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Let G be a finite group and V, V ′ finite dimensional real orthogonal representations of
G. Then V is said to be topologically similar to V ′ (V ∼t V ′) if there exists a homeomor-
phism h : V → V ′ which is G-equivariant. If V, V ′ are topologically similar, but not linearly
isomorphic, then such a homeomorphism is called a non-linear similarity.

The topological classification of G-representations was first studied by de Rham [18]. He
proved that if a topological similarity h : V → V ′ of orthogonal representations preserves the
unit spheres and restricts to a diffeomorphism between S(V ) and S(V ′), then V and V ′ are
linearly isomorphic. In 1973, Kuiper and Robbin [11] obtained positive results on the general
problem and conjectured that topological equivalence implies linear equivalence for all finite
groups G. However, in 1981 Cappell and Shaneson [1] constructed the first examples of
non-linear similarities. The simplest occurs for G = Z/8, but they also constructed a large
class of examples for cyclic groups of the form G = Z/4q. Further results can be found in
[2], [3], [4], and [13].

On the other hand, Hsiang and Pardon [10] and Madsen and Rothenberg [12] indepen-
dently proved the conjecture for all odd–order groups. In addition, the main theorem of [10]
ruled out some non-linear similarities for even-order groups G.

The purpose of this paper is to give new restrictions on the existence of non-linear simi-
larities using techniques from bounded topology.

Theorem A. Let V, V ′ be real orthogonal G-representations, where G is a finite cyclic group.
Suppose that ResH V ∼= ResH V ′ for each proper subgroup H ( G, and that V H = V G when
[G : H] = 2. Then V ∼t V ′ if and only if V ∼= V ′.

This result gives information about topological similarities for non–cyclic groups as well,
since linear equivalence of representations is detected by character values. The formulation
is also well-adapted to inductive arguments, and we get a new proof for the results of [10],
[12].

Corollary B. Let G be a finite group and V, V ′ be real orthogonal G-representations. Suppose
that for each cyclic subgroup C ⊆ G of 2-power order, the elements of C act either trivially
on W , or freely away from 0 ∈ W , for every irreducible C–submodule W ⊂ ResC V . Then
V ∼t V ′ if and only if V ∼= V ′.
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All previously contructed topological similarities of cyclic groups G contain the non–trivial
1-dimensional representation (i. e. the representation with isotropy group H ⊂ G of index
2), or are induced from such examples.

For example, suppose that G = Z/4q, q = 2r−2, r ≥ 4. Now let V1 = ti + tj and
V2 = ti+2q + tj+2q, with i ≡ 1 mod 4 and j ≡ ±i mod 8. Here t denotes a faithful 2-
dimensional representation of G. Let ε (resp. δ) denote the 1-dimensional trivial (resp.
non–trivial) representation of G. Then ti + tj + δ + ε ∼t ti+2q + tj+2q + δ + ε by [4, Thm. 1,
Cor. (iii)]. But ResH V1

∼= ResH V2 for every proper subgroup H ( G, so our result says that
V1 ⊕W is not topologically similar to V2 ⊕W unless δ is a summand of W . More generally,

Corollary C. Suppose that V1 ⊕W ∼t V2 ⊕W is a non–linear similarity for a cyclic group
G. Then for some subgroup H ⊆ G, ResH(V1 ⊕W ) ∼t ResH(V2 ⊕W ) is also a non–linear
similarity and the non–trivial 1-dimensional H–representation is a summand of ResH W .

Our techniques also give information about the existence and classification of non-linear
similarities. We recently noticed that [4, Thm 1(i)] is incorrect as stated. For example for
G = Z/12, there are no 6-dimensional non-linear similarities. The problem is that the natural
epimorphism π : Z/4q → Z/2r where q = 2r−2s, s odd, does not induce an isomorphism
π∗ : Lp(Z[Z/4q]−) → Lp(Z[Z/2r]−) as claimed in [4, p. 732 l. -8]. These topics will be
discussed elsewhere [8].

Acknowledgement: Both authors would like to thank the Mittag–Leffler Institute for its
hospitality in May, 1994 when this work was completed.

1. Preliminaries

Suppose that V ∼t V ′ with ResH V ∼= ResH V ′ for each proper subgroup H ( G, and that
V H = V G whenever [G : H] = 2. The result for free representations was proved in [11] or [1,
8.1], and we assume by induction that Theorem A is proved for all groups of smaller order
than G. Therefore, we may further assume

1.1. that V, V ′ are topologically similar G-representations whose restrictions to every H-fixed
set are linearly equivalent as G/H-representations, for each non-trivial subgroup 1 6= H ⊂ G

1.2. that V, V ′ are neither free nor quotient G-representations, i. e. for each g ∈ G there
exists v ∈ V such that gv 6= v, and there exists 0 6= v ∈ V such that gv = v for some
1 6= g ∈ G.

1.3. Lemma. If V ∼t V ′ satisfies the conditions above, then V = V1⊕W and V ′ = V2⊕W ,
where V1, V2 are free G-representations and W 6= {0} has no free summands.

Proof. For each subgroup K ⊆ G, let V (K) denote the direct sum of all irreducible sub-
representations of V with kernel K. The G-subspaces V (K) are preserved by G-linear
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isomorphisms. We let W be the direct sum of all the V (K) for K 6= 1. From (1.2) it follows
that V H 6= {0} for some subgroup 1 6= H ⊂ G so W 6= {0}.

Write V = V1 ⊕W where V1 is a free representation. By assumption (1.1), V H ∼= (V ′)H

as G-representations for each H 6= 1. Then for the fixed sets we have

V (K)H =

{
V (K) if H ⊆ K and

0 otherwise.

This gives

V H =
⊕

{V (K) : H ⊆ K} ∼= (V ′)H =
⊕

{V ′(K) : H ⊆ K}.
Therefore V (K) ∼= V ′(K) for each subgroup K 6= 1 and we can decompose V ′ = V2 ⊕ W
with V2 a free representation. �

2. Bounded Embedding Theorems

For the reader’s convenience we will include some material from [8]. First we will need a
bounded version of results due to Browder and Wall on smoothing Poincaré embeddings in
codimension ≥ 3. Statements for compact smooth or PL manifolds are given in [20, 11.3],
and the extension to topological manifolds is sketched on [20, p.245]. The published reference
to Rourke and Sanderson’s theorem, that the stabilization map

Fr/T̃opr → F/ Top

is a homotopy equivalence for r ≥ 3 is [19, Thm 2.4]. Here Fr denotes the space of homotopy
self-equivalences of the (r − 1)–sphere, and F = lim

→
Fr.

To state a bounded version, we need to define a finite bounded Poincaré embedding. Let
X be a metric space on which a finite group G acts by (quasi)isometries. Let Y ⊂ X
be a closed G-invariant subspace, and let Mm → Y , V m+q → X be finite free bounded
G-CW Poincaré complexes [5, Def 2.7]. Then a finite bounded Poincaré embedding of M
in V consists of (i) a (q − 1)-spherical G-fibration ξ, with projection p : E → M , (ii) a
finite free bounded G-CW Poincaré pair (C, E) → (X, Y ), and (iii) a bounded G-homotopy
equivalence h : C ∪M(p) → V , bounded over X, where M(p) is the mapping cylinder of p
and C ∩ M(p) = E. Such a Poincaré embedding is “induced” by a locally flat topological
embedding if the normal block bundle and complement to the embedding give data which
are G-h-cobordant to those of the given Poincaré embedding.

2.1. Theorem. Suppose given topological manifolds Mm, V m+q with free G-actions, and
reference maps Mm → Y , V m+q → X giving finite free bounded G-CW Poincaré complexes.
If m + q ≥ 5 and q ≥ 3, then a finite bounded Poincaré embedding of M in V is induced by
a locally flat topological G-embedding of M → V .

Proof. The proof given in [20, §11] generalizes using bounded surgery [6], and there is a
relative version as given on [20, p.119] when m + q ≥ 6. �
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Next we need a “completion” theorem for bounded embeddings (compare [6, §16]. Suppose
that Z is an open topological manifold, equipped with a reference map to an open cone O(K),
so that p : Z → O(K) is a bounded CW complex [5, Def. 1.5]. The K–completion of Z is

the disjoint union ẐK = Z
∐

K with a basis for the topology given by (i) open sets in Z,
and (ii) sets of the form p−1(U × (t,∞))

∐
U , where t ≥ 0 and U ⊂ K is open.

We will be interested in comparing the local properties of this completion, when Z is re-
placed by a manifold Z ′, bounded homotopy equivalent to Z over O(K). The main ingredient
is the following

2.2. Lemma. Let X ⊂ Sn be a finite simplicial subcomplex, where n ≥ 5. Then the bounded

structure set Sb

(
Sn−X
↓

O(X)

)
has only one element.

Proof. Let DX denote the Spanier–Whitehead dual of X in Sn. We use the bounded surgery
exact sequence [6]

· · · → [Σ(DX+), F/ Top] → Ln+1(CO(X)(Z)) → Sb

(
Sn−X
↓

O(X)

)
→ [DX, F/ Top] → . . .

If X = ∗ both the normal invariant and the L-group-term are trivial. If X = Sk for some
k < n− 2 then crossing with R induces an isomorphism on the simply–connected L–groups
and at the normal space level from the sequence for Sk to the sequence for Sk+1. So starting
with S−1 = ∅ and the fact that the structure set of the sphere has only one element we get
the result for Sk, k < n−2. For k = n−2 it is enough (for our later applications) to assume
that the embedding of X = Sn−2 in Sn is unknotted. Then the effective fundamental group
is π1(S

n −X) = Z so the term behind the structure set is

π2(F/ Top) → Ln+1(CRn−1(Z[Z])) ∼= L2(Z[Z]).

But since L2(Z[Z]) = L2(Z) this assembly map is an isomorphism and we are done. Finally
for k = n−1 we get 2 copies of Rn, and we use connectedness of F/ Top and Ln+1(C(Rn)) = 0.
For the general case, we write X = Y ∪ Dk and assume that the result is true for Y . We
compare the assembly maps for Y to X, where the third term involves “germs away from
Y ”, and reduces to the case of Sk handled above [9, 3.11]. Indeed, on structure sets we have
the bijections:

Sb

(
Sn−X
↓

O(X)

)
>O(Y )

' Sb

(
Sn−Sk

↓
O(Sk)

)
>O(∗)

' Sb

(
Sn−Sk

↓
O(Sk)

)
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where the last step follows by an Eilenberg swindle, showing that Li(CO(∗)(Z)) = 0 for all
i ≥ 0. We now consider the maps of long exact sequences

[DY,F/ Top] //

��

[DX, F/ Top] //

��

[DY/DX,F/ Top]

��

Ln(CO(Y )(Z)) // Ln(CO(X)(Z)) // Ln(C>O(Y )
O(X) (Z))

The Y –assembly map is an isomorphism by induction, and the assembly map “away from
Y ” is an isomorphism by the preliminary case above. A similar result holds for the map
[Σ(DX), F/ Top] → Ln+1(CO(X)(Z)) and so the structure set is trivial. �

When (Z, ∂Z) is a topological manifold with boundary, we can also consider a relative
(K, L) completion in which p : Z → O(K) is a bounded CW complex and ∂p : ∂Z → O(L)
is a bounded CW complex with respect to a subcomplex L ⊂ K. If (F, ∂F ) : (Z ′, ∂Z ′) →
(Z, ∂Z) is a bounded homotopy equivalence of pairs over

(p, ∂p) : (Z, ∂Z) → (O(K), O(L))

then (F, ∂F ) extends to a homotopy equivalence (F̄ , ∂F̄ ) : (Ẑ ′
K , ∂Ẑ ′

L) → (ẐK , ∂ẐL) of pairs
by taking the identity on K and L.

2.3. Definition. The completed map F̄ : Ẑ ′
K → ẐK is homotopic to a local homeomorphism

(relative to L) near K, extending the identity on K, if there exists a neighbourhood U ⊂ ẐK

of x ∈ K such that F restricted to F−1(U − U ∩ K) is boundedly homotopic over O(K)
to a homeomorphism. When x ∈ L we further require that ∂F be a local homeomorphism
near L, and that ∂F be fixed under the bounded homotopy.

In our applications there is a free G–action on Z,Z ′, and a G–action on K so that and
p : Z → O(K) is G-equivariant. If F is a bounded G–homotopy equivalence so that Z is
a finite free bounded G–CW complex then F̄ is a G–homotopy equivalence extending the
identity on the G–invariant subset K of both domain and range.

2.4. Theorem. Let F : Z ′ → Z be a bounded homotopy equivalence of (open) topological (m+
q)–manifolds, bounded over the open cone O(K), where K is a finite complex of dimension

m. Suppose that the K–completion ẐK is a topological (m + q)–manifold with m + q ≥ 5.

Then the K–completion Ẑ ′
K is also a topological (m+q)–manifold. Moreover, F̄ is homotopy

equivalent to a local homeomorphism near K extending the identity on K.

This result also has a relative version.

2.5. Theorem. Let F : (Z ′, ∂Z ′) → (Z, ∂Z) be a bounded homotopy equivalence of topolog-
ical (m + q)–manifolds with boundary, bounded over (O(K), O(L)) where L ⊂ K a finite

subcomplex with dim L < m. Suppose that the (K, L)–completion (ẐK , ∂ẐL) is a topological
(m + q)–manifold with boundary and m + q ≥ 6. If ∂F̄ is a local homeomorphism near
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L extending the identity on L, then F̄ is homotopy equivalent to a local homeomorphism
(relative to L) near K, extending the identity on K.

Proof. We will prove the first result and leave the relative version to the reader. Let x ∈ K
and choose an open disk Dm+q ⊂ ẐK around x. Let L = cls(Dm+q ∩ K) and X = L/∂L.
Since

Sb

(
Sm+q−K

↓
O(K)

)
>O(K−L)

' Sb

(
Sm+q−X

↓
O(X)

)
>O(∗)

the result follows from the computation of the local structure sets in Lemma 2.2. �

3. Bounded surgery

In this section, the existence of a non-linear similarity V1 ⊕W ∼t V2 ⊕W will be related
to the kernel of a bounded transfer map introduced in [9, §3]. For background on bounded
surgery we refer to [6].

We begin with an observation from [10, 1.7]: if V1 ⊕ W ∼t V2 ⊕ W , then our inductive
assumptions imply that there is a G-homeomorphism

h : V1 ⊕W → V2 ⊕W

such that

h
∣∣ ⋃

H 6=1

WH

is the identity. One easy consequence (see [1]) is

3.1. Lemma. There exists a G-homotopy equivalence S(V2) → S(V1).

Proof. If we 1-point compactify h we obtain a G-homeomorphism

h+ : S(V1 ⊕W ⊕ R) → S(V2 ⊕W ⊕ R).

After an isotopy, the image of the free G-sphere S(V1) may be assumed to lie in the com-
plement S(V2 ⊕ W ⊕ R) − S(W ⊕ R) of S(W ⊕ R) which is G-homotopy equivalent to
S(V2). �

Let f : S(V2)/G → S(V1)/G denote the induced homotopy equivalence of the quotient lens
spaces. Since for dim S(Vi) = 1 it is clear that G-homotopy equivalence implies V1

∼= V2, we
may assume that dim Vi ≥ 4. Another consequence is

3.2. Lemma. There exists an isovariant G-h-cobordism between f ∗ 1: S(V2⊕W ) → S(V1⊕
W ) and the identity on S(V1 ⊕W ), which is a product on all the singular strata S(WH) for
H 6= 1.
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Proof. This uses a special case of [4, 1.1]. After radial re-scaling, we may assume that

h(D(V1 ⊕W )) ⊂ intD(V2 ⊕W ),

and the region
Z̄ = D(V2 ⊕W )− int h(D(V1 ⊕W ))

is then an isovariant G-h-cobordism from some isovariant G-homotopy equivalence g : S(V2⊕
W ) → S(V1 ⊕ W ) to the identity. Since h was the identity on all singular strata, it is not
hard to check that g and f ∗ 1 are isovariantly G-homotopy equivalent, so we may assume
that g = f ∗ 1. Moreover, the cobordism Z̄ is a product S(WH)× I along the H-fixed sets
for all H 6= 1 and a bounded free G-h-cobordism on the complement. �

3.3. Corollary. The kernel of the bounded transfer map

trfW : Sh(S(V1)/G) → Sh
b

(
S(V1)×GW

↓
W/G

)
contains the element [f ] ∈ Sh(S(V1)/G).

Proof. If the whole sphere S(W ) is singular (i. e. contains no free orbits), then the vanishing
of the bounded transfer trfW ([f ]) follows immediately from Lemma 3.2 by removing S(W )×I
from domain and range of the G-h-cobordism. This implies for example that in the present
argument we may assume dim W ≥ 2, and so dim(Vi⊕W ) ≥ 6, since dim W = 1 implies that
W = R. Later we will see in Corollary 3.5 that trfR([f ]) 6= 0 and so non-linear similarities
do not occur for dim(Vi ⊕W ) ≤ 5.

In general the problem is that the given G-h-cobordism may not restrict to a G-h-
cobordism of S(W )× I. Let

F̄ : (Z̄, ∂−Z̄, ∂+Z̄) → (S(V1 ⊕W )× I, S(V1 ⊕W )× 0, S(V1 ⊕W )× 1)

be the G-homotopy equivalence of triads given by (3.2) such that F̄
∣∣
∂−Z̄

= id and

F̄
∣∣
∂+Z

= f ∗ 1: S(V2 ⊕W ) → S(V1 ⊕W ).

In addition, we can assume that for each 1 6= H ⊂ G

F̄
∣∣
F̄−1(S(W )H×I)

is a homeomorphism whose restriction to S(W )H × ∂I is the identity. Let

X =
⋃

1 6=H⊂G

S(W )H

denote the singular set of S(V1 ⊕W ), and

U = Z̄ − F̄−1(X × I)

denote the complementary free stratum. The restriction of F̄ to this open submanifold gives

F : (U, ∂−U, ∂+U) → (S(V1⊕W )× I−X× I, S(V1⊕W )×0−X×0, S(V1⊕W )×1−X×1)
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which is a free bounded G-h-cobordism, bounded over the open cone O(X × I).
Since dim Vi ≥ 4 we can regard the bounded G-homotopy equivalence F as a bounded

codim ≥ 3 Poincaré embedding of (S(W ) − X) × I in U , relative to the given embedding
on ∂±U . By Theorem 2.1, there exists a free topological G-embedding inducing the given
Poincaré embedding, and extending the embeddings already fixed on ∂±U .

By homotopy extension, we can assume that F restricted to this embedding of (S(W )−
X)×I ⊂ U is a bounded G-h-cobordism, relative to the identity on ∂±U , and F is a bounded
G-homotopy equivalence over O(X × I). Now we apply the “completion” construction of
Section 2 to adjoin X × I to both domain and range. By Theorem 2.5 the result is a (new)
compact G-h-cobordism

F̄ ′ : (Z̄ ′, ∂−Z̄ ′, ∂+Z̄ ′) → (S(V1 ⊕W )× I, S(V1 ⊕W )× 0, S(V1 ⊕W )× 1)

between f ∗ 1: S(V2⊕W ) → S(V1⊕W ) and the identity on S(V1⊕W ), with the additional
property that the restriction of F̄ ′ to F̄ ′−1(S(W )× I) gives a G-h-cobordism with range

(S(W )× I, S(W )× 0, S(W )× 1).

Now the complement

Z ′ = Z̄ ′ − F̄ ′−1(S(W )× I)

is a free bounded G-h-cobordism between f × 1: S(V2)×W → S(V1)×W and the identity
on S(V1)×W , bounded with respect to the second factor projection to W = O(S(W )). By
the definition of the bounded structure set, this means that trfW ([f ]) = 0 as required. �

By comparing the ordinary and bounded surgery exact sequences [9, 3.16], and noting
that the bounded transfer induces the identity on the normal invariant term, we can assume
that f has normal invariant zero. Therefore, under the natural map

Lh
n(ZG) → Sh(S(V1)/G),

where n = dim V1, the element [f ] is the image of σ(f) ∈ Lh
n(ZG), obtained as the surgery

obstruction (relative to the boundary) of a normal cobordism from f to the identity. The
element σ(f) is well-defined in L̃h

n(ZG) = coker(Lh
n(Z) → Lh

n(ZG)).

3.4. Lemma. For any choice of normal cobordism between f and the identity, the surgery
obstruction σ(f) is a nonzero element of infinite order in L̃h

n(ZG).

Proof. Since G is cyclic and V1 is a free representation, the quotient X = S(V1)/G is a
classical lens space of odd dimension n − 1. An element in the surgery obstruction group
L̃h

2k(ZG) is determined by its discriminant D and multi-signature σ: the odd order case is

[20, 13A.5] and the even order case is similar, based on the fact that L̃s
2k(ZG) is torsion–free.

If X,X ′ differ by a normal cobordism, then [20, 14E.8] gives the relations ∆(X ′) = D∆(X)
and ρ(X ′) = σ + ρ(X), where ∆(X) is the Reidemeister torsion ρ(X) is the ρ-invariant [20,
14E.7]. Both ∆ and ρ are multiplicative on joins.
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If σ(f) ∈ L̃h
n(ZG) were a torsion element, then the relations above would show that a

suitable join of copies of X = S(V1)/G is h-cobordant to the corresponding join of copies of
X ′ = S(V2)/G. But this would imply that V1 ⊕ · · · ⊕ V1 ∼t V2 ⊕ · · · ⊕ V2 and since these are
free representations, that V1

∼= V2. �

3.5. Corollary. Under the natural map Lh
n(ZG) → Lp

n(ZG), the image of σ(f) is nonzero.

Proof. The kernel of the map Lh
n(ZG) → Lp

n(ZG) is the image of Hn(Z/2, K̃0(ZG)) which is
a torsion group. �

4. The transfer map

We will now study the transfer map trfW in (3.3). Since localizing or completing at p - 2|G|
gives an injection on the free part (see [20, §13A]):

Lh
n(ZG) → Lh

n(ZG)⊗ Z(p),

and we intend to show that trfW (σ(f)) 6= 0 is a p–local injection for G-representations W ,
with WG = WH when [G : H] = 2. Thus we will lose no information about elements of
infinite order by p–localizing all our L-groups. This will be assumed from now on, without
changing notation.

Following [7, §6], [14, §11b], (see also [9, §4] for previous applications in bounded topology)
we denote the top component of our bounded surgery obstruction group by

Lh
n(CW,G(Z))(m)

where m = |G|. The top component of a p-local Mackey functor (p - m) is the intersection of
the kernels of all the restriction maps to proper subgroups of G. It turns out to be a natural
direct summand of the L-group, associated to an idempotent in the p-local Burnside ring.
Moreover the top component has the property that the images of maps induced on L-theory
by the inclusion of proper subgroups, project trivially into the top component. In particular,
after passing to the top component the indeterminacy in σ(f) is zero. Then Theorem A is
implied by

4.1. Theorem. For any G-representation W , with WG = WH when [G : H] = 2, and any
p - 2|G|, the transfer

trfW : Lh
n(ZG)(m) → Lh

n+k(CW,G(Z))(m)

is a p-local injection, where k = dim W .

To begin the proof, we will assume that W = ⊕Wi is a direct sum of irreducible 2-
dimensional quotient representations. Each Wi has kernel Hi 6= 1 which is a proper subgroup
of G.

If W = W1 ⊕W2 there is another inclusion map,

c(W1, W )∗ : Lh
n(CW1,G(Z)) → Lh

n(CW1⊕W2,G(Z))

induced by the subspace inclusion W1 ⊂ W .
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4.2. Lemma. If (W2)
G = {0} then the subspace inclusion W1 ⊂ W1 ⊕ W2 induces an

isomorphism

Lh
n(CW1,G(Z))(m) → Lh

n(CW1⊕W2,G(Z))(m)

on the top component for all n.

Proof. The subspace inclusion sits in the exact sequence given in [9, 3.12], and the result is
a special case of [9, 4.5]. �

4.3. Corollary. If WG = {0} then the “cone point” inclusion induces an isomorphism

c∗ : Lh
n(ZG)(m) → Lh

n(CW,G(Z))(m)

on the top component for all n.

Proof. This is just the special case W1 = {0} and [9, 3.10]. �

We can now reduce to the case where W is irreducible.

4.4. Lemma. Suppose that WG = 0 and W = W1 ⊕ W2 where dim Wi = 2li. If trfWi
, for

i = 1, 2 induces a monomorphism

trfWi
: Lh

n(ZG)(m) → Lh
n+2li

(CWi,G(Z))(m)

on the top component for any n, then so does trfW .

Proof. First note that

trfW1⊕W2 : Lh
n(ZG) → Lh

n+2l1+2l2
(CW1⊕W2,G(Z))

is the composite of

trfW1 : Lh
n(ZG) → Lh

n+2l1
(CW1,G(Z))

and

trfW2 : Lh
n+2l1

(CW1,G(Z)) → Lh
n+2l1+2l2

(CW1⊕W2,G(Z)).

The first map is a monomorphism on the top component by assumption, and the second can
be studied by the commutative diagram

Lh
n+2l1

(ZG)c∗
trfW2 //

��

Lh
n+2l1+2l2

(CW2,G(Z))

c(W1,W )∗
��

Lh
n+2l1

(CW1,G(Z)
trfW2// Lh

n+2l1+2l2
(CW1⊕W2,G(Z))

The horizontal maps are transfers trfW2 , and the vertical maps are induced by subspace
inclusions. Since the subspace inclusions induce isomorphisms on the top component and
the upper horizontal map is a monomorphism by assumption, we are done. �
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We now assume that W is an irreducible 2-dimensional G-represention, with kernel 1 6=
H 6= G. The G-equivariant projection S(V1) × S(W ) → S(V1) gives a circle bundle with
fibre S(W ) = S1.

4.5. Lemma. The group ΓH = π1(S(V1)×G S(W )) is isomorphic to Z×H.

Proof. By pulling-back the circle bundle to the covering S(V1)/H → S(V1)/G we obtain a
commutative diagram

(4.6)

1 // Z // Z×H //

��

H //

��

1

��
1 // Z // ΓH

// G // 1

where the upper row is split exact. The result follows by the classification of extensions since
Ext1(G, Z) = H2(G, Z) ∼= Z/m and the distinct elements are given by the extensions

1 → Z (k,1)−−→ Z× Z/d
1
−k−−→ Z/m → 1

where m = dk. This extension is the unique one which splits when restricted to Z/d ⊂
Z/m. �

In order to compute trfW we will use the following diagram

(4.7)

Lh
n+2(CW,G(Z))

q∗ // Lh,open
n+2 (SV1 ×G W )

Lh
n+2(ZG)

c∗
iiRRRRRRRRRRRRRR

c′∗
66nnnnnnnnnnnn

j∗
��

Lh
n(ZG)

trfW

OO

p∗ // Lh
n+2(ZΓH → ZG)

r∗

::vvvvvvvvvvvvvvvvvvvvvvvv

To construct this diagram we combine maps from three other surgery sequences with those
for our bounded surgery groups.

4.8. The first is just the exact sequence of the pair ΓH → G, corresponding geometrically
to the inclusion of the circle bundle defined above into the total space of its disk bundle
S(V1)×G D(W ):

· · · → Lh
n+2(ZΓH) → Lh

n+2(ZG) → Lh
n+2(ZΓH → ZG) → Lh

n+1(ZΓH) → . . .

Let

j∗ : Lh
n+2(ZG) → Lh

n+2(ZΓH → ZG)

denote the relativization map.



12 IAN HAMBLETON AND ERIK K. PEDERSEN

4.9. The second sequence arises from the theory of codimension two embeddings in [20, 11.6]:

. . . LSn(Φ) → Lh
n(ZG)

p∗−→ Lh
n+2(ZΓH → ZG) → LSn−1(Φ) → . . .

where the obstruction groups were identified algebraically in [16, 7.8.12] as the L-groups

LSn(Φ) ∼= Lh
n(Z[Z×H], β, u)

with respect to a “twisted” anti-structure (β, u) for the ring Z[Z × H]. In our situation,
β(γ) = γ−1 for all γ ∈ ΓH and u = i∗(1) where i∗ : Z → ΓH is induced by the inclusion
i : S(W ) → S(V1)×GS(W ) of the fibre. More explicitly, choose generators a ∈ G, b = ak ∈ H
and t ∈ ΓH generating the infinite cyclic factor of ΓH = Z×H in the exact sequence (4.6).
Then u = tkb ∈ ΓH .

4.10. Lemma. If H ⊂ G is a non–trivial subgroup with [G : H] > 2, then the image of
LSn(Φ) → Lh

n(ZG) is zero on the top component.

Proof. After applying the isomorphism LSn(Φ) ∼= Lh
n(Z[Z × H], β, tkb), we must compute

the map

Lh
n(Z[Z×H], β, tkb)(m) → Lh

n(ZG)(m)

where the components for ZΓH are given by the preimages of proper subgroups of G under
the projection ΓH → G. There are two cases, depending on whether k = [G : H] is even or
odd. Note that we only need to discuss the case n even, since the p–localization of the odd
L–groups of ZG is zero.

First suppose that k = 2l is even. Then by “scaling” the anti–structure we can assume
that the unit u = b and by [17, §16] there is a natural direct sum splitting

Lh
n(Z[Z×H], β, b) ∼= Lh

n(ZH, β, b)⊕ Lp
n−1(ZH, β, b).

Since n is even, it is enough to compute the map induced by the inclusion

Lh
n(ZH, β, b) → Lh

n(ZG, β, b) ∼= Lh
n(ZG).

However, since [G : H] = k > 2 there is a subgroup H ′ = 〈c〉 with b = c2, H ⊂ H ′ ⊂ G and
[H ′ : H] = 2. Therefore our induction map factors through Lh

n(ZH ′, β, c2) → Lh
n(ZG, β, c2)

which is scale equivalent to the ordinary induction map (whose image has zero projection
into the top component).

Next suppose that k is odd. Since H is a proper subgroup of G, with quotient G/H ∼= Z/k,
the pullback of H ⊂ G in ΓH is

Γ′H = Z×H
k×1−−→ Z×H ∼= ΓH

from the description in Lemma 4.5. By scaling, (Z[Z×H], β, tkb) ∼ (Z[Z×H], β, tb) so the
induced anti–structures are the same on both ΓH and this proper subgroup Γ′H . But since k
is prime to p, the Mackey double coset formula shows that the induced restriction map on
L-groups is a p-local injection. But since the L–groups are isomorphic and finitely generated



NON–LINEAR SIMILARITY REVISITED 13

by (4.9), and the inclusion map integrally has at most 2-primary torsion in its cokernel, we
conclude that

LSn(Φ)(m) ∼= Lh
n(Z[Z×H], β, tkb)(m) = 0

and p∗ is an isomorphism on the top component (compare [20, p.252] for a direct calculation
in a special case). �

4.11. The third sequence comes from the “proper” surgery theory of Maumary-Taylor, re-
sulting in surgery obstruction groups Lh,open

n (K) where K is a locally finite CW complex.
We will apply this to K = S(V1)×G W and use the Maumary exact sequence [15, 7.1]

Π
h
n(K)

1−s−−→ Lh
n(ZG)⊕ Π

h
n(K) → Lh,open

n (K) → Π
p
n(K) → Lp

n(ZG)⊕ Π
p
n−1(K)

The terms

Π
q
n(K) =

∞∏
i=1

Lq
n(π1(Ki)), q = h, p

where K1 ⊃ K2 ⊃ K3 ⊃ . . . is a sequence of neighbourhoods of infinity in K so that
each Ki is cocompact and ∩∞i=1Ki = ∅. In our case Ki can be taken to be the product
S(V1)×G {w ∈ W | ‖w‖ ≥ i} so the fundamental groups are all isomorphic to ΓH .

There are several natural maps relating the groups just introduced. We will need the
following ones.

4.12. The compact relative surgery groups map into the proper groups: a relative problem
can be modeled on the disk, sphere bundle pair S(V1)×G(D(W ), S(W )) and we can complete
to the model S(V1)×G W by adding a ray [1,∞) at each point of S(W ). This gives

r∗ : Lh
n+2(ZΓH → ZG) −→ Lh,open

n+2 (S(V1)×G W ).

4.13. There is a “cone point” inclusion

c′∗ : Lh
n+2(ZG) → Lh,open

n+2 (S(V1)×G W )

induced by the map S(V1)/G × {0} ⊂ S(V1) ×G W . This map appears already in the
Maumary exact sequence above.

4.14. Lemma. The “cone point” inclusion in (4.13) equals the composite

Lh
n+2(ZG)

j∗−→ Lh
n+2(ZΓH → ZG)

r∗−→ Lh,open
n+2 (S(V1)×G W ).

4.15. There is a “forget some control” map

q∗ : Lh
n+2(CW,G(Z)) → Lh,open

n+2 (S(V1)×G W )

defined by regarding a bounded surgery problem as a proper surgery problem.



14 IAN HAMBLETON AND ERIK K. PEDERSEN

4.16. Lemma. The “cone point” inclusion in (4.13) equals the composite

Lh
n+2(ZG)

c∗−→ Lh
n+2(CW,G(Z))

q∗−→ Lh,open
n+2 (S(V1)×G W ).

where c∗ is the “cone point” inclusion from (4.3).

4.17. Proposition. The outer square in diagram (4.7)

Lh
n(ZG)p∗

trfW //

��

Lh
n+2(CW,G(Z))

q∗
��

Lh
n+2(ZΓH → ZG)

r∗ // Lh,open
n+2 (S(V1)×G W )

is commutative. The maps r∗ and q∗ induce an isomorphism on the top component, and the
map p∗ induces a monomorphism on the top component. Hence trfW is monic on the top
component.

Proof. The commutativity of the diagram is easy to verify from the definitions of the maps
given above. We will complete the proof below by checking the isomorphisms for q∗, r∗ and
the monomorphism for p∗, implying the result for trfW .

For p∗ we apply the top component idempotent to the exact sequence in (4.9). The
idempotent comes from the family of proper subgroups of G, which gives by pull-back under
the projection ΓH → G, a family of proper subgroups of ΓH . Now the results of [14, §11b]
produce a long exact sequence on the top components. But since k is prime to p and
[G : H] 6= 2, Lemma 4.10 shows that p∗ is monic on the top component.

For q∗ we will use the Maumary exact sequence from (4.11). In our situation

Π
q
n(K) =

∞∏
i=1

Lq
n(ZΓH), q = h, p

and a similar argument shows that the top component of this group is zero. Therefore the
map c∗ in (4.13) is an isomorphism on the top component. Now by Corollary 4.3 and Lemma
4.16 the map q∗ is also an isomorphism on the top component.

For r∗ we use Lemma 4.14 to see that r∗ = c∗ ◦ j∗ where c∗ is the “cone point” inclusion
from (4.13), which we have already checked is an isomorphism on the top component. But
j∗ sits in the exact sequence of (4.8) with the third term being Lh

n(ZΓH). Once again, this
L-group is zero in the top component and so both j∗ and finally r∗ induce top component
isomorphisms. �

We now complete the proof of Theorem 4.1 by considering the bounded transfer map for
representations which contain trivial subrepresentations (i. e. summands Rk on which G acts
trivially). In this case we again prove that trf induces a p–local monomorphism for p - 2|G|.



NON–LINEAR SIMILARITY REVISITED 15

4.18. Lemma. Suppose that trfW : Lh
n(ZG) → Lh

n+dim(W )(CW,G(Z)) is a p–local monomor-
phism on the top component, for all n. Then trfW⊕R is also a p–local monomorphism on the
top component, for all n.

Proof. The transfer trfW⊕R can be identified with the natural “change of K-theory” map

(4.19) Lh
n+dim(W )(CW,G(Z)) → Lp

n+dim(W )(CW,G(Z))

by means of the isomorphism

Lh
n+dim(W )+1(CW⊕R,G(Z)) ∼= Lp

n+dim(W )(CW,G(Z))

given in [17, §15]. But the kernel and cokernel of (4.19) are 2-torsion groups, since the change
of K-theory map sits in a long exact sequence whose third term is H∗(Z/2, K̃0(CW,G(Z)). �

4.20. Corollary. For any G-representation W , with WG = WH when [G : H] = 2, the
image trfW (σ(f)) under the bounded transfer is non-zero in the top component.

Proof. By Lemma 3.4 the element σ(f) has infinite order. We can write any G-representation
as a direct sum of irreducible 2-dimensional and trivial subrepresentations. By (4.2) and
(4.17) the bounded transfer for the sum of the 2-dimensional factors is a p–local monomor-
phism on the top component., and the further transfer by a trivial representation Rk is a
p–local monomorphism by (4.18). �

4.21. Remark. The change of K-theory map Lh
n(ZG) → Lp

n(ZG) is not an integral monomor-
phism in general for G cyclic. If we had only odd index isotropy groups in our irreducible
2-dimensional representations W , then trfW would induce an isomorphism on the 2–local
top components.

Proof of Corollary B. We may assume that G is cyclic. If G has odd order, then the result
follows by induction from Theorem A. If G has order 2m, where m is odd then the odd
order theorem determines half the characters of V, V ′ by restriction to the fixed set of the
element of order 2, and the other half by restriction to the subgroup of index 2. If G has
order 2lm, where m odd and l ≥ 2 and V ∼t V ′ then by induction on |G| we can assume
that ResH V ∼= ResH V ′ for all proper subgroups H ⊂ G. Since the elements of order 2l ≥ 4
act trivially or freely in each irreducible subrepresentation of V , the fixed set V H = V G for
the subgroup H ⊂ G of index 2. Now Theorem A gives the result. �
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