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Abstract. Conditions are given under which discrete co-compact group actions on Sn×Rk

extend to actions on Sn+k.

1. Introduction

In a previous paper [5] we studied free, properly discontinuous co-compact actions of
certain infinite discrete groups Γ on Sn ×Rk. The goal was to find restrictions on the finite
subgroups of Γ by showing that the action (Sn × Rk, Γ) restricted to any finite subgroup
G ⊂ Γ could be completed to an action of G on the sphere Sn+k, free on the complement of
a standardly embedded G-invariant subsphere Sk−1.

In this paper we consider the problem of completing the Γ action. The examples we obtain
give many new actions of discrete groups on spheres Sn+k with limit sets contained in a Γ-
invariant subsphere Sk−1. There is an extensive literature on this subject (see [9]) arising
from the classical theory of Kleinian groups.

To state our main criterion for compactifying Γ actions on Sn × Rk we will use the
definitions of Lipschitz homotopy equivalence from Section 1 (introduced in [7, §11]) and of
an action which is eventually small at infinity given in Section 3. This material owes a lot to
the foundational work of M. Gromov (see for example [4]). Recall that a torsion-free group
Γ0 has a classifying space BΓ0 with contractible universal covering space EΓ0 on which Γ0

acts freely and properly discontinuously. We always assume that BΓ0 is compact and give
EΓ0 the metric induced from a metric on BΓ0, so that Γ0 acts by isometries on EΓ0.

Definition 1.1. A group Γ is said to be eventually (α, k)-euclidean if vcd(Γ) < ∞ and it
has a torsion-free normal subgroup Γ0 of finite index with BΓ0 compact, such that

(i) Γ acts by isometries on EΓ0 extending the Γ0 action, properly discontinuously, co-
compactly and with finite isotropy,

(ii) EΓ0 is Lipschitz homotopy equivalent to Rk,
(iii) EΓ0 has a Γ-equivariant compactification (ĒΓ0, Γ) = (Dk, Γ) where the action is

eventually small at infinity, and
(iv) the action of Γ restricted to the boundary of Dk is given by a homomorphism α : Γ →

Homeo(Sk−1).
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Theorem A. Let Γ be a group which is eventually (α, k)-euclidean. If Γ acts freely, properly
discontinuously and co-compactly on Sn ×Rk then there exists a compactification (Sn+k, Γ)
such that

(i) there is a Γ-invariant linear subsphere Sk−1 in Sn ×Rk,
(ii) the action on Sn+k − Sk−1 = Sn ×Rk is topologically conjugate to the given action,

and
(iii) the Γ action on Sk−1 is given by α.

These conditions hold if Γ is a group of isometries of a complete Riemannian manifold
with non-positive curvature. We therefore obtain examples of the form Γ = Zk o D or
Γ = ∆ o D, where D is a finite group acting freely on a sphere and ∆ is the fundamental
group of a hyperbolic manifold. More examples arise from the existence results of [5, 8.3].

2. Lipschitz Homotopy Equivalence

We work in the category of proper metric spaces and proper maps. Recall that a metric
space is proper if all closed metric balls are compact. A proper map f : X → Y between
metric spaces is proper if the inverse image of any bounded set is bounded. A map f : X → Y
is eventually Lipschitz if there are constants K > 0, L ≥ 0 such that d(f(x), f(x′)) ≤
Kd(x, x′) + L for all x, x′ ∈ X. If L = 0 the map is called Lipschitz.

Definition 2.1. Let f0, f1 : X → Y be proper, Lipschitz maps between proper metric spaces.
They are called Lipschitz homotopy equivalent (written f0 'Lip f1 if there exists a proper
Lipschitz map H : X×R → Y ×R of the form H(x, t) = (ht(x), t) and a continuous function
φ : X → [0,∞) such that

(i) ht(x) = f1(x) if t ≥ φ(x), and
(ii) ht(x) = f0(x) if t ≤ 0.

We remark that Lipschitz homotopy equivalence is a reflexive relation, but it is not clear
whether it is symmetric or transitive.

Example 2.2. Let X = Y = O(K) with f0(tx) = 2tx, f1(tx) = tx. Then f1 'Lip f2 using
the map φ(tx) = 2t.

Remark 2.3. The inclusion map of the subspace N = {(x, φ(x)) |x ∈ X} is not necessarily
a Lipschitz map into X ×R, but N is homeomorphic to X.

Definition 2.4. Two proper metric spaces X,Y are Lipschitz homotopy equivalent (written
X 'Lip Y ) if there exist proper Lipschitz maps f : X → Y and g : Y → X such that
g ◦ f 'Lip idX and f ◦ g 'Lip idY .

The analogous definition using eventually Lipschitz maps will be called eventually Lipschitz
homotopy equivalent . For example, two metric spaces X and Y which are quasi-isometric are
eventually Lipschitz homotopy equivalent. A special case to keep in mind is any subgroup
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Γ0 ⊂ Γ of finite index, where Γ is a finitely generated discrete group with the word metric.
The inclusion map is a quasi-isometry, hence Γ0 and Γ are eventually Lipschitz homotopy
equivalent.

Example 2.5. The subspace of R3 given by the union of the half cylinder

{(x, y, z) ∈ R3 |x2 + y2 = 1, z ≥ 0}
together with its circular base {x2+y2 ≤ 1, z = 0} is homeomorphic to R2, but not Lipschitz
homotopy equivalent to R2.

Example 2.6. Let M be a complete simply-connected Riemannian k-manifold of non-
positive curvature. Then M 'Lip Rk using the exponential map expx : TxM → M and
its inverse, the logarithm map. The logarithm map is Lipschitz but the exponential map
must be modified by composing with a radial contraction to make it Lipschitz.

Theorem 2.7. Suppose that f0 and f1 are proper Lipschitz maps from X → Y and f0 'Lip

f1. Then the induced functors (f0)∗ and (f1)∗ from CX(R) → CY (R) give the same maps on
K-theory and L-theory.

Proof. We include a sketch of the proof (following the argument in [7, 11.3]). Consider the
following subspaces of X × R: let M = {(x, 0) |x ∈ X}, N = {(x, φ(x)) |x ∈ X} and
W = {(x, t) | 0 ≤ t ≤ φ(x)}. We have the inclusion maps ι0 : M → W and ι1 : N → W . By
excision, both ι0 and ι1 induce isomorphisms on bounded K or L theory with appropriate
decorations.

Projection (x, t) 7→ (x, 0) gives maps p1 : N → M and pW : W → M , with pW ◦ ι1 = p1

and pW ◦ ι0 = idM . By construction, H ◦ ι1 = f1 ◦ p1 and H ◦ ι0 = f0 Therefore

H∗ ◦ (ι1)∗ = (f1)∗ ◦ (p1)∗

= (f1)∗ ◦ (pW )∗ ◦ (ι1)∗

But (ι1)∗ is an isomorphism, so H∗ = (f1)∗ ◦ (pW )∗. Now

(f1)∗ = (f1)∗ ◦ (pW )∗ ◦ (ι0)∗ = H∗ ◦ (ι0)∗ = (f0)∗

�

Corollary 2.8. Let Γ be eventually (α, k)-euclidean. Then the bounded TOP structure set of
Sn×EΓ0, bounded with respect to the second factor projection p : Sn×EΓ0 → EΓ0, contains
only the base point if n + k ≥ 5.

Proof. We compare the bounded surgery exact sequences [3] for p : Sn × EΓ0 → EΓ0 and
`◦p : Sn×EΓ0 → Rk, by composing with a Lipschitz homotopy equivalence ` : EΓ0 → Rk at
the control space level. This gives a well-defined map of surgery exact sequences, inducing an
isomorphism on the normal invariant and L-group terms. Therefore the bounded structure
set of p : Sn×EΓ0 → EΓ0 has a bijection to the bounded structure set of ` ◦ p : Sn×EΓ0 →
Rk. By assumption, there is a homeomorphism EΓ0 = int(Dk) and we compose with
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a radial identifcation int(Dk) ≈ Rk to get a homeomorphism h : EΓ0 → Rk. The map
1 × h : Sn × EΓ0 → Sn ×Rk gives a bijection of bounded structure sets, and we note that
the bounded structure set of p2 : Sn ×Rk → Rk contains only the base point. �

3. Control at Infinity

Let X be a topological space.

Definition 3.1. A topological action (X, Γ) is continuously controlled at a Γ-invariant subset
A ⊂ X provided that: for all compact subsets K ⊂ X − A, and for each neighbourhood U
of x ∈ A, there exists a neighbourhood V ⊂ U of x such that whenever γ ·K ∩ V 6= ∅, for
some γ ∈ Γ, it follows that γ ·K ⊂ U .

Our main application is to the compactifications of classifying spaces for discrete groups.
For our purposes, a compactification of EΓ0 is a compact, contractible topological space
ĒΓ0 containing EΓ0 as a dense open subset. The frontier of ĒΓ0 is ĒΓ0 −EΓ0, denoted by
∂ĒΓ0.

Definition 3.2. Let Γ0 ⊂ Γ be a torsion-free subgroup and suppose that Γ acts by isometries
on EΓ0. If (EΓ0, Γ) has a Γ-equivariant compactification (ĒΓ0, Γ), then we say that the
action is eventually small at infinity if (ĒΓ0, Γ) is continuously controlled at the frontier
∂ĒΓ0.

There is another control condition at infinity using the metric on EΓ0.

Definition 3.3. Let Γ act properly discontinuously and co-compactly on EΓ0, and suppose
that (EΓ0, Γ) has a Γ-equivariant compactification (ĒΓ0, Γ). The group Γ is small at in-
finity provided that: for all metric balls B(k) ⊂ EΓ0 and for each x ∈ ĒΓ0 − EΓ0 and
neighbourhood U of x in ĒΓ0, there exists a neighbourhood V ⊂ U of x such that whenever
B(k) ∩ V 6= ∅, it follows that B(k) ⊂ U .

Note that since EΓ0 is a proper metric space and Γ acts by isometries, a group Γ which is
small at infinity has the given action (ĒΓ0, Γ) eventually small at infinity. In our situation,
these two conditions are actually equivalent.

Proposition 3.4. Suppose that the action (ĒΓ0, Γ) is eventually small at infinity. Then the
group Γ is small at infinity.

Proof. Since the action (EΓ0, Γ0) is co-compact, we can choose a point x0 ∈ EΓ0 and k so
large that any metric ball B(k) contains a point of the form γ · x0 for some γ ∈ Γ. Given
x ∈ ĒΓ0 − EΓ0, and a neighbourhood U of x in ĒΓ0, there exists a neigbourhood V ⊂ U
such that

(3.5) γ ·B(x0, 2k) ∩ V 6= ∅ implies γ ·B(x0, 2k) ⊂ U .

This is just the condition that the Γ action is eventually small at infinity.
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Now suppose that B(k) ∩ V 6= ∅ for some metric ball B(k). Then γ · x0 ∈ B(k) for some
γ ∈ Γ and it follows that

B(k) ⊂ B(γ · x0, 2k) = γ ·B(x0, 2k)

where the last equality follows since Γ acts by isometries on EΓ0. But now we conclude from
(3.5) that B(k) ⊂ U . �

4. Almost Equivariant Projections

We suppose now that Γ is eventually (α, k)-euclidean. If Γ acts freely, properly discontin-
uously and co-compactly on Sn × Rk then we have a compact manifold M = Sn × Rk/Γ0

and a classifying map M → BΓ0. Up to homotopy this is a spherical fibration with fibre
Sn, so we can replace it by a block fibration M̄ → BΓ0 with M̄ still compact and homotopy

equivalent to M . The universal cover M̂ of M̄ is a block fibration q : M̂ → EΓ0 over EΓ0,
which is contractible, so it is block and hence boundedly homotopy equivalent to the trivial
block fibration Sn × EΓ0 → EΓ0. Here we are using the blocked structures with respect to
a Γ0-equivariant triangulation of EΓ0, so the simplices have a bounded diameter.

Now if M̃ denotes the universal covering of M , we obtain a bounded homotopy equivalence

f : M̃ → Sn×EΓ0, bounded with respect to the second factor projection p : Sn×EΓ0 → EΓ0.

Definition 4.1. Let X be a Γ space and Z be a metric space on which Γ acts by isometries.
Given a Γ equivariant map p : X → Z, we say that p is almost equivariant if there exists a
constant k > 0 such that d(γ ·p(x), p(γ ·x)) < k for all x ∈ X. If the bound k is independent
of γ ∈ Γ, we say that p is uniformly almost equivariant

Lemma 4.2. The map pf : M̃ → EΓ0 is uniformly almost Γ0-equivariant.

Proof. The map f is the composite of a Γ0-equivariant bounded homotopy equivalence M̃ →
M̂ (covering the homotopy equivalence M → M̄) and a bounded homotopy equivalence

j : M̂ → Sn × EΓ0. Since p ◦ j is bounded homotopy equivalent to q, the distance d(pj(γ ·
x), γ · pj(x)) differs by a bounded amount independent of γ from d(q(γ · x), γ · q(x)). But q
is Γ0-equivariant so this last distance is zero. �

Since Γ is eventually (α, k)-euclidean, the bounded structure set of Sn × EΓ0 → EΓ0

contains just one element (represented by the identity map, see Corollary 2.8). Therefore

there is a bounded homotopy from f to a homeomorphism h : M̃ → Sn × EΓ0. On M̃ we
have the given free Γ action, so we can consider the conjugate Γ action by h on Sn × EΓ0.

Lemma 4.3. The second factor projection map p : Sn × EΓ0 → EΓ0 is uniformly almost
equivariant with respect to the conjugated Γ action restricted to Γ0.

Proof. We consider the quantity

d(phzh−1x, zpx) ≤ d(phzh−1x, pf(zh−1x)) + d(pf(zh−1x), zpx)
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where z ∈ Γ0 and x ∈ Sn ×EΓ0. The first term is bounded since f is boundedly homotopic
to h. The second term is a bounded distance from d(zpf(h−1x), zpx) since pf is uniformly
almost Γ0-equivariant by (4.2). Since Γ0 acts by isometries on EΓ0, this last term is equal
to d(pf(h−1x), px) which is bounded since f is boundedly homotopic to h. �

The main result of this section is that this almost equivariance property holds for the Γ
action as well.

Theorem 4.4. The second factor projection map p : Sn × EΓ0 → EΓ0 is uniformly almost
equivariant with respect to the conjugated Γ action.

Proof. Choose a compact fundamental domain U for the Γ0 action on Sn×EΓ0, so that the
sets {z · U | z ∈ Γ0} cover Sn × EΓ0. Let {gi | 1 ≤ i ≤ m} be a set of coset representatives
for Γ/G0, and let

U1 =
⋃

1≤i≤m

gi · U .

Since U is compact, the set

Ū1 =
⋃

1≤i≤m

gi · p(U1) ⊂ EΓ0

has finite diameter d.
For x ∈ Sn × EΓ0, write x = zu where z ∈ Γ0 and u ∈ U , and let g = gi for some i,

1 ≤ i ≤ m. Then

d(pgx, gpx) = d(pgzu, gpzu)

≤ d(pgzu, gzg−1pgu) + d(gzg−1pgu, gzpu) + d(gzpu, gpzu)

The first term is

d(pgzu, gzg−1pgu) = d(pgzg−1gu, gzg−1pgu) < k

since gzg−1 ∈ Γ0 by (4.4). This is the place where we need uniform almost equivariance for
the map p with respect to the Γ0 action. The second term is

d(gzg−1pgu, gzpu) = d(gzg−1pgu, gzg−1gpu) = d(pgu, gpu) < d

since Γ0 acts by isometries on EΓ0, and both p(gu) and gp(u) are in Ū1 which has diameter
d. Finally, the third term

d(gzpu, gpzu) = d(zpu, pzu) < k

since Γ acts by isometries and the projection p is Γ0-almost equivariant. From these estimates
we get

d(pγx, γpx) < 3k + d

for all γ ∈ Γ and all x ∈ Sn × EΓ0 so the projection p is uniformly almost equivariant. �
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5. The Proof of Theorem A

We assume that the group Γ is (α, k)-euclidean and acts freely, properly discontinuously,
and co-compactly on Sn×Rk. The results of the previous section say that (Sn×Rk, Γ) is Γ
equivariantly homeomorphic to an action (Sn × EΓ0, Γ) which has the additional property
that the second factor projection p : Sn × EΓ0 → EΓ0 is uniformly almost equivariant.

Proposition 5.1. Suppose that Γ is small at infinity. Then for each x0 ∈ ∂ĒΓ0, and each
neighbourhood U of x0, there exists a neighbourhood V ⊂ U of x0 such that p(x) ∈ V , for
x ∈ Sn × EΓ0, implies that γ−1 · p(γ · x) ∈ U for all γ ∈ Γ.

Proof. Let k denote a uniform bound for the Γ-almost equivariance of the map p : Sn×EΓ0 →
EΓ0, with respect to the action on Sn×EΓ0 described above. For U and x0 given, according
to Definition 3.3 there exists a neigbourhood V ⊂ U of x0 such that B(k) ∩ V 6= ∅ implies
that B(k) ⊂ U . Now if p(x) ∈ V , for some x ∈ Sn × EΓ0, then we apply this to the k-ball
centered at p(x), and obtain B(p(x), k) ⊂ U . But

d(γ−1 · p(γ · x), p(x)) = d(γ−1 · p(γ · x), p(γ−1γ · x)) < k

so that γ−1 · p(γ · x) ∈ B(p(x), k) implies γ−1 · p(γ · x) ∈ U . �

Corollary 5.2. The action (Sn ×Rk, Γ) extends to a topological Γ-action on Sn+k = Sn ×
Rk ∪ Sk−1 where the action on Sk−1 is given by the action α on ∂ĒΓ0 = ∂Dk = Sk−1.

Proof. The preceeding result shows that for each γ ∈ Γ, the given action of γ on Sn ×Rk

together with the action given by α(γ) on Sk−1 fit together to give a homeomorphism of
Sn+k. �

6. Future Developments

Some of the definitions given earlier suggest questions for further study. Probably the
formulations below are too naive.

Question 6.1. Let (X, d) be a metric space homeomorphic to Rk, and suppose that (X, d)
is also Lipschitz homotopy equivalent to Rk. Does a finite group acting by isometries on X
necessarily have a fixed point ?

We remark that there exist smooth fixed-point free actions of finite cyclic groups on Rk

(see [8]), but these actions do not preserve the standard metric on Rk.

Question 6.2. Suppose that (ĒΓ1, Γ1) and (ĒΓ2, Γ2) are actions which are eventually small
at infinity. Does there exist an equivariant compactification of EΓ1×EΓ2 which is eventually
small at infinity ?

An action of a discrete group is uniformly continuous if the usual ε-δ continuity condition
for each group element γ ∈ Γ allows a δ depending only on ε (and not on the group element
γ).
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Question 6.3. Suppose that Γ0 ⊂ Γ is a torsion-free normal subgroup of finite index and
the action on (ĒΓ0, Γ) is eventually small at infinity. Is the Γ-action on ĒΓ0 uniformly
continuous ?

We would certainly like to relax some of our assumptions on the discrete group Γ in order
to include more of the interesting classes of groups already appearing in the literature (see
[1], [4]). As above, we let Γ0 ⊂ Γ be a torsion-free normal subgroup of finite index. Suppose
that (ĒΓ0, Γ) is an equivariant compactification of EΓ0 with Γ-action eventually small at
infinity. We will assume that there exists an embedding of ĒΓ0 in Sn+k as a neighbourhood
retract. Furthermore, we want to assume that EΓ0 is compactified by a Z-set. In other
words, ĒΓ0 comes equipped with a homotopy

ht : ĒΓ0 × [0, 1] → ĒΓ0

such that h0 = id, and the image ht(x) /∈ ∂ĒΓ0 for t > 0. Using the retract and this
homotopy, we can define a proper map q : Sn+k − ∂ĒΓ0 → EΓ0 by the formula ht(r(x))
where

t =
d(x, ĒΓ0)

1 + d(x, ĒΓ0)

and r is the retract. We can now ask if the bounded structure set of

q : Sn+k − ∂ĒΓ0 → EΓ0

contains just one element for n + k ≥ 5. This is true for the bounded structure set of
Sn+k −K bounded over the open cone O(K), provided that K is a finite simplicial complex
(see our paper [6, 3.2]). Extending our techniques to handle complements of ∂ĒΓ0 instead
of a finite complex K looks like an interesting project, with other possible applications.

If Γ acts freely, properly discontinuously, and co-compactly on Sn+k − ∂ĒΓ0 then all the
additional information we need to extend the action to Sn+k is the analogue of Corollary 2.8.
The bounded homotopy type of the complement of the frontier (if n ≥ 2) is again just given
by the second factor projection p : Sn × EΓ0 → EΓ0. This follows by the same arguments
given at the beginning of Section 4, provided that Sn+k − ∂ĒΓ0 is homotopy equivalent to
Sn. Since ĒΓ0 is contractible, this will follow for example if (ĒΓ0, ∂ĒΓ0) is a k-dimensional
Poincaré pair. In this situation, we need an affirmative answer from surgery theory to the
following question.

Question 6.4. Suppose that EΓ0 is a topological manifold. Does the bounded structure
set of Sn × EΓ0 → EΓ0 contain only the base point ? Equivalently, is every bounded
homotopy equivalence W → Sn×EΓ0, bounded with respect to the second factor projection
p : Sn × EΓ0 → EΓ0, boundedly homotopic to a homeomorphism ?

We conclude this collection of informal questions and remarks with a bounded version of
the Borel conjecture:
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Question 6.5. Suppose that EΓ0 is a topological manifold. Is every bounded homotopy
equivalence W → EΓ0, bounded with respect to the identity map EΓ0 → EΓ0, boundedly
homotopic to a homeomorphism ?

We remark that if the bounded Borel conjecture is true for a torsion-free group Γ0, then
the integral L-theory assembly map for Γ0 is a split monomorphism of spectra [2], [10]. This
is a strong version of the Novikov conjecture.
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