M,G)/G, Sb(X,G)>N denotes bounded equivariant

structures away from N , and [X,F/CAT]>N denotes germs of homotopy classes of maps
away from N .

Of course, we have Lh-groups as well as Ls-groups and these groups are connected via the
usual Ranicki-Rothenberg exact sequence.

Proposition 15.5. Assume n ≥ 5. There is a long exact Ranicki-Rothenberg sequence

→ Ls
n(C>N

M,G(Z))→ Lh
n(C>N

M,G(Z))→ Ĥn(Z2, K̃1(C>N
M,G(Z)))→ .

16. Spectra and resolution of ANR homology manifolds

Following the tradition of Quinn, Ranicki, and Nicas, we spacify our bounded surgery
groups, producing spectra such that the surgery groups are the homotopy groups of these
spectra.

Theorem 16.1. Let (M,G) be an allowable G-metric space. There is an infinite loop space
Ls

M,G(Z) depending functorially on (M,G), such that

πiLs
M,G(Z) = Ls

i (CM,G(Z)).

Proof. We construct a 4-set whose n-simplices are n-ads of (M,G)-surgery problems. The
realization is an infinite loop space, as in the classical case. See [28] and Nicas [22] for
details. �

In the special case where G is the trivial group, i.e., the case of simply-connected bounded
surgery, we can improve a bit on the situation, getting an analogue of the main theorem of
Pedersen-Weibel [27].
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Theorem 16.2. The functor sending a finite complex K to LO(K)(Z) sends cofibrations to
fibrations.

Proof. Let L ↪→ K → K ∪ CL be a cofibration. The composite LO(L)(Z) → LO(K)(Z) →
LO(K∪CL)(Z) is the zero map, since it factors through LO(CL)(Z), which is contractible.
On homotopy groups we get an exact sequence (by Theorem 10.5) and thus the Five
Lemma shows that LO(L)(Z) is homotopy equivalent to the homotopy fibre of LO(K)(Z) →
LO(K∪CL)(Z). �

Following [27], this identifies the homology theory. Denoting the four-periodic simply
connected surgery spectrum by L we have:

Theorem 16.3.
Ln(CO(K)(Z)) ∼= hn−1(K,L)

where h(−,L) denotes the reduced homology theory associated with the spectrum L.

Proof. It is shown in [27], Theorem 3.1 that the spectrum for the homology theory Ln(CO(K))
is given by the spectrum whose n’th space is LRn(Z), but that is exactly four-periodic simply
connected L-theory. �

Let k denote the (unreduced) homology theory with coefficients in connective simply
connected L-theory, and h the (unreduced) homology theory with coefficients in 4-periodic
simply connected L-theory. As always, there is a natural transformation from h to k, sending
the periodic spectrum to the connective version. We define a natural transformation α from
k to h as follows:

Let K be a finite complex, W a regular neighborhood of K. Now k∗(K) ∼= k∗(W ) ∼=
k|W |−∗(W/∂W ) ∼= k0(Σ∗−|W |W/∂W ) = [Σ∗−|W |W/∂W,F/TOP]. Consider W × [0,∞) →
O(K), a simply connected bounded Poincaré duality complex away from 0, and with bound-
ary. The normal invariant of W × [0,∞) away from 0 relative to the boundary is given by
[Σ∗−|W |W/∂W,F/TOP] and the surgery exact sequence maps from there to L(∗−|W |)+|W |(CO(K)(Z)) =
h∗(K).

Theorem 16.4. The composite of natural transformations k∗
α−→ h∗ → k∗ is an isomorphism.

Proof. It is enough to verify this for spheres. What we need to prove is that the bounded

structure space Sb

(
Sn×[0,∞)

↓
O(Sn)

)>0

is contractible. The classical structure space of a sphere is

a point (by the high-dimensional Poincaré conjecture). Crossing with Rk into bounded L-
theory is an isomorphism both on normal invariants and L-groups, so [Σi(Sn×Rk);F/TOP] ∼=
L(CRk(Z)). Away from 0, the Poincaré complex Sn × Rk → Rk is Sn × Sk−1 × [0,∞) →
O(Sk−1), but that, on the other hand, is the image of Sn × Sk−1 × [0,∞) → O(Sn × Sk−1)
away from 0 induced by the projection Sn×Sk−1 → Sk−1. By naturality, we obtain that α is
an isomorphism on one of the summands when applied to Sn×Sk−1, but then by naturality
it must be an isomorphism on spheres. �
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The point of the proof above is to relate the obvious isomorphism for the case Sn×Rk → Rk

to the definition of α. This theorem can also be proved using Chapman and Ferry’s α-
approximation theorem [8].

We get a new proof of Quinn’s obstruction to resolution.

Theorem 16.5. Let X be an ANR homology manifold. Then there is an integral obstruction
to producing a resolution of X.

Proof. First, assume that X admits a TOP reduction of its Spivak normal fibre space. The-
orem 16.6 below shows that such a reduction always exists. Consider the bounded surgery
exact sequence

Sb

(
X×[0,∞)

↓
O(X)

)>0

→ [X,F/TOP]→ L|X|(C>0
O(X)(Z)).

By the theorem above and Theorem 16.7 below,

L|X|(C>0
O(X)(Z)) ∼= [X,F/TOP×Z],

and the map [X,F/TOP] → [X,F/TOP×Z] followed by the map to connective L-theory,
i.e., to [X,F/TOP], is an isomorphism. Hence it is only the component in F/TOP×Z that
X maps into which is the obstruction to the nonemptiness of the bounded structure set

Sb

(
X×[0,∞)

↓
O(X)

)>0

. Assume that this integral obstruction vanishes. Choose an element in the

bounded structure set
φ : W ∼= X × [0,∞)

��
O(X).

φ is a bounded homotopy equivalence away from 0 ∈ O(X). A neighborhood of infinity
in W maps to X, and since X × [0,∞) → O(X) is the identity away from 0, and φ is a
bounded homotopy equivalence, the end of W mapping to X is tame and simply connected,
so we may add an end M to W and extend the map W → X to M . The map M → X is
a resolution because it is an arbitrarily small homotopy equivalence. The theorem will now
follow from: �

Theorem 16.6. An ANR homology manifold X has a canonical TOP reduction.

Preparing for the proof, first notice that by [1] Ln(CO(−)(Z)) is a functor defined on compact
subsets of SN , N large, and all continuous maps, not only Lipschitz maps. We now have

Theorem 16.7. Ln(CO(−)(Z)) satisfies Milnor’s wedge axiom.

Proof. Consider
∨
Xα ⊂ SN . We have

Ln(CO(
∨

Xα)(Z)) ∼= Ln(C>O(∗)
O(

∨
Xα)(Z)).
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By suspension, we may assume n divisible by 4, so an element is given by a self-intersection
form ν, which is bounded, so when we disregard a neighborhood of O(∗) we get a self-

intersection form on each L
>O(∗)
O(Kα)(Z)) ∼= Ln(CO(Xα)(Z)). To combine an element in ΠαLn(C>O(∗)

O(Xα)(Z))

to get an element in Ln(CO(
∨

Xα)(Z)), all we need to do is reparameterize radially so that all
components have the same bound. �

This means that the identification of bounded L-theory over open cones with homology
theory extends beyond finite complexes as a Steenrod homology theory, and that homol-
ogy with locally finite coefficients may be defined as reduced homology of the one-point
compactification.

Proof of Theorem 16.6. Cover X by open sets Uα so that the Spivak normal fibration re-
stricted to Uα is trivial. On Uα we obviously have a TOP reduction, giving rise to a surgery
exact sequence as above, denoting the topological boundary of Uα by ∂Uα,

Sb

(
Uα×[0,∞)

↓
O(Ūα)

)>∂Uα

→ [Uα, F/TOP]
φ−→ L(C>O(∂Ūα)

O(Ūα)
(Z)).

By Poincaré duality, φ may be identified with

[Uα, F/TOP]→ [Uα, F/TOP×Z],

so by changing the lift of Uα we may ensure that the surgery obstruction is just an integer,
and assuming this integer vanishes, we can produce a resolution over Uα as above. This
surgery exact sequence is natural with respect to restriction to smaller open sets, so the lifts
combine to give a lift over the whole of X. �

Remark 16.8. Strictly speaking, the argument above is flawed in that arbitrary wedges of
polyhedra cannot be embedded in a single finite-dimensional sphere. This can be cured by
using the unit sphere in a Hilbert space or, better, by embedding X isometrically into the
bounded functions from X to R and taking a cone there.

Next, we want to understand assembly from the point of view of bounded surgery. Given
a boundedly simply-connected surgery problem away from 0 parametrized by O(K), the
induced map from K to a point gives a surgery problem parametrized by [0,∞) away from
0. We can turn this problem into a simply-connected surgery problem by doing simultaneous
surgery on source and target, giving the usual functorial property with respect to K, but
avoiding that, we obtain a simple surgery problem (simplicity measured in Wh(π1(K)))
together with a reference map to K, in other words, an element in Ls(C>0

[0,∞)(Zπ1(K))) ∼=
Ls(CR(Zπ1(K))) ∼= Lh(Zπ1(K)). We claim this forget control map is the assembly map.

Theorem 16.9. Let M be a manifold. Then the forgetful map

F : L(C>0
O(M)(Z))→ Lh(Z(π1(M)))

is the assembly map.
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Proof. Consider the following diagram

· · · // [ΣiM,F/TOP]
α // Lm+i+1(CO(M)(Z))

F
��

· · · // [ΣiM,F/TOP]
A // Lh

m+i(Z(π1(M)))

where the lower row is the classical surgery exact sequence with the assembly map. We have
just proved that α is an isomorphism for i > 0 and the inclusion of a direct summand for
i = 0. For i > 0, this identifies the map with assembly. Since the algebraically defined
groups are 4-periodic, this also identifies F with the higher assembly maps when i = 0. �

This gives a curious relation between the resolution problem and the Novikov Conjecture.

Theorem 16.10. Let M be a closed K(π, 1)-manifold such that the assembly map is an
integral monomorphism. Then an ANR homology manifold X homotopy equivalent to M
admits a resolution.

Proof. Consider the diagram

Sb

(
X×[0,∞)

↓
O(X)

)>0

//

��

[X,F/TOP]
α // Lm+1(C>0

O(X)(Z))
��

F

��
S(X) // [X,F/TOP]

A // Lh
m(Zπ1(X))

.

Since S(X) is nonempty, there is a σ ∈ [X,F/TOP] so that A(σ) = 0. But then α(σ) = 0

and Sb

(
X×[0,∞)

↓
O(X)

)>0

is nonempty, showing that X admits a resolution. �

Bob Daverman has pointed out that there is an easy geometric proof that there is no
nonresolvable ANR homology manifold X homotopy equivalent to the n-torus. The universal
cover of such an ANR homology manifold could be compactified by adding a sphere at infinity.
Adding an external collar would then give an ANR homology manifold with both manifold
points and points with neighborhoods from X, showing that the resolution obstruction for
X was trivial. Many of the classes of groups for which the map α is known to be 1-1 admit
similarly nice compactifications. In fact, Ferry and Weinberger have recently announced a
proof of the Novikov conjecture for all Γ such that K = K(Γ, 1) is a finite complex (not

necessarily a manifold) and K̃ admits a sufficiently nice compactification [11].

17. Geometric constructions

In this section we prepare for the applications in the next section by describing some
geometric constructions. Consider a continuous proper map X → O(K).
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Definition 17.1. The K-completion X̂K , of X is defined as follows: As a set X̂K is the

disjoint union of X and K. The open sets of X̂K have as a basis:

(i) all open sets of X
(ii) for every open set U of K, and every k ∈ R+, the set

{p−1 (x, t) ∈ O(K)|x ∈ U, t > k} ∪ U.
This construction is sometimes called the tear drop construction. It is easy to see that

X̂K is a compact metric space. This construction generalizes one-point compactification.

Theorem 17.2. Let W1 and W2 be manifolds properly parameterized by O(K), and assume

that h is a bounded homotopy equivalence from W1 to W2. Then ŴK
1 is a manifold if and

only if ŴK
2 is a manifold.

Proof. Assume that ŴK
1 is a manifold. It is easy to see that ŴK

2 is an ANR homology
manifold. Using the homotopy equivalence, the disjoint two-disc property is also carried
over, so the result follows by the Manifold Recognition Theorem [31]. See [10] for a detailed
proof of the disjoint two-disc property in the case where K = S1. �

Remark 17.3. This result is very useful in proving the existence of group actions by varying
the complement of the singular set. For studying group actions we also need the following:

Proposition 17.4. Let G be a finite group with a stratum-preserving action on a finite
complex K. Assume that W1 and W2 are manifolds parameterized by O(K) on which G acts
freely and compatibly with the action on K. Then W1 is boundedly equivariantly homotopy
equivalent to W2 over O(K) if and only if W1/G is boundedly homotopy equivalent to W2/G
over O(K/G).

Proof. One way is trivial, so assume that h : W1/G → W2/G is a bounded homotopy

equivalence. Certainly we get an equivariant homotopy equivalence h̃ : W1 → W2. The
length of the path in the homotopy can be at most |G| times the length of the path measured
in O(K/G), so we are done. �

18. More applications

We begin with an application to group actions.

Consider the standard n+ k sphere Sn+k with the standard k− 1 subsphere Sk−1 ⊂ Sn+k

so that Sn+k = Sn ∗ Sk−1. Let G be a finite group and assume that G acts semifreely
(topologically) on Sn+k fixing Sk−1. It was proved in [3] that G has to be a periodic group,
since (Sn+k − Sk−1)/G is finitely dominated and Sn+k − Sk−1 has the homotopy type of a
sphere. Hence, the homotopy type of (Sn+k−Sk−1)/G is given by G and a single k-invariant
which is a unit in Z/|G|. It was further proved that such actions exist if and only if a certain
surgery problem has a solution, i.e., if and only if a certain Spivak normal bundle has a
reduction and the resulting surgery problem can be solved.
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This surgery program was completed in [12] and [20], and also the maps Lh
n(ZG) →

Lp
n(ZG) → L−1

n (ZG) were computed for the relevant groups, but the computation did not
give the classification one usually obtains from surgery theory. It is the purpose of this section
to show how ε-surgery can turn the computations of [12] and [20] into such a classification.

Let X be a Swan complex. The surgery exact sequence of §11 takes the following form:

· · · → Ls
n+k+1,Rk(ZG)→ Sb

(
X×Rk

↓
Rk

)
→ [X,F/TOP]→ Ls

n+k,Rk(ZG).

We proved in §10 that Ls
n+k,Rk(ZG) = L2−k

n (RG), so we get a surgery exact sequence:

→ L1−k
n+1(ZG)→ Sb

(
X×Rk

↓
Rk

)
→ [X,F/TOP]→ L2−k

n (ZG)→ · · · .

Comparing this with [12] and [20] we see that what is actually being computed is Sb

(
X×Rk

↓
Rk

)
.

In [3] a map is defined:

Sb

X × Rk

↓
Rk

 h−→


Conjugacy classes of semifree
group actions of G on Sn+k

fixing Sk+1 with k-invariant of
Sn+k − Sk−1/G given by X, so

that (Sn+k − Sk−1)/G ' X.


The construction in [3] starts with a compact manifold homotopy equivalent to X×T n, and
then passes to the Zn cover, but it is clear that the same construction gives a map as above.
The right-hand side is a classification of semifree group actions, so we will be done once we
prove:

Theorem 18.1. h is an isomorphism.

Proof. The map is well-defined because a bounded homeomorphism extends to a completion
by the identity on the fixed sphere. To see that h is onto, consider a semifree action on Sn+k

fixing Sk−1 and let W = Sn−k − Sk−1/G. It is shown in [3] that W has a tame end at Sk−1.
Killing the obstruction to completing the end by multiplying with a torus, we obtain that
W × T n ' W ′×Rn, where the radial directions in Rn point to the points of Sn−1. Going to

the cyclic cover we have W ' W × Rn ' W̃ ′ × Rn and W̃ ′ ' X so we are done. That the
map is monic follows from Theorem 11.2 that radial reparameterization induces the identity
on the structure set. �

Remark 18.2. Note that this surgery theory is not restricted to the category of manifolds.
All that is needed is that the objects be manifolds away from the singular set. It thus makes
perfectly good sense to suspend group actions. Suspension is just crossing with the reals in



EPSILON SURGERY THEORY 49

the nonsingular part and suspending on the singular part, at least if one assumes nonempty
singular sets. This means that questions such as the above may be treated in two stages:

(i) Suspend enough times that K−i(Z[π]) = 0, and apply L−∞.
(ii) Try to split off real factors to get back to the manifold situation.

As a second example, consider a closed PL manifold Mn ⊂ Sm−1 ⊂ Rm which contains a
simply-connected polyhedron Y . Let p:M → M/Y be the projection map. As in the proof
of Theorem 9.6, form a two-ended manifold W which looks like O(M) near +∞ and like
M ×R near −∞ and parameterize W over O(M+/Y ). The map id : W → W is a bounded
structure on W → O(M+/Y ), so we have an exact surgery sequence:

· · · → Ln+1,O(M+/Y )(Z)→ Sb

( W
↓

O(M+/Y )

)
→ [M,F/TOP]→ Ln,O(M+/Y )(Z)

where there are no decorations on the L’s because of the simple connectivity. In this case
Ls

n,O(M+/Y )(Z) = L−∞n,O(M+/Y )(Z), so the obstructions lie in hn(M/Y ;F/TOP). This is unre-

duced homology.

An element of Sb

( W
↓

O(M+/Y )

)
is an equivalence class of bounded homotopy equivalences

φ : W ′ → W . Splitting such a φ over M × {T} for some large T produces a homotopy
equivalence φ| : M ′ → M which is arbitrarily small over M/Y . By the thin h-cobordism
Theorem, this splitting is well-defined up to small homeomorphism over M/Y .

If N ⊃ Y is a regular neighborhood of Y in M , the main theorem of [8] shows that φ| is
close to a homeomorphism over M − int(N). Thus, M ′ is the union of a copy of M − int(N)
and a copy of (φ|)−1(N) = N ′. Since M − Y ∼= M − N ∼= M ′ − N ′, we see that M ′ is a
compactification of M−Y by a polyhedron homotopy equivalent to Y . If Y has codimension-
three or greater in M , then a polyhedron Y ′ homotopy equivalent to Y and having the same
dimension as Y embeds in N ′ and M ′ −N ′ ∼= M ′ − Y ′.

There is, of course, a related existence question. If M is an open manifold and we wish to
compactify M by adding a complex K at∞, we can proceed by constructing a nonmanifold
“Poincaré completion” and then try to solve the resulting bounded surgery problem over the
open cone on the one-point compactification of M . Note that the use of bounded surgery
here is the reverse of the group actions application above. There, we started with a manifold
and a control map and used our theory to vary the complement. Here, we control over the
complement and allow the theory to construct the manifold completion. One interesting
aspect of this theory is that, except for predicting the dimension of Y ′, it works well for Y
of any codimension.

Another way of exploiting the same control map M →M/Y is to start with a homotopy
equivalence φ : N → M and try to solve the resulting controlled surgery problem over
O(M+/Y ), as above. As before, we encounter obstructions lying in hn(M/Y ;F/TOP). If
we succeed in solving this surgery problem, we obtain a bordism from N to a manifold N ′

which is controlled homotopy equivalent to M over M/Y . As above, such a manifold splits
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into a copy of M − Y and a polyhedron homotopy equivalent to Y . The bordism comes
equipped with a degree one normal map to M × I, so there is a further ordinary surgery
obstruction to surgering the bordism to an s-cobordism from N ′ to N . Note that this is a
nonsimply connected surgery obstruction, since M is not required to be simply connected.
In the case Y = pt, the resulting exact sequence is the ordinary surgery exact sequence.
In the general case, we have obtained a 2-stage obstruction to splitting N into a manifold
homeomorphic to M − Y and a complex homotopy equivalent to Y .

As a final example, consider a manifold M homotopy equivalent to the total space of a
bundle (or quasifibration or approximate fibration) of manifolds:

F

��
M ' E

��
B

We may ask whether M can be turned into a bundle of some sort over B. Assuming that
the bundle splits at fundamental group level , we obtain a surgery problem

M × R // E × R

��
O(B+)

with fundamental group π = π1(F ). The obstruction lies in

Ls
n,O(B+)(Z[π1F ]).

Assuming that the obstruction vanishes, we obtain a manifold N normally cobordant to
M and a homotopy equivalence of N to E which is arbitrarily small when measured in B.
But this means that N → B is an approximate fibration, so we have obtained a normal
cobordism from M to a manifold which approximate fibers over B. As before, we now have
an ordinary surgery obstruction to turning this cobordism into an s-cobordism. The result
is an obstruction theory for homotoping a map to an approximate fibration. Note that the
fact that E → B was a bundle was barely used. If E → B is any map from a manifold to a
polyhedron which is a “trivial bundle on π1,” and M → E is a homotopy equivalence, then
solving the same sequence of problems would produce a map M → B with the same “shape
fiber structure” as E → B.

19. A variant L-theory

It is sometimes a problem that the L-theory described in §9 is not a homology theory as
a functor of the control space. This is unlike K-theory [27]. Inspired by discussions with
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Quinn, we give a a variant definition of L-theory which is (at least) a half exact functor
in the control space. This, on the other hand, means that it cannot degenerate to usual
L-theory when the control space is a point. The idea is to mix the torsion requirements. As
in §9, our definition is modeled on [43, Ch. 9].

Given a space K, an object is a surgery problem

(M,∂M) // (X, ∂X)

��
O(K)

where (X, ∂X) is a bounded Poincaré pair with bounded fundamental group π and a specific
CW structure. Thus, we have a specific simple type of (X, ∂X) parameterized by O(K),
but we only require (X, ∂X) to be a Poincaré pair. We do not require Poincaré torsion to
vanish in WhO(K)(Zπ). We assume ∂M → ∂X to be a simple homotopy equivalence.

Associated to such an object we have a Poincaré torsion τ(X). We use sign conventions
for Poincaré torsion as in [23].

The usual equivalence of bordism is to say (M1, ∂M1)→ (X1, ∂X1) is bordant to (M2, ∂M2)→
(X2, ∂X2) if there is a triad surgery problem

(W,M1,M2)→ (Y,X1, X2).

We refine this relation by requiring that τ(Y,X1) = 0.
We claim that this refined type of bordism is an equivalence relation on the set of surgery

problems. The condition τ(Y,X1) = 0 is equivalent to the condition τ(Y ) = τ(X1) = τ(X2)
(see e. g. [23]). We have τ(X × I,X × 0) = 0 showing that an object is equivalent to itself.
Symmetry follows from τ(Y,X1) = ±τ(Y,X2). Finally, if Y is a bordism from X1 to X2

and Z is a bordism from X2 to X3, then τ(Y ∪ Z) = τ(Y ) + τ(Z) − τ(X2) showing that
τ(Y ∪ Z) = τ(X1) = τ(X3).

All constructions involving simultaneous surgery as in §9 are allowed, since manifolds have
trivial Poincaré torsion, and these are manifold constructions.

The Grothendieck construction on the set of surgery problems with fundamental group π,
and only requiring homotopy equivalence of the Poincaré duality map, not simple homotopy
equivalence, parameterized by O(K), modulo the above equivalence relation, we shall denote
by

Lh,s
n,O(K)(Zπ).

The basic idea is to require relations to be simpler than generators.

Theorem 19.1. The functor Lh,s
n,O(K)(Zπ), n ≥ 5, is half exact in the variable K.

Proof. In §9 we studied the functor Lh
O(K),n(Zπ) as a functor in K. In trying to prove

half exactness, there was a splitting obstruction, but this splitting obstruction must vanish
because of the assumption of simpler relations. �
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Let

Hh
n(Z2 ;K1) = {σ ∈ K1 |σ∗ = (−1)nσ} ,

Hs
n(Z2 ;K1) = {σ ∈ K1 |σ = τ + (−1)nτ ∗}

where K1 = K1(CO(K)(Zπ)).

Theorem 19.2. For n ≥ 5, there are exact sequences

Hs
n(Z2 ;K1)→ Lh,s

n,O(K)(Zπ)→ Lh
n,O(K)(Zπ)→ 0

0→ Ls
n,O(K)(Zπ)→ Lh,s

n,O(K)(Zπ)→ Hh
n(Z2 ;K1)

which together with the usual Ranicki-Rothenberg exact sequence fit into a commutative braid

Hh
n+1(Z2 ;K1)

%%

!!D
DD

DD
DD

D
Ls

n,O(K)(Zπ)
%%

!!D
DD

DD
DD

D
Lh

n,O(K)(Zπ)

0

$$

!!D
DD

DD
DD

D
Hs

n−1(Z2 ;K1)

Ĥn+1(Z2 ;K1)

==zzzzzzzz

0

!!D
DD

DD
DD

DD
Lh,s

n,O(K)(Zπ)

==zzzzzzzz

!!D
DD

DD
DD

D
Ĥn(Z2 ;K1)

0

==zzzzzzzzz

!!D
DDDDDDD

Lh
n+1,O(K)(Zπ)

==zzzzzzzz

0

::
Hs

n(Z2 ;K1)

==zzzzzzzz

1+T

::
Hh

n(Z2 ;K1)

==zzzzzzzz

99
Ls

n−1,O(K)(Zπ)

Proof. In Lh we allow more relations than in Lh,s, so clearly there is an epimorphism. Sim-
ilarly, in Ls we allow fewer generators than in Lh,s, so there is a monomorphism. The
proof is now completed by a slight modification of the main argument in [26], realization of
h-cobordisms, and the π-π theorem. �

Remark 19.3. The authors believe that the Lh,s groups coincide with the diagonal L-groups
as proposed by Quinn in various lectures. The notation is chosen to indicate that one may
always define L-groups with two upper decorations instead of only one, corresponding to a
∗-invariant subgroup of the Whitehead group containing another ∗-invariant subgroup.

Remark 19.4. Ranicki has recently proved the existence of a useful exact sequence [37].
Given a cofibration A→ X → X ∪A CA there is a long exact sequence:

. . .→ Lh
n(CO(A)(R))→ Lh

n(CO(X)(R))→ LK
n (CO(X∪ACA)(R))→ Lh

n−1(CO(A)(R))→ . . .

where K = Im(K1(CO(X)(R)) → K1(CO(X∪ACA)(R))). This seems to be an adequate sub-
stitute for being a homology theory. See also the extensions of Ranicki’s results given in
[6, Section 4] which give a general result of the above mentioned type in the language of
Karoubi–filtered categories.
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20. Final Comments

Throughout this paper we have been working under the assumption of a constant funda-
mental group or a group action. This does exclude some examples one might want to study,
for example

(S7 → CP (3)) {S7 × R→ O(CP (3)+))}
as control map. In this example we have a locally constant fundamental group Z which is
not globally constant. It is however possible to study questions of this type by the methods
developed in this paper as follows: Cover CP (3) by open sets Uα so that the restriction of the
bundle to each Uα is trivial. A bounded surgery problem parameterized by O(CP (3)) with
this fundamental group structure will now produce a surgery problem in each Ln(C∂Uα

Ūα
(Z[Z])),

and the original surgery problem can be solved if and only if all these surgery problems can
be solved in a compatible way. But this can be investigated: If we can solve over O(Uα) and

over O(Uβ) there will be an obstruction in Ln+1(C
∂(Uα∩Uβ)

O(Ūα∩Ūβ)
(Z[Z])). So the methods can in

principle be made to work, if not in the most elegant way, for a locally constant system of
fundamental groups in the stratified sense.
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42. C. T. C. Wall, Poincaré complexes, Ann. of Math. (2) 86 (1970), 213–245.
43. , Surgery on Compact Manifolds, Academic Press, New York, 1970.
44. S. Weinberger, The topological Classification of Stratified Spaces, Chicago Lecture Notes in Mathematics,

University of Chicago Press, Chicago Ill., 1994.
45. M. Yamasaki, L-groups of crystallographic groups, Invent. Math. 88 (1987), 571–602.



EPSILON SURGERY THEORY 55

Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, New York
13901


