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0. Introduction

It is an old question in the theory of H-spaces, whether a finite H-spaces is homotopy
equivalent to a differentiable manifold. For a long time all known examples were Lie groups.
Then Hilton and Roitberg discovered some new H-spaces in 1969 see [8]. These, however,
were all differentiable manifolds by their definition. The main attack on the general problem
is due to W. Browder, who in a series of papers proved that any 1-connected finite H-space is
homotopy equivalent to a topological manifold and in dimensions 6= 4k+2 to a differentiable
manifold.

The first examples of H-spaces that are not a priori given as differentiable manifolds are
the H-spaces obtained by the method of homotopy mixing developed by A. Zabrodsky, see
[15], [7]. These H-spaces are not a priori known to be finite, only finitely dominated, which

of course, implies finite in the simply connected case since K̃0(Z) = 0. In this paper we
consider H-spaces obtained by this method and we prove they are finite and in almost all
cases we prove they are homotopy equivalent to differentiable manifolds, the only exception
being when the H-space at the prime 2 is a product of RP 3’s, S7’s and RP 7’s. The method
is: Given an H-space X of above type, to construct a fibration S1 → X → Y where Y is
finitely dominated, and then use the existence of this fibration to prove that finiteness and
surgery obstruction vanish.

1. Statement of results

A CW-complex is quasifinite if the homology of the universal cover is a finitely generated
abelian group and all the homotopy groups are finitely generated, see [7].

For convenience we remind the reader of the definition of mixing homotopy types, also
called Zabrodsky mixing.

Let P1, . . . , Pn be a partition of all primes, X1, . . . , Xn quasi-finite CW-complexes that are
rationally equivalent, i. e. the localizations at 0, (Xi)0 are homotopy equivalent. Having
specified homotopy equivalences (Xi)0 ' (Xi+1)0 we may form the homotopy pullback Z of
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the diagram

(X1)P1

��

(X2)P2

��

(Xn)Pn

��
(X1)0 ' (X2)0 ' · · · ' (Xn)0.

This is the homotopy mixing of X1, . . . , Xn at P1, . . . , Pn. Clearly Z is a quasifinite CW-
complex, and hence dominated by a finite complex (i. e. homotopy equivalent to a retract
of a finite complex. This follows from [7]).

We consider quasifinite CW-complexes that are H-spaces at some set of primes of the
following type

a) Compact Lie groups different from RP 3.
b) Total spaces of principal, stably trivial S3-bundles over stably reducible, quasifinite,

nilpotent Poincaré duality spaces.
c) S7, RP 7 and RP 3.
d) Any stably reducible, nilpotent, quasifinite Poincaré duality space.

Here of course a) and c) are the most well-known examples. Examples of type b) are con-
structed in [9], and d) notably includes odd-dimensional spheres [1] and examples constructed
in [9].

We prove

1.1. Theorem. Let P1, . . . , Pn be a partition of all primes and let Xi be homotopy equivalent
to products of spaces of the above type. We require that each X, has a factor of type a) or
b). If Z is an H-space obtained by homotopy mixing of X1, . . . , Xn at P1, . . . , Pn then Z is
homotopy equivalent to a parallellizable differentiable manifold.

If we choose all Xi the same, but different rational equivalences we may obtain any element
in the genus of Z, this follows from [16]. Hence we get

1.2. Corollary. Let Z be in the genus of a compact Lie group, then Z is homotopy equiv-
alent to a parallellizable manifold.

Proof. Except for the case Z = (RP 3)l this is direct from Theorem 1.1. We defer the proof
of this special case to the end.

2. The surgery arguments

2.1. Proposition. Let S1 → Z
p−→ Y be a fibration such that

a) Y is a stably reducible finitely dominated Poincaré duality space.
b) p induces isomorphism of fundamental groups
c) π1(Y ) acts trivially on H∗(S1;Z).

Then Z is homotopy equivalent to a parallellizable differentiable manifold.
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Proof. First we need to deal with the finiteness obstruction. The formulae of [11] tells us
that σ(Z) = χ(S1) · σ(Y ) where χ(S1) is the Euler-characteristic, hence σ(Z) = 0 and
Z is homotopy equivalent to a finite complex. We now let E be the total space of the
corresponding D2-fibration. Then (E, Z) is a Poincaré duality pair and we consider the
classifying map νE : E → BG. We have the equation

νE = p∗(νY )⊕ p∗(p)−1.

Now νY is trivial since Y was assumed to be stably reducible. Also p is an S1-fibration clas-
sified by G(2). But O(2) ⊆ G(2) is a homotopy equivalence so p is fibre homotopy equivalent
to an O(2)-bundle, actually an S1-bundle since the fibration was assumed orientable. We
thud get a linear reduction ζ of νE and the reduction is trivial when restricted to Z, since
the pullback of an S1-bundle to the total space of itself is trivial.

A standard procedure (see e. g. Browder [3, page 38]) sets up a surgery problem (a degree
1 normal map)

(M, ∂M)
φ−→ (E, Z), φ̂ : νM → ζ

with π1(E) ∼= π1(Y ) ∼= π1(Z). However E is possibly not of finite homotopy type. We wish
to compute the surgery obstruction when restricted to ∂M → Z. If we cross the problem
with S1, E × S1 is homotopy equivalent to a finite complex [5], and (E × S1, Z × S1) is a
simple Poincaré pair. Hence the obstruction to completing surgery for the relative surgery
problem

(M × S1, ∂M × S1)
φ×1−−→ (E × S1, Z × S1)

is an element of Ls
n(π1(E × S1), π1(Z × S1)). But π1(E) = π1(Z) so by [14, Ch. IV] the

surgery obstruction group is the trivial group, so φ×1 is normally cobordant to a homotopy
equivalence. In particular

φ× 1 : ∂M × S1 → Z × S1

defines the zero element of Ls
n−1(π1(Z)⊕ Z).

Shaneson proves [13] that the map induced by product with S1

Lh
n−1(π)→ Ls

n(π ⊕ Z)

is a monomorphism, thus our original surgery problem

φ : ∂M → Z, φ̂ : νM → ε

must also have vanishing surgery obstruction. Hence Z is homotopy equivalent to a differ-
entiable, parallellizable manifold.

3. 1-tori in H-spaces

We start with a definition:

3.1. Definition. Let Z be a quasifinite nilpotent space. We say that Z admits a 1-torus if

there exists a fibration S1 → Z
p−→ Y such that
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a) Y is a quasifinite, stably reducible nilpotent complex.
b) p induces isomorphism of fundamental groups.
c) π1(Y ) acts trivially on H∗(S1;Z).

d) There is a (rational) space B so that the rational type of the fibration S1 → Z
p−→ Y

is given by

S1
0

'
��

// Z0

'
��

// Y0

'
��

K(Q, 1) // K(Q, 3)×B
h×1 // S2

0 ×B

where h is the localization of the Hopf map S3 → S2.

Remarks. We note that the nilpotency condition in a) will automatically be satisfied in
case Z is nilpotent since the long exact sequence in homotopy is a sequence of π1(Z) hence
of π1(Y )-modules where the action on π1(S

1) is trivial.
We also note there are some obvious H-spaces that do not admit a 1-torus due to condition

d) notable T k and S7. However T k is uninteresting in the context of mixing homotopy types
since it is a K(Zk, 1) so it always splits off as a factor. Further S7 (and RP 7) are the only
known H-spaces at the prime 2 whose rational type does not contain a K(Q, 3) factor, so
there is nothing to mix with. We shall see (Proposition 3.5) that all compact nonabelian Lie
groups do admit a 1-torus in this sense except (RP 3)k (because of condition b)). This fact
does restrict the application of our method to smooth H-spaces which at the prime 2 are
e. g. (RP 3)k× (S7)l× (RP 7)m. In spite of this we are able to say something in this case too
(see section 4 final remarks).

The main reason for condition d) in definition 3.1 is that it ensures that the existence of
1-tori is a generic property for H-spaces:

3.2. Proposition. Let Z be an H=space which admits a 1-torus. Then any Z ∈ G(Z) also
admits a 1-torus

Proof. The proof of 3.2 is based on results from [16], but extended to the non-simply con-
nected case as in [10]. According to [10, theorem 4.1] if Z is in the genus of Z and Z has
finite fundamental group, then if

Z →
∏

K(Z, odd) Z →
∏

K(Z, odd)

define a basis for QH∗(Z)/torsion and QH∗(Z)/torsion respectively then there is a commu-
tative diagram

Z

p
��

f̃ // Z

p

��∏
K(Z, odd)

f //
∏

K(Z, odd)
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Moreover f is described by a diagonal matrix and if P denotes the set of primes occurring in
the fibre of p in dim < dim(Z) + 1 then f and f̃ are P -equivalences. Clearly p and p will be
P -equivalences in dimensions < dim(Z) + 1, where P is complement of P . The restriction
that π1(Z) is finite is not serious here since free summands split off as product with S1. It

is now clear that f̃ : Z → Z is a P -equivalence and

Z
p−→

∏
K(Z, odd)

p←− Z

is a P -equivalence in dimensions < dim Z + 1.
Therefore Z is obtained as the homotopy pullback of

ZP

��
ZP

// Z0

f0 // Z0

where f0 is the localization of f at 0, p0 is thought of as an identification. We want to prove
that the fibration S1 → Z → Y can be split up in P - and P - primary parts and recombined
to produce a fibration S1 → Z → Y . To do this it suffices to find a homotopy equivalence
k0 : Y0 → Y0 so that the diagram

Z0

��

f0 // Z0

��
Y0

k0 // Y0

is homotopy commutative. This done we construct Y as the homotopy pullback of the
diagram

YP

��
YP

// Y0
k0 // Y0

and since Y is in the genus of Y , Y is a quasifinite, stably reducible, nilpotent complex [7].

By naturality of homotopy pullback (and localization) we then get a map Z
p−→ Y with fibre

in the genus of S1 hence equivalent to S1. Finally p induces isomorphism of π1 since it does
so at every prime, and the fibration is orientable since that is only a 2-primary question.
To construct k0 as above we first have to change f0 slightly. If we change f0 by multiplying
the diagonal matrix representing f0 by d−1, where d /∈ P that does not change Z. This is
so because the map λ : ZP → ZP , which is d’th power in any bracketing is a homotopy
equivalence (since d /∈ P ) the inverse of which induces multiplication by d−1 on H∗(Z0;Q).
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We thus get a homotopy pullback diagram

Z

��

// ZP

��

(λ)−1

// ZP

��
ZP

// Z0

f0 // Z0
// Z0

proving the claim. Since all entries in f0’s matrix are in P we may thus arrange to have one
entry equal to 1. We may now construct k0 as follows: By (d) in definition 3.1 the rational
type of the fibration S1 → Z → Y is

K(Q, 1)→ K(Qn, 3)×
∏

K(Q, odd)→ S2
0 ×K(Qn−1, 3)×

∏
K(Q, odd)

where odd 6= 3. It is clear how to define k0 on the
∏

K(Q, odd) factor. To see how to define
k0 on S2

0 ×
∏

K(Qn−1, 3) we have to choose the basis in which f0 is described carefully.
Consider the diagram with short exact row

Zn

��
0 // Qn−1

φ // Qn // Q // 0

where the vertical map is the induced map QH3(Z,Z)/torsion→ QH3(Z,Q), and

φ = p∗ : QH3(Y ;Q)→ QH3(Z;Q).

We wish to find a basis {l1, . . . , ln} of Zn over Z so that the image of li belongs to Qn−1i > 1.
Clearly Qn−1∩Zn is a free abelian group of rank n−1. We can assume that the codimension
1 vectorspace Qn−1 is defined by some equation p1x1 + . . . pnxn = 0 with the pi integral and
relatively prime. Then

∑
pixi defines an isomorphism of Zn/Qn−1 ∩ Zn with Z so we may

pick a basis {l2. . . . , ln} in Zn∩Qn−1 and choose l1 to be some element with
∑

pixi = 1. If we
assume (as we may) that the matrix f0 is diagonal in this basis with the entry corresponding
to l1 equal to 1, we can choose k0 to be the identity on S2

0 and the obvious map on K(Qn−1, 3).
This ends the proof.

We proceed to construct 1-tori in specific H-spaces.

3.3. Lemma. Let G be a compact connected Lie group, S1 a subgroup such that S1 determines
a torsion element of π1(G). There is then a decomposition G0 = K(Q, 3) ×

∏
K(Q, odd)
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such that the rational type of the fibration S1 → G→ G/S1 is

S1
0

��

' // S1
0

��
G0

��

' // K(Q, 3)×K(Q, odd)

h×1
��

(G/S1)0
' // S2

o ×
∏

K(Q, odd)

where h : K(Q, 3)→ (S2)0 is the rationalization of the Hopf map S3 → S2.

Proof. Let T be a maximal torus of G containing S1. The fibration S1 → G → G/S1 is
the pullback of a fibration over G/T , and G/T is simply connected. Hence the fibration is
orientable. We now apply the Serre spectral sequence with rational coefficients to compute
H∗(G/S1;Q). The 1-dimensional generator of H1(S

1,Z) represents torsion of H1(G,Z),
hence the map H1(G;Q)→ H1(S1,Q) is zero so the generator of H1(S1;Q) transgresses to
a 2-dimensional element y ∈ H2(G/S1;Q). We need to prove y2 = 0. Embed G ⊂ SU(N)
as a subgroup for some big N , and consider

S1

��

S1

��

// T

��

G

��

// SU(N)

��

SU(N)

��
G/S1 // SU(N)/S1 // SU(N)/T

where T is a maximal torus for SU(N) extending S1. In [2] it is proved for an arbitrary
compact Lie group H with maximal torus T and Weyl group W that

H∗(H/T ;Q) ∼= H∗(BT ;Q)//H∗(BT ;Q)W

that is the cohomology of H/T with rational coefficients is a polynomial algebra on rank(H)
2-dimensional generators and relations generated by elements invariant under the Weyl
group. In case of SU(N) the maximal torus is diagonal matrices with determinant 1 and the
Weyl group is Σn acting as permutations of the diagonal entries. The rational cohomology
of SU(N)/T is thus a polynomial algebra on 2-dimensional generators x1, . . . , xN ;

∑
xi = 0,

with relations generated by symmetric polynomials. Let x denote the 2-dimensional genera-
tor of H∗(SU(N)/S1;Q). Then xi maps to some rational multiple aix of x and not all ai are
0. Since the Weyl group acts by permutation x2

1 + . . . + x2
N is a relation. Hence

∑
a2

i x
2 = 0

in H4(SU(N)/S1;Q) so x2 = 0 and hence y2 = 0.
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We may now solve the spectral sequence for S1 → G→ G/S1: H∗(G/S1,Q) is an exterior
algebra on a 2-dimensional generator y, and odd-dimensional generators. By obstruction
theory there is a map

(G/S1)0 → (S2)0 ×K(Q, odd)

inducing isomorphism on rational cohomology, hence a homotopy equivalence, (the universal
cover is obtained by omitting the K(Q, 1)’s). The rational type of the classifying map
G/S1 → BS1 is given by γ. Hence it factors as

(G/S1)0 ' S2
0 ×

∏
K(Q, odd)→ S2

0 → (BS1)0.

and our statement follows by taking homotopy fibres of this map.

3.4. Lemma. Let G be a compact Lie group, S1 a subgroup, then G/S1 is stably parallellizable.
In particular G/S1 is stably reducible.

Proof. It is well-known that G/T , T a maximal torus, is stably parallellizable. Consider the
sequence of fibrations

G/S1 → G/S1 × S1 → . . .→ G/T

Since G/T is parallellizable (see e. g. [2]), and pullback of an orientable S1-bundle over itself
is trivial, we conclude that G/S1 is stably parallellizable.

Lemma 3.3 and 3.4 together establish

3.5. Proposition. Let G be a non-abelian compact Lie group 6= (RP 3)k. Then G admits a
1-torus

Proof. We use classification of compact Lie groups (as given in e. g. [6, p. 346] to find a
subgroup S1 ⊂ T ⊂ G of the maximal torus that determines the 0-element in π1(G). By
lemma 3.3 and 3.4 we see that S1 → G→ G/S1 satisfies the conditions of definition 3.1.

We next consider spaces of type b) in our main theorem.

3.6. Lemma. Let S3 → A→ B be a stably trivial principal S3-bundle. The free action of S1

on S3 induces a free action of S1 on A. The fibration

S1 → A
p−→ A/S1

is orientable, p induces isomorphism of fundamental groups and the rational type of the
fibration is

S1
0 → B0 × S3

0
1×h−−→ B0 × S2

0 .

h the Hopf map. If further B is a stably reducible, quasifinite Poincaré space then so is
A/S1, so A in that case admits a 1-torus.
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Proof. The diagram of fibrations

S2

��

S3oo

��

S1oo

��
A/S1

π

��

Aoo

��

S1oo

��
B Boo ∗oo

proves π1(p) is an isomorphism and as p has S1 as structure group it is orientable. From
[12] we have that A/S1 is a Poincaré complex since both S2 and B are. The normal bundle
ν(A/S1) is the Whitney sum of the pullback of νB and the inverse of the tangent bundle
along the fibres of π. We have assumed νB is trivial and must check the other summand
is also trivial. Now S2 → A/S1 → B is the projective bundle of S3 → A → B, and is
classified by a map into BSU(2) = BS3. Taking tangent bundles along the fibres (of SU(2)-
bundles) induce a mapping BSU(2) → BSO(2), but BSO(2) = K(Z, 2) so any such map
is homotopically trivial. This proves that ν(A/S1) is trivial. We now need to prove that
A/S1)0 is B0 × S1

0 . First we observe that S3
0 → A0 → B0 is trivial since the first rational

Pontrjagin class must be 0 by stably triviality, hence A0
∼= B0 × S3

0 . In the Serre spectral
sequence of S1 → A → A/S1 the 1-dimensional element x ∈ H1(S1;Q) transgresses to a
non-zero element by naturality, comparing with the spectral sequence of S1 → S3 → S2.
In the latter spectral sequence y ⊗ x survives so it must in the former since some element
must hit y ⊗ x and there are no extension problems. Therefore y2 = 0 in H4(A/S1;Q). By
obstruction theory we produce a map (A/S1)0 → B0 × S2

0 inducing isomorphism of rational
cohomology and since the spaces involved are nilpotent it is a homotopy equivalence [4].
This completes the proof.

We are now in a position to prove our main theorem. Since we assume Xi has a factor of
type (a) or (b) it follows from lemma 3.6 and proposition 3.5 that each Xi admits a 1-torus.
The proof now follows from proposition 2.1 once we have the following

3.7. Lemma. Assume X is obtained by homotopy mixing of Xi at Pi and each Xi admits a
1-torus S1 → Xi → Yi. Then X admits a 1-torus.

Proof. All the Yi must have rational type S2
0 ×K(Q, odd) so they are rationally equivalent

and we may form Y as the homotopy mixing of Yi at Pi. The rational equivalences of (Yi)0 are
covered by rational equivalences of (Xi)0. So forming the homotopy pullback of the localized
S1-fibrations creates an S1-fibration S1 → Z → Y as in the proof of proposition 3.2. Y
is clearly quasifinite, nilpotent and we see that Y is stably reducible by mixing the stable
reductions. Z is in the genus of Z and since Z admits a 1-torus so does Z by proposition
3.2. This ends the proof



10 ERIK KJÆR PEDERSEN

The corollary follows immediately except for Z = (RP 3)k. It follows from [16] however,
that if Z ∈ G(Z) then Z = Xk where X ∈ G(RP 3), and X is obtained as a homotopy
pullback

X

��

// RP 3

��

RP 3 // K(Q, 3) ' K(Q, 3)

the map K(Q, 3) ' K(Q, 3) being multiplication by p/q. If we write p/q = p1/q1 · p2/q2

where p1, q1 are products of primes in P , p2, q2 primes in P , we may realize the rational maps
p1/q1 and q2/p2 as homotopy equivalences

RP 3
P

q2/p2−−−→ RP 3

and

RP 3
P

p1/q1−−−→ RP 3
P

and it thus follows that X = RP 3.

4. Final remarks

In our main theorem we excluded the case Z2 = ((RP 3)k × (S7)l × (RP 7)m). The main
technique of the paper does, however, work in some of these cases, but then depends on actual
surgery group computations rather than just the π− π theorem of Wall. If for instance Z is
the homotopy pullback of

Z

��

// Sp(2)P

��
(RP 3 ×RP 7)2

// K(Q, 3)×K(Q, 7)

P all odd primes.
We may then construct a diagram

Sp(2)P

))SSSSSSSSSSSSSSS

��
(RP 3 ×RP 7)2

//

((RRRRRRRRRRRRR
K(Q, 3)×K(Q, 7)

))SSSSSSSSSSSSSS
(Sp(2)/S1)P

��
(RP 3 ×RP 7)2

// S2
0 ×K(Q, 7)

giving by homotopy pullback a fibration S1 → Z → Y . Here π1(Z) = Z2 ⊕ Z2 and π1(Y ) =
Z2. Also Y is a quasifinite stably reducible Poincaré complex and the fibration is orientable.
Since K0(Z(Z2)) is 0, Y is a finite complex. The stable reduction of Y establishes a surgery
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problem M → Y with obstruction in L1(Z2). This group is 0 so Y is homotopy equivalent to
a differentiable manifold. Since S1-fibrations are equivalent to O(2)-bundles Z is homotopy
equivalent to a differentiable manifold. Since Sp(2) is the only Lie-group of type (3, 7)
this method can be extended to prove that if Z is mixed of (RP 3)k × (S7)l × (RP 7)m and
compact Lie groups, then there is a differentiable parallellizable manifold in the genus of Z
and hence since Mislin [10] has proved that finiteness is a generic property for H-spaces Z
is the homotopy type of a finite complex.

Added in Proof. The surgery argument in Section 2 is in error: (E × S1, Z × S1) is a
Poincaré pair, but only a simple Poincaré pair if the finiteness obstruction of E is zero. It
follows from a result of Varadarajan (J. Pure Appl. Algebra, 12 (1978), 137–146) that the
finiteness obstruction of E lies in the deficiency subgroup D(Zπ), so what the argument
does prove is that the surgery obstruction is 0 in the L group based on projectives in D(Zπ).
This is certainly sufficient in case D(Zπ) = 0, e. g. for the trivial group, Z/4Z, Z/2Z,
Z/2Z+Z/2Z, bz/3bz. We should thus add the assumption to Theorem 1.1 that D(Zπ) = 0.
As far as Corollary 1.2 is concerned, using that G(X +Y = X×G(Y ) and the above remarks
about D groups, we still get that corollary except for SU(n + 1)/(n + 1)Z.
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