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0. Introduction

Given a finitely dominated CW-complex X, Wall [9] defined a finiteness obstruction

σ(X) =
∑
k

(−1)k[Ck(X̃)] ∈ K̃0(Zπ1(X))

and showed that X has the homotopy type of a finite complex if and only if σ(X) = 0.

For a fixed group π, it is well-known that any element of K̃0(Zπ) can be realized as the
finiteness obstruction for some finitely dominated complex with fundamental group π. If we

restrict the class of spaces, however, then in general the set of elements in K̃0(Zπ) that can
be realized as finiteness obstructions is also restricted.

One natural class of spaces to consider is the class of complexes on which π = π1(X)
acts trivially on rational homology. A special case of this is the class of nilpotent spaces
with finite fundamental group – spaces for which π1(X) is nilpotent and acts nilpotently
on homology. The question of which elements can be realized by nilpotent spaces has been
extensively studied by Mislin [3, 4, 5, 6].

The purpose of this paper is to study the finiteness obstruction in such a way that one
can begin to answer some of these questions in a systematic way. The primary tool is a
decomposition of the finiteness obstruction into its p-parts for all primes p (Theorem 2.4). To
do this, we use the techniques of localization and define p-local Reidemeister torsions whose
images under a certain boundary map in K-theory provide the p-parts of the finiteness
obstruction. In the case of nilpotent spaces, we are then able to describe (in principle,
completely) the set of finiteness obstructions that can be realized.

1. Some algebraic preliminaries

We begin by considering the localization square

Z

��

// Z(p)

��
Z(1/p)

// Q
1
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If we tensor with a ring R, which as an additive group is free abelian, we obtain

R

��

// R(p)

��
R(1/p)

// R(0)

In the usual way (see, for example Bass [1] or Wojtkowiak [10]) this yields an exact sequence
in K-theory:

→ K1(R) → K1(R(p))⊕K1(R1/p)) → K1(R(0)

∂p

−→ K0(R(p))⊕K0(R1/p)) → K0(R(0)

Throughout this paper we will be concerned with the case where R = Zπ for a finite group
π and hence R(0) = Qπ.

If π is a finite nilpotent group then Qπ splits as follows. For any prime p, let πp denote
the p-Sylow subgroup of π. (We allow the case where af, is the trivial group!) Since π is
nilpotent, it is isomorphic to the product of its nontrivial p-Sylow subgroups, and hence πp
has a complementary subgroup π′p. Consider the central idempotent:

ep =
1

|πp|
∑
g∈π′

p

g ∈ Qπ.

Then Qπ splits as:

Qπ ∼= Qπ · ep ×Qπ · (1− ep).

Note that the projection π → πp induces a map Qπ → Qπp, which in turn produces an
isomorphism Qπ ·ep ∼= Qπp. We shall often simply identify the factor Qπ ·ep with Qπp using
this isomorphism. Of course, in case p does not divide |π| we see that Qπ · ep ∼= Q

Definition 1.1. For a finite nilpotent group and a prime p, let

Np(π) = ∂p(K1(Qπ · ep)) ⊆ K0(Zπ).

We shall see in the sequel that the groups Np(π) play a central role in analyzing the
finiteness obstructions that can be realized by nilpotent spaces.

2. Reidemeister torsions

In this section we give the definition of p-local Reidemeister torsion and prove the funda-
mental theorem relating such torsion to the finiteness obstruction. We then show that the
p-local Reidemeister torsions of a nilpotent space are restricted.

We begin with some algebra. Let π be a finite group and consider a finitely dominated
Zπ-chain complex C∗ for which π acts trivially on rational homology. (”Finitely dominated”
means that C∗ is homotopy equivalent to a finitely generated projective Zπ-chain complex.)
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Further assume that we are given a preferred basis {e} for H∗(C∗;Q), up to simple isomor-
phism measured in K1(Q) = Q∗.

We define the p-local Reidemeister torsion RTp(C∗{e}) ∈ K1(Z(p)π) as follows. Consider a
finitely generated projective Zπ-chain complex P∗ that is homotopy equivalent to C∗. Since

the map K̃0(Zπ) → K̃0(Z(p)π) is trivial (see [8]), P∗(p)
= P∗⊗Z(p) is a finitely generated free

Z(p)π- module. Choose a basis for P∗(p)
and consider the induced basis for P∗(p)

= P∗ ⊗Q.
We can use the idempotent

e =
1

|π|
∑
g∈π

g

to split the chain complex into two parts,

P∗(p)
= P∗(0) · e× P∗(0) · (1− e).

Now P∗(0) · (1 − e) is contractible (since π acts trivially on rational homology) and based;

hence it has a torsion defined in K1(Qπ · (1 − e)). The complex P∗(0) · e homology which

is identified with H∗(C∗;Q) and hence is based by assumption. But a based chain complex
with based homology has a well-defined torsion (as in [2]) defined in K1(Qπ · e). We collect
the two torsions to define

RTp(C∗, {e}) ∈ K1(Qπ) ∼= K1(Qπ · e)×K1(Qπ · (1− e)).

We must now consider the choices involved above in order to compute the indeterminacy.
There were two choices: the choice of P∗ and the choice of basis in P∗(0) . Different choices,

however, vary RTp by an element in the image of K1(Z(p)π) → K1(Qπ). Hence RTp(C∗, {e})
is well-defined as an element in K1(Qπ)/K1(Z(p)π).

Remarks 2.1. The choice of basis for H∗(C∗;Q) only affects the part of RTp(C∗; {e}) coming
from K1(Qπ · e). We shall see that this means that a different choice of basis changes
∂p(RTp(C∗; {e})) by an element in the image of the Swan homomorphism. (See Section 5
for the definition.) We will often suppress the specific choice of basis in what follows and
simply write RTp(C∗). It is important to note, however, that the choice of basis is necessary
in order to define the Reidemeister torsion.

We can now define the p-local Reidemeister torsion of a space.

Definition 2.2. Let X be a finitely dominated space with universal cover X̃. Assume that

π1(X) acts trivially on the rational, singular homology of X̃ and fix a basis {e} for H∗(X̃;Q).

Let C∗ denote the singular chain complex of X̃. Then

RTp(X) = RTp(C∗, {e}) ∈ K1(Qπ1(X))/K1(Z(p)π1(X)).

(Note that we have suppressed the dependence on the basis here.)
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Lemma 2.3. Given a finitely dominated space X with finite fundamental group π = π1(X)

acting trivially on H∗(X̃;Q), and a basis {e}, for H∗(X̃;Q), then RTp(X) = o for all but a
finite number of primes.

Proof. Suppose p||π| Then the idempotent e = (1/|π|)
∑
g∈π

g is defined over Z(p)π and there

is a splitting

Z(p)π = Z(p)π · e× Z(p)π · (1− e).

Now let P∗ be a finitely generated projective chain complex homotopy equivalent to the

singular chains of X̃. Then the above splitting induces a splitting of P∗(p)
. If H∗(X̃;Z) has

no p-torsion, then P∗(p) · (1− e) is contractible since P∗(0) · (1− e) is contractible.
The part of the Reidemeister torsion lying in K1(Qπ ·(1−e)) thus lifts to K1(Z(p)π ·(1−e))

and is consequently zero in the quotient. The remaining part of the Reidemeister torsion
lies in K1(Qπ · e) ∼= K1(Q) and is defined at once for all primes. Excluding the primes in
this rational number, we see that RTp(X) = 0 for all but a finite number of primes.

We can now state the fundamental theorem of this paper, which determines the finiteness
obstruction in terms of the p-local Reidemeister torsions.

Theorem 2.4. Let X be a finitely dominated space with finite fundamen- tal group π =

π1(X) and universal cover X̃. Assume that π acts trivially on H∗(X;Q) and choose a basis

for H∗(X̃;Q) . Then the finiteness obstruction σ(X) is given by

σ(X) =
∑

p prime

∂p(RTp(X)).

(Note that by Lemma 2.3 this is a finite sum).

Notation. : Given a space X as in Theorem 2.4, we write σp(X) = ∂p(RTp(X)) and call
σp(X) the p-part of the finiteness obstruction. (Of course, σp(X) is only defined modulo a

choice of basis for H∗(X̃;Q) We can then write

σ(X) =
∑

p prime

σp(X)

Before proving Theorem 2.4 we require an algebraic lemma.
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Lemma 2.5. Let π be a finite group and let S = {p1, p2, . . . , pk} be a finite set of primes.
Consider the Zπ-module A which is the pullback of the following diagram:

(Z(p1)π)n (Z(p2)π)n ··· (Z(p3)π)n (Z(p4)π)n

(Qπ)
n

OO

α1∼=
��

(Qπ)
n

OO

···

α2∼=
��

(Qπ)
n

OO

αk∼=
��

(Qπ)
n

OO

αk+1∼=
��

(Qπ)
n = (Qπ)

n= ··· =(Qπ)
n = (Qπ)

n

Then A is a projective Zπ-module, and as an element in K0(Zπ),

A =
k∑
i=1

∂pi [αi],

where [αi] is the class of the isomorphism αi in K1(Qπ).

Proof. Denote the pullback of the diagram

(Z(p1)π)n (Z(p2)π)n ··· (Z(p3)π)n (Z(1/S)π)n

(Qπ)
n

OO

α1∼=
��

(Qπ)
n

OO

···

α2∼=
��

(Qπ)
n

OO

αk∼=
��

(Qπ)
n

OO

αk+1∼=
��

(Qπ)
n = (Qπ)

n= ··· =(Qπ)
n = (Qπ)

n

by A(α1, α2, . . . , αk, αk+1). We want to compute A(α1, α2, . . . , αk, 1).
It is clear that A(1, 1, . . . , 1, αi, 1, . . . , 1) is projective and equal to ∂pi [αi] ∈ K0(Zπ), by

definition of the boundary map ∂pi . It is also immediate from the definition of ∂pi that
∂pi([αi] + [α−1

i ]) = 0. Thus, adding

A(α−1
1 , 1, 1, . . . , 1)⊕A(1, α−1

2 , 1, 1, . . . , 1)⊕ · · ·⊕
A(1, 1, . . . , α−1

k , 1)⊕ A(α1, α2, . . . , αk, 1),

we are reduced to the case where ∂pi [αi] = 0; we need to show in this case thatA(α1, α2, . . . , αk, 1)
is stably free.

Given an isomorphism β : (Qπ)n → (Qπ)n, one sees that

A(βα1, . . . , βαk, αk+1) ∼= A(α1, . . . , αk, β
−1αk+1)

Also if γ : Z(pi)π → Z(pi)π is an isomorphism inducing an isomorphism of (Qπ)n then

A(α1, . . . , αiγ, . . . , αk+1) ∼= A(α1, . . . , αi, . . . , αk+1)
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Now consider one of the isomorphisms, say α1. The fact that ∂p1 [α1] = 0 means that after
possible stabilization (which may be performed correspondingly on the pullback diagram),
α1 can be written as β1 · γ1 where γ1 comes from an isomorphism of ((Z(p1)π)n and β1 is an
isomorphism from (Z(1/p1)π)n. We thus have

A(α1, α2, . . . , αk, 1) ∼= A(β1 · γ1, α2, . . . , αk, 1)
∼= A(β1, α2, . . . , αk, 1)

by the above remark. But also

A(β1, α2, . . . , αk, 1) ∼= A(1, α2 · β−1
1 , . . . , αk · β−1

1 , β−1
1 )

∼= A(1, α2, . . . , αk, 1)

since β−1
1 lifts to an isomorphism of (Z(p)π)n for p 6= p1. Repeating this argument for each

pi, we find that A(α1, . . . , αk, 1) is stably isomorphic to A(1, 1, . . . , 1), which is clearly free.

Proof of Theorem 2.4. Let P∗ be a finitely generated, projective chain complex homotopy

equivalent to the singular chains of X̃. Consider the pullback diagram

P∗

uukkkkkkkkkkkkkkkkkkk

||xx
xx

xx
xx

x

""FF
FF

FF
FF

F

))SSSSSSSSSSSSSSSSSSS

P∗(p1)

))RRRRRRRRRRRRRRRRRR
P∗(p2)

""EEEEEEEE
··· P∗(pk)

||yyyyyyyy

P∗(p(1/S))

uukkkkkkkkkkkkkkkkkk

P∗(0)

where S = {p1, . . . , pk} is the set of primes p for which RTp(X) 6= 0. Note that all chain

complexes P∗(pi)
are free because K̃0(Zπ) → K̃0(Z(p)π) is the zero map. The complex P∗(1/S)

is free because the Euler characteristic of X is zero (since we may assume π is nontrivial).
The fact that RTp(X) = 0 for p /∈ S means that we can choose a basis for P∗1/S)

so that for
the induced basis of P∗(0) the torsion with respect to the given basis for rational homology
is zero.
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By choosing a basis for each chain complex P∗(pi)
, and considering the induced basis for

P∗(0) , we may reinterpret the pullback diagram above follows:

P∗

uullllllllllllllllll

}}zz
zz

zz
zz

!!DD
DD

DD
DD

))SSSSSSSSSSSSSSSSSS

P∗(p1)

��

P∗(p2)

��

··· P∗(pk)

��

P∗(1/S)

��
P∗(0)

α1

��

P∗(0)

α2

��

··· P∗(0)

αk

��

P∗(0)

��
P∗(0) = P∗(0) = ··· = P∗(0) = P∗(0)

Clearly the torsion of αi is RTpi
(X) by definition. The theorem now follows by applying

Lemma 2.5.
We are now in a position to show that for a finitely dominated, nilpotent space, the p-local

Reidemeister torsions (and hence the p-parts of the finiteness obstruction) are restricted.
LetX be a finitely dominated nilpotent complex with finite fundamental group π = π1(X).

Since π is nilpotent, it splits into the product of its p-Sylow subgroups πp. As in Section 1,
for a fixed prime p let π′p denote the complementary group to πp and let

ep =
1

|π′p|
∑
g∈π′

p

g

The idempotent ep induces a splitting

Qπ = Qπ · ep ×Qπ · (1− ep).

Proposition 2.6. Let p be a prime. For a finitely dominated nilpotent space X with finite
fundamental group π, the image of RTp(X) ∈ K1(Qπ)/K1(Z(p)π) is zero in K1(Qπ · (1 −
ep))/K1(Z(p)π · (1− ep)). Hence σ(X) ∈ Np(π). (See Definition 1.1.)

Proof. Let P∗ be a finitely generated, projective chain complex homotopy equivalent to the

singular chains of the universal cover X̃. The idempotent ep induces a splitting

P∗ = P∗ · ep × P∗ · (1− ep).

Since X is nilpotent, any element of π′p must act trivially on the homology of P∗(p)
. (Such

an element must act trivially on p-torsion and on rational homology.) It follows that an
element of π′p, acts trivially on the homology of P∗(p)

· (1− ep) and hence P∗(p)
· (1− ep) is a

contractible chain complex.
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Now ep splits the chain complex P∗(0) similarly, and the argument above shows that the

torsion of P∗(0) · (1 − ep) comes from the torsion of P∗(p)
· (1 − ep). Hence the projection of

RTp(X) into K1(Qπ · (1− ep))/K1(Z(p)π · (1− ep) is zero.
We can summarize our results as follows. For any finitely dominated complex X with

finite fundamental group π, for which π acts trivially on rational homology, the finiteness
obstruction can be written as

σ(X) =
∑
p prime

σp(X)

where σp(X) = ∂p(RTp(X)). If X is nilpotent, then σ(X) ∈ Np(π) = ∂p(K1(Qπ · ep)).

3. Realizing Reidemeister torsions

In the previous section we showed that the finiteness obstruction for a finitely dominated
complex can be computed as the sum of its p-parts. For a nilpotent complex the p-part of
the finiteness is restricted by Proposition 2.6 and must lie in Np(π).

Following Mislin [5], we defineN(π) to be the set of elements inK0(Zπ) that can be realized
as finiteness obstructions of finitely dominated, nilpotent complexes with fundamental group
π. From the preceding remarks, we conclude that

N(π) ⊆
∑
p prime

Np(π).

We now show that they are in fact equal.

Theorem 3.1. For a finite nilpotent group π

N(π) =
∑

p prime

Np(π).

Proof. We need only show that every element of the right hand sum can be realized. We give
a direct geometric proof of this, although an algebraic proof can be given following Mislin’s
work in [5].

First, one needs to show that 0 ∈ N(π). This is equivalent to the fact that π occurs as the
fundamental group of a finite complexX. To see this, choose a faithful unitary representation
of π. This induces a free action of π on SU(n) for some n (by left multiplication), and we
can take X = SU(n)/π. The space X is clearly a nilpotent complex.

Given the finite complex X with π1(X) = π, we now need to show that we can modify
X so that the p-local Reidemeister torsion is an arbitrary element in K1(Qπ · ep). (See
Definition 1.1.)
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The complex X is the homotopy pullback to the localization square:

X

��

// X(1/p)

��
X(p)

// X(0)

Let C∗ denote the cellular chain complex of the universal cover X̃. Applying a lemma of
Wojtkoviac [10], we see that C∗(p)

is homotopy equivalent to the singular chain complex of

X(p) × Bπ′p, the fiberwise p-localization of X → Bπ. (As before, π′p is the complement of
the p-Sylow subgroup πp in π.) However, we have seen that C∗(p) splits into a Z(p)(πp)-chain
complex and a contractible Z(p)(π

′
p)-chain complex via the idempotent ep. The complex

C∗(p)
is stably free (since K̃0(Zπ) → K̃0(Z(p)π is the zero map) and so C∗(p)

is homotopy

equivalent to a free Z(p)(πp)-chain complex, which as a Z(p)(π)-chain complex is projective.
This is, however, exactly the chain complex of X(p) since the universal cover of Bπ′p is
contractible.

We now modify X(p) so as to vary the p-local Reidemeister torsion. Suppose we are given
an element [α] ∈ K1(Qπ · ep) ∼= K1(Qπp). It is easy to see that α may be written as
α = β · γ−1, where β and γ lift to maps (but not necessarily isomorphisms! ) of (Z(p)πp)

n to
itself. Hence, we may assume that α itself lifts to a self-map of (Z(p)πp)

n.
Replacing X(p) by

Z(p) = X(p) ∨
n∑
i=1

S2k
(p) ∪α e2k+1,

adds
0 → (Z(p)πp)

n α−→ (Z(p)πp)
n

to the chain complex of X(p). The space Z(p) is again p-local, and since α is a rational
homology isomorphism, X(p) and Z(p) are rationally equivalent. It is now clear that we have
added [α] to the p-local Reidemeister torsion.

The pullback

Z

��

// X(1/p)

��
Z(p)

// X0

will be nilpotent, since nilpotent spaces are characterized by the fact that the fundamental
group is nilpotent and its p-Sylow subgroups can act non-trivially only on p-torsion. Away
from the prime p we have not changed anything there; at the prime p we have only introduced
p-torsion.

Finally, Z is finitely dominated since it is nilpotent and H∗(Z;Z) is a finitely generated
abelian group. (See [4])
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4. Pullbacks of pullbacks

In this section we present some preliminary algebra that will be used to analyze the groups
N(π) and Np(π) in the next section.

Consider a pullback diagram of pullback diagrams of rings:

A //

��

A2

��

B

��

// B2

��

//

A1
//

��

A0 B1
//

��

B0

C //

��

C2

��

D

��

// D2

��

//

C1
// // C0 D1

//// D0

Such a pullback can also be written as the pullback:

A //

��

B

��

A2

��

// B2

��

//

C //

��

D C2
//

��

D2

A1
//

��

B1

��

A0

��

// B0

��

//

C1
//// D1 C0

//// D0

We will assume throughout this section that the following two conditions hold:
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(i) The two pullback diagrams

A //

��

A2

��

A

��

// B

��

and

A1
// A0 C // D

have Milnor exact sequences in K-theory.
(ii) D0 = O.

Remarks 4.1. It is standard that condition (i) holds if one of the maps to the lower corner is
onto. The condition holds, however, in some cases where neither map is onto; for example,
in localization squares. The second condition implies that Co ×B0 = A0 and D1 ×D2 = D.

Theorem 4.2. Given a pullback of pullbacks as above, satisfying conditions (i) and (ii)
above, the following diagram commutes:

[K1(C1)×K1(C2)]× [K1(B1)×K1(B2)]
µ //

jC×jB
��

[K1(C1)×K1(B1)]× [K1(C1)×K1(B2)]

j1×j2
��

K1(C0)×K1(B0) K1(D1)×K1(D2)

K1(A0)
∂N // K0(A)

∂L // K1(D)

where µ =
(
1,

[
0 −1
−1 0

]
, 1

)
and where jC , jB, j1, j2,∂N ,∂L all are the appropriate maps from

the Milnor exact sequence. (The letters N and L here stand for “number” and “letter”.)

Remarks 4.3. Such pullbacks occur more often than one might think at first. In fact, most
Milnor squares

A

��

// A2

��
A1

// A0

can be thought of as the result of applying a functor to the identity map A
1−→ A in the

category of “rings under A”; that is, in the category of ringsR together with a homomorphism
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A→ R. In such a situation, it is enough to specify the two pullback squares:

A //

��

A2

��

A

��

// B

��

and

A1
// A0 C // D

The rest of the diagram can be obtained from these by applying the functors. (See the
examples in Section 5.)

Proof of Theorem 4.2. By symmetry it is sufficient to consider an element [α] ∈ K1(C1)
where α is an isomorphism of Cn

1 . Following the diagram along the left side, let [β] ∈ K1(A0)
denote the image of [α]; the representative β is an isomorphism of An0 which under the
identification A0 = B0 × C0 is the identity on Bn

0 .

Now ∂N [β] is represented by a projective module P given by the pullback:

P

��

// An2

��
An0

��
An1 // An0

We wish to show that P can be described as well by following the diagram around the right
side.

To do this, we first note that P ⊗AA = P , and so P can also be described as the pullback:

P

��

// P ⊗B B

��
P ⊗C C // P ⊗D D

(∗)

(To see that this is a pullback, note that it is when P is free. For an arbitrary projective
P , add a projective to obtain a free module. Now use the fact that summands of pullback
diagrams are pullback diagrams themselves.)

By assumption Bn
0 = An0 ⊗Ao B0 = Bn

0 is the identity, thus producing an isomorphism

P ⊗AB ' Bn. The isomorphism Cn
0 = An0⊗A0C0

β⊗1−−→ An0⊗A0C0 = Cn
0 lifts to α : Cn

1 → Cn
1 ,

producing an isomorphism P ⊗A C ' Cn
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The pullback diagram (∗) can therefore be written as:

P

��

// Cn

��
Dn

��
Bn // Dn

It is now easy to verify that the compatibility isomorphism

Dn = Cn ⊗C D ' P ⊗A C ⊗C D = P ⊗A D

' P ⊗A B ⊗B D ' Bn ⊗B D = Dn

is induced from the given isomorphism α of Cn
1 . Hence P is the image of [α] around the

right side of the diagram.
Starting with an element [α] ∈ K1(C2) or K1(B1), the same argument applies, but the

compatibility isomorphisms have opposite directions, thus introducing a minus sign.

5. More about N(π) and Np(π)

In this section we complete the general discussion about the groups N(π) and Np(π). We
show that N(π) = D(π) for a p-group, and recover as a corollary the result of Mislin and
Varadarajan [6] that N(π) ⊆ D(π) for any finite nilpotent group. (Recall that D(π) is the
kernel of the map K0(Zπ) → K0(M) where M is a maximal order in Qπ. We also fit Np(π)
into an exact sequence.

We begin by relating the ∂p homomorphisms of Section 1 to the Swan homomorphism SW ,
which can be described as the boundary homomorphism in the Milnor sequence associated
to the pullback:

Zπ //

��

Z

��
Zπ/Σ // Z/|π|

where Σ =
∑
g∈π

g. To do this, we need to compare the boundary homomorphisms in two

Milnor sequences.
To be precise, let π be a finite group and consider the idempotent.

e = (1/|π|)
∑
g∈π

g.

As usual Qπ splits as Qπ · e×Qπ · (1− e). We can define an embedding φ : Q∗ → Qπ∗ by
φ(x) = x · e+ (1− e).
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We wish to compute ∂p on the image of φ. Since φ is multiplicative, it clearly suffices to
compute ∂p on the image of each prime.

Proposition 5.1. Let π be a finite group of order pn ·qm ·r, where p and q are distinct primes
not dividing r. (We allow n = 0 or m = 0 here!) Let φ : Q∗ → (Qπ)∗ be the embedding
defined above. Then

∂p(φ(p)) = −Sw(x), where x =

{
1 mod pn

p mod qmr

and

∂p(φ(p)) = −Sw(x), where x =

{
1 mod qm

q mod pnr

Remarks 5.2. Since we allow n = 0 or m = 0, this provides a complete determination of ∂p

on the image of φ in terms of the Swan homomorphism.

Proof of Proposition 1.5. According to Remark 4.3, the two pullback diagrams

Zπ //

��

Z(p)

��

Zπ

��

// Z

��

and

Z(1−p)π // A0 Zπ/Σ // D

determine a pullback of pullback diagrams. Applying Theorem 4.2 to this situation, one
obtains a commutative diagram:

K1(Z(1/p))×K1(Z(p))

i×ivvllllllllllllll
jα−j

++WWWWWWWWWWWWWWWWWWWW

K1(Q)

φ

��

K1((Z/|π|)(1/p))×K1((Z/|π|)(p))

K1(Qπ)
∂p

))RRRRRRRRRRRRR
K1(Z/|π|)

Sw

ssggggggggggggggggggggggggg

K0(Zπ)

where i and j are the natural inclusions of units. One now immediately reads off the answer
from this diagram, starting with the element in K1(Q) and tracing both ways around.

Theorem 5.3. Let π be a finite p-group. Then N(π) = D(π), where as usual D(π) =
ker{K0(Zπ) → K0(M)} for a maximal order M in Qπ.



A LOCAL APPROACH TO THE FINITENESS OBSTRUCTION 15

Proof. For q 6= p, Np(π) is contained in the image of the Swan homomorphism by Proposition
5.1. However, the same proposition now shows that the image of the Swan homomorphism
is contained in Np(π). Hence N(π) = Np(π).

Now the image of ∂p contains D(π). To see this, let M be a maximal order in Qπ and
note that M(1/p) = Z(1/p)π since π is a p-group. The sequence

K1(Qπ) → K0(Zπ)
i−→ K0(Z(1/p)π)

is exact, and the map factors as:

K0(Zπ)

��

i∗ // K0(Z(1/p)π)

K0(M) // K0(M(1/p))

Hence (N(π) ⊆ D(π).
To obtain the other inclusion, note that by [7, Chap. 22] the map K0(M) → K0(M(1/p))

is monic. Hence any element in D(π) is contained in the kernel of i∗, showing that D(π) ⊆
N(π).

As a corollary of the preceding result, we recover the following result of Mislin and
Varadarajan [6].

Corollary 5.4. For any finite nilpotent group π, N(π) ⊆ D(π).

Proof. It is enough to show that Np(π) ⊆ D(π) for any prime p. Consider the diagram:

M //

��

M(1/p)

��

Zπ

ccGGGGGGGGGG
//

��

Z(1/p)π

��

99ttttttttt

Z(p)π

{{wwwwwwww
// Qπ

'

%%JJJJJJJJJJ

M(p)
// M(0)

where M is a maximal order in Qπ.
Now Np(π) is the image of ∂p restricted to K1(Qπ ·ep), where ep is the idempotent defined

in Section 1. We need to show that this image maps to zero in K0(M). That is equivalent
to showing that the boundary map in the Milnor sequence of the outer diagram maps the
Qπ · ep component of M(0) = Qπ to zero.
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The outer diagram splits, however, and the component we must consider is precisely the
component corresponding to the maximal order of πp, the p-Sylow subgroup of π. This case
was considered in Theorem 5.3.

For a finite nilpotent group π of composite order, the group N(π) is in general not equal
to all of D(π). To obtain further information about N(π) it is necessary to study the groups
Np(π) individually.

Consider the nilpotent group π and a prime p dividing the order of π. As usual we write
π = πp×π′p where πp is the p-Sylow subgroup and π′p is the complementary subgroup. There
is then a Milnor square:

Zπ

��

// Zπp

��
Zπ/Σ // Zπp/|π′p|

where Σ′ =
∑
g∈π′

p

g. We denote the boundary map in the Milnor sequence for this square by

∂fp . (The “f”” stands for ”finite” here.)

Theorem 5.5. For any finite nilpotent group π there is an exact sequence:

K1(Z1/p)πp)
ψp−→ Np(π)

jp−→ D(πp) → 0

where jp is induced from the projection π → πp, and ψp is the composition

K1(Z(1/p)πp) → K1(Z(1/p)πp/|π′p|) = K1(Zπp/|π′p|)
∂fp

−−→ K0(Zπ)

Proof. According to Remark 4.3, the two pullback squares

Zπ //

��

Z(1/p)

��

Zπ

��

// Zπp

��

and

Z(p)π // Qπ Zπ/Σ // Zπp/|π′p|
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determine a pullback of pullback diagrams. Applying Theorem 4.2 to this situation, we
obtain a commutative diagram:

K1(Z(1/p)πp)
(i,0)

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

��
K1(Qπ · ep)×K1(Qπ · (1− ep)) K1(Zπp/|π′p| = K1(Z(1/p)πp/|π′p|)

��
K1(Qπ)

∂ //

��

K0(Zπ)

��
K1(Qπp)

∂p
// K0(Zπp)

The lower square shows that projection induces an epimorphism Np(π) → Np(πp), and by
Theorem 5.3 we know that Np(πp) = D(πp).

Commutativity of the diagram shows that the image of ψp is contained in Np(π). Since

K1(Z(p)πp)⊕K1(Z(1/p)πp) → K1(Qπp)

is part of a Milnor exact sequence, we also conclude that the image of ψp is contained in the
kernel of jp.

We need only show, therefore, that if x ∈ Np(π) and jp(x) = 0 then x is in the image of
ψp. Since x ∈ Np(π) we know that x = ∂py for some y ∈ K1(Qπ · ep) = K1(Qπp). But in
the exact sequence for πp, the boundary of y is zero in K0(Zπp). Hence there are elements
z1 ∈ K1(Z(1/p)πp) and z2 ∈ K1(Z(p)πp) such that (z1, z2) maps to y.

Now the idempotent ep is also an idempotent in Z(p)π, since the denominators involve only
primes different from p. Hence Z(p)π splits as

Z(p)π = Z(p)π · ep × Z(p)π · (1− ep)

and the element (z2, 1) defines an element in K1(Z(p)π) that maps to z2 under projection.
Let y2 denote the image of z2 in K1(Qπ). Then y − y2 lies in K1(Qπ · ep) and maps to x
under the boundary map, and is also the image of z1 ∈ K1(Z(1/p)πp). By commutativity of
the diagram we conclude that x is in the image of ψp.

6. A computation

Let Cn denote the cyclic group of order n. In [5] Mislin has shown that N(C21) is either
0 or Z/2. To illustrate Proposition 5.4 we will show that N(C21) is in fact Z/2 by showing
that N3(C21) 6= 0. Since D(C3) = 0, we must show that the map ψ3 has nontrivial image.
This involves a small computation in number theory.
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The Milnor square defining ∂f3 is now

Z[C21]

��

// Z[ζ][C3]

��
Z[C3] // F7[C3]

where ζ = e2πi/7 and F7 is the field of 7 elements (a less cumbersome notation that Z/7.)
The portion of the K-theory exact sequence we are interested in is

Z[C3]
∗ × Z[ζ][C3]

∗ j−→ F7[C3]
∗ ∂f3−−→ K0(Z[C21]).

Since we have a splitting F7[C3]
∗ = F ∗

7 × F ∗
7 [ω]∗, where ω = e2πi/3, we will write our units

accordingly.
Now we claim that the unit (1, ω − 1) ∈ F7[C3]

∗ is not in the image of j and hence
∂f3(1, ω − 1) 6= 0. Since (x − 1) + 1

3
(1 + x + x2) ∈ Z(1/3)[C3]

∗ maps to (1, ω − 1), we can
conclude that N3(C21) 6= 0. To prove the claim we need to do a little work.

First, note that since Z[C3]
∗ ⊆ Z[ζ][C3]

∗, it is enough to show that (1, ω− 1) is not in the
image of Z[ζ][C3]

∗. To analyze this group we use the standard pullback

Z[ζ][C3]

��

// Z[ζ]

��
Z[ζω] // F3[ζ]

yielding the Milnor sequence:

1 → Z[ζ][C3]
∗ → Z[ζω]∗ × Z[ζ]∗ → F3[ζ]

∗

We now require two lemmas.

Lemma 6.1. The image of Z[ζ]∗ → F3[ζ]
∗ is generated by (ζ − 1)2.

Proof. Fortunately, one knows that the units of Z[ζ]∗ are generated by the cyclotomic units
−ζ−1,(ζ2 − 1)/ζ − 1), and (ζ3 − 1)/(ζ − 1).

Repeated cubing shows that

(ζ − 1)3 = ζ3 − 1 mod 3

(ζ − 1)3 = ζ9 − 1 mod 3

and

(ζ)27 = ζ6 − 1 mod 3
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Hence,

(ζ3 − 1)/(ζ − 1) = (ζ − 1)2 mod 3

(ζ2 − 1)/(ζ − 1) = (ζ − 1)8 mod 3

and
(ζ6 − 1)/(ζ − 1) = −ζ−1 = (ζ − 1)26 mod 3

Lemma 6.2. Given a unit u ∈ Z[ζω]∗ such that u ≡ 1 mod (ζ − 1), the projection of u in
F3[ζ] is an even power of ζ − 1).

Proof. We consider the commutative square

Z[ζω]∗

��

φ1 // F3[ζ]
∗

��
Z[ζ]∗

φ2 // F3[ζ]
∗

where φ1 is reduction mod (ω − 1), φ2 is reduction mod 3, N is the norm map, and Sq is
the squaring map.

Since u ≡ 1 mod (ζ − 1), we see that N(u) ≡ 1 mod (ζ − 1) as well. But as mentioned
above, we know the units of Z[ζ]∗ and hence

N(u) = (−ζ−1)a
(
ζ2 − 1

ζ − 1

)b (
ζ3

ζ − 1

)c

for some integers, a, b, and c. Reducing mod (ζ − 1) we have

(−1)a(2)b(3)c ≡ 1 mod 7.

Now write 2 ≡ 32 mod 7 and −1 ≡ 33 mod 7. We then obtain

33a · 32b · 3c ≡ 1 mod 7

showing that 3a+ 2b+ c ≡ 0 mod 6.
From the proof of Lemma 6.1 we also know that

φ2N(u) = (ζ − 1)26a(ζ − 1)8b(ζ − 1)2c = (ζ − 1)26a+8b+2c.

Since c = −3a− 2b+ 6q for some integer q, we can substitute to see that

φ2N(u) = (ζ − 1)20a+4b+12q = Sqφ1(u).

We can conclude that φ1(u) is (ζ − 1) to an even power.
To complete the proof of the claim, suppose (1, ω − 1) is the image of u ∈ Z[ζ][C3]

∗. Let
(u1, u2) ∈ Z[ζ]∗ × Z[ζω]∗ be the projection of u; we know, of course, that u1 = u2 in F3[ζ].
Now u2(ζω − 1)−1 ≡ 1 mod (ζ − 1). Projecting into F3[ζ] and applying Lemma 6.1, we see
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that u2 = (ζ − 1)2k+1 in F3[ζ] for some k. Hence u1 = (ζ − 1)2k+1 in F3[ζ] contradicting
Lemma 6.2.

With a small additional effort it is possible to show that N3(C21) is precisely Z/2 (although
this follows from Mislin’s result). The type of argument employed here can be used more
generally for cyclic groups. The number theoretic problems, however, rapidly become more
difficult.
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