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Abstract. The purpose of this paper is to discuss various applications of
controlled methods to equivariant topology.

1. Introduction

In this survey we want to discuss various controlled methods in equivariant
topology. We will start with an example from a paper written jointly with Steve
Ferry[7] illustrating the power of controlled methods in an unequivariant setting.
Next we discuss the simplest possible equivariant setting, namely semifree group
actions on a sphere fixing a subsphere. The material in this section is taken from a
paper written jointly with Douglas Anderson, [2]. In the third section we discuss
how controlled methods sometimes can be used to settle the question of whether
a group can act cocompactly freely on a sphere crossed with Euclidean space.
The material in this section is taken from a joint work with Ian Hambleton, [9].
Finally we discuss how controlled methods are used to attack the problem of
whether two representations can be equivariantly homeomorphic without being
linearly isomorphic, also called the non–linear similarity problem. This problem
is solved in a joint paper with Ian Hambleton, [8], in the sense of reducing to
classical number theory, quite explicitly in the case when the group is cyclic of
order 2r.

2. Controlled classification of manifolds.

The surgery exact sequence provides a classification of smooth manifolds in di-
mensions bigger than 4 (and similarly PL and TOP manifolds) homotopy equiv-
alent to a given compact manifold M

· · · → S(M × I, ∂(M × I)) → [Σ(M+), F/O]∗ →
Lh

n+1(Zπ) → S(M) → [M+, F/O]∗ → Lh
n(Zπ)

and relative versions hereof. Here π is the fundamental group of M .
The classification is up to smooth h-cobordism. This means that an element

in S(M) is a manifold N together with a homotopy equivalence of N to M . Two
such elements, N1 and N2 are equivalent, if there is an h-cobordism between N1

and N2, and a map from the h-cobordism to M , extending the given maps on N1

and N2.
We may change the sequence by replacing the groups by Ls

∗(Zπ), requiring
the homotopy equivalences to be simple homotopy equivalences, and replacing
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the h-cobordism above by s-cobordisms. Since a smooth s-cobordism is diffeo-
morphic to a product when the dimension of M is bigger than or equal to 5,
we obtain a classification up to diffeomorphism in this case. In the topologi-
cal and PL-categories there are similar results, basically by replacing F/O by
F/PL and F/TOP respectively in the above sequence, and diffeomorphisms by
PL-homeomorphisms and homeomorphisms respectively.

In the case of non-compact manifolds, it is less clear what kind of classification
we should want. As an interesting example, let us consider Rn. The most obvious
choice, is classification up to proper homotopy equivalence. Such a theory was
developed by Maumary and Taylor in [13, 19], and in the case of Rn, the L-
groups are trivial, so a proper homotopy equivalence of a manifold with Rn is
proper homotopic to a homeomorphism. Note however that the higher structure
sets, i.e. the classification of Rn × Dm relative to the boundary, are isomorphic
to the homotopy groups of F/O, hence non–trivial.

A less obvious way to try to study Rn is to note that it is also a metric space,
and we can try to classify Rn up to bounded homotopy equivalence.

Definition 2.1. We say that f : W → Rn is a bounded homotopy equivalence if
there exist g : Rn → W and homotopies H : f ◦ g ∼ id and K : g ◦ f ∼ id so that
the sets H(y × I) and f ◦K(x× I) have uniformly bounded diameters .

Such a theory was developed in [7]. The basic ingredient is an algebraic cri-
terion for bounded homotopy equivalence. In the case of compact manifolds one
normally uses the criterion that the map induces an isomorphism on the fun-
damental group and a homology isomorphism on the universal cover. For our
purposes it is better to think of this as saying that the map induces a chain
homotopy equivalence of free Zπ-chain complexes, which is what leads to the
Lh

n(Zπ)- and Ls
n(Zπ)-groups.

To get an algebraic criterion for bounded homotopy equivalence consider the
following definition of a category Cn(Z).

Definition 2.2. An object A of Cn(Z) is a collection of finitely generated free
abelian groups Ax, one for each x ∈ Rn, such that for each ball C ⊂ Rn of finite
radius, only finitely many Ax, x ∈ C, are nonzero. A morphism ϕ : A → B is a
collection of morphisms ϕx

y : Ax → By such that there exists k = k(ϕ) such that
ϕx

y = 0 for d(x, y) > k.
The composition of ϕ : A → B and ψ : B → C is given by (ψ ◦ ϕ)x

y =∑
z∈M ψz

yϕ
x
z . The composition (ψ◦ϕ) satisfies the local finiteness and boundedness

conditions whenever ψ and ϕ do.

In the definition above, it might be advantageous to think of finitely generated
free abelian groups as finitely generated free Z-modules, making it easy to replace
Z by other rings in later sections.

Now let f : W → Rn be a proper map. We may give W and Rn a cell decom-
position in such a way, that there is a global bound on the diameter of the cells
when measured in Rn. The cellular chains may be considered chain complexes in
the category Cn(Z), by assigning to each cell the point in Rn where the barycenter
of the cell is mapped to, and remembering that the cellular chain complex has
precisely one Z generator corresponding to each cell in the cell decomposition.
The following is proved in [7].
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Theorem 2.3. The map f : W → Rn is a bounded homotopy equivalence if and
only if the induced map f] : C](W ) → C](Rn) is a chain homotopy equivalence in
the category Cn(Z), and W is −1, 0 and 1-connected over Rn.

We refer the reader to the precise meaning of −1, 0, and 1-connected in the
bounded sense. Intuitively −1-connected means the map is onto except for a
uniformly bounded discrepancy, 0-connected means that point can be connected
with a path within a certain diameter, and 1-connected means that a map from
a circle can be extended to a disk without increasing the diameter of the image
too much.

This leads to a surgery exact sequence

· · · → Sb(Rn × I, δ(Rn × I)) → [Σ(Rn
+), F/O]∗ →

Lh
n+1(Cn(Z)) → Sb(Rn) → [Rn

+, F/O]∗ → Lh
n(Cn(Z))

where the groups Lh
n+i(Cn(Z)) are defined completely algebraically by A. Ranicki

in [18]. The groups Lh
n+i(Cn(Z)) are computable, computed by A. Ranicki in [18]

and the result is

Lh
n+i(Cn(Z)) ∼= Lh

n+i−1(Cn−1(Z)).

It follows that

Lh
n+i(Cn(Z)) ∼= Lh

i (Z).

In particular we have that Lh
n+1(Cn(Z)) ∼= L1(Z) = 0. Since Rn is contractible

and F/O is connected the term [Rn
+, F/O]∗ is also trivial so we get

Theorem 2.4. Let f : W → Rn be a bounded homotopy equivalence, where W is
a smooth manifold, n ≥ 5. Then f is boundedly homotopic to a diffeomorphism.

In this theorem we also use the bounded h-cobordism theorem [17] and the fact
that K−i(Z) = 0 [3].

This result has some surprising immediate consequences. The first is a new
proof of Kirby’s annulus theorem.

Theorem 2.5. An orientation preserving homeomorphism of Rn n ≥ 5 is isotopic
to the identity.

Proof. Let f : Rn → Rn be a homeomorphism. Then f is certainly a bounded
homotopy equivalence (the tracks of the homotopies have diameter bounded by
0). Hence f is boundedly homotopic to a diffeomorphism g. Since f and g are
boundedly homotopic, the distance |g(x)− f(x)| is uniformly bounded, but then
f and g are isotopic by an Alexander isotopy. It is easy to see that the orientation
preserving diffeomorphism g is isotopic to the identity. Recall that an Alexander
isotopy is constructed as follows: Identify Rn with the interior of a disk Dn by a
radial homeomorphism. Under this identification f ◦ g−1 can be extended to the
whole disk by using the identity on the boundary. We now construct a map

F : Dn × I → Dn × I.

We start out letting the map be f ◦ g−1 on Dn× 0, the identity on the rest of the
boundary of Dn × I and sending (0, 1

2
) to (0, 1

2
). Since Dn × I can be thought of

as the cone over its boundary with (0, 1
2
) as the cone point, we can extend the

map to all of Dn × I in a conelike fashion. Noticing the I-levels are preserved
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by F , we have constructed an isotopy from f ◦ g−1 to the identity, a so-called
Alexander isotopy. �

So while the proper and bounded structure sets of Rn are both trivial, it is
only in the bounded case we have the chance of using an Alexander isotopy.

Another immediate consequence is a new proof of Siebenmann’s cell-like ap-
proximation theorem.

Theorem 2.6. Let f : M → N be a cell-like map of manifolds of dimension ≥ 5.
Then f can be arbitrarily closely approximated by a homeomorphism.

Proof. Find embedded disks Dα ⊂ N , in such a way that, denoting the interior
of Dα by Uα, we have a locally finite covering {Uα} of N . Now identify Uα

with Rn using a radial identification. The map f : f−1(Uα) → Uα is cell-like
so it is an arbitrarily small homotopy equivalence. That means that within a
bounded distance there is a homeomorphism g. Replacing f by g on f−1(Uα) and
keeping f outside f−1(Uα) is a continuous map because of the control conditions,
so repeating this argument, we can replace f by a homeomorphism which can be
made close to f by choosing the original covering from small Dα’s. �

This finishes the discussion of bounded control.
We shall now discuss a third way one might use to classify Rn. Make a radial

identification of Rn with the interior of Dn, Rn ⊂ Dn. We now say that a

homotopy equivalence f : V →
◦
Dn is “small at infinity” or “small near the

boundary of Dn” if there is a homotopy inverse g, and homotopies G and H from
g ◦ f to the identity and from f ◦ g to the identity, satisfying the condition that
the tracks of the homotopies are small near the boundary of Dn, specifically (and
technically) let S = {G(x× I)}

x∈
◦

Dn
∪{f ◦H(y× I)}y∈V , then S has the property

that for all x in the boundary of Dn and for every neighborhood U of x in Dn,
there is a neighborhood V so that if K ∈ S and K ∩ V 6= ∅ then K ⊂ U . Such
homotopy equivalences are said to be continuously controlled at the boundary of
Dn. It is easy to see that this concept is independent of how Rn is identified with
the interior of a disk, as long as it is done radially. An algebraic category testing
this kind of homotopy equivalence is given as follows.

Definition 2.7. Consider the pair (Dn, ∂Dn) of topological spaces. We define
the category B(Dn, ∂Dn; Z) as follows: An object A is a collection {Ax}

x∈
◦

Dn
of

finitely generated free abelian groups so that {x|Ax 6= 0} is locally finite in
◦
Dn.

A morphism φ : A → B is a group homomorphism ⊕Ax → ⊕By, satisfying a
continuously controlled condition: For every z ∈ ∂Dn and for every neighborhood
U of z in Dn, there exists a neighborhood V of z in Dn such that φy

x = 0 and

φx
y = 0 if x ∈ V ∩

◦
Dn and y ∈

◦
Dn − U .

Again it is not very difficult to see that this category determines whether a given
map is a continuously controlled homotopy equivalence once certain conditions
of a fundamental group nature are met. Similarly to the bounded surgery exact
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sequence, we obtain a continuously controlled surgery exact sequence.

· · · → Sc(Rn × I, δ(Rn × I)) → [Σ(Rn
+), F/O]∗ →

Lh
n+1(B(Dn, ∂Dn; Z)) → Sc(Rn) →

[Rn
+, F/O]∗ → Lh

n(B(Dn, ∂Dn; Z))

where the lower index c stands for continuous control. It is an unfortunate his-
torical accident, for which the author of this survey is to blame, that C is used
for bounded control, and B for continuous control.

We do not have any immediate applications for this simple kind of continuous
control, except one could have made the applications above using continuous
control rather than bounded control. The sequences are essentially the same, but
it solves a number of technical problems to have both points of view at hand.
To see that the sequences are essentially the same, notice that bounded control,
where we do a radial compactification to a disk satisfies the continuous control
condition, because sets that are bounded far out in Rn will certainly become
small near the boundary. In this way radial compactification produces a map of
surgery exact sequences

Lh
n+1(Cn(Z)) //

��

Sb(Rn) //

��

[Rn
+, F/O]∗ //

��

Lh
n(Cn(Z))

��

Lh
n+1(B(Dn, ∂Dn; Z)) // Sc(Rn) // [Rn

+, F/O]∗ // Lh
n(B(Dn, ∂Dn; Z)).

Here the normal invariant term [Rn
+, F/O]∗ → [Rn

+, F/O]∗ is just the identity. The
L-groups are computed in essentially the same way, [18], and going through the
computation shows there is an isomorphism of L-groups, so hence the structure
sets are also the same. This says in some roundabout way that it is always
possible to parameterize a continuously controlled homotopy equivalence in such
a way that it becomes a bounded homotopy equivalence. But that fact can be
given a much easier and more direct proof. As we shall see in the next sections it
is however very useful to pair off the continuously controlled and the boundedly
controlled theories, since they are qualitatively different.

3. Semifree Group Action on a sphere

In this section we shall discuss a simple equivariant problem, where controlled
methods are essential. It is also an example that nicely illustrates the interplay
between bounded and continuously controlled techniques. The material in this
section is mainly derived from [2], but in a somewhat more modern exposition.
Since this is mostly interesting as a non-smooth and non-PL phenomenon, we
shall consider everything in the topological category in this section.

Consider a group G acting semifreely on a sphere Sn+k with fixed set a standard
subsphere Sk−1. The group G acts freely on Sn+k − Sk−1 which is homotopy
equivalent to an n-sphere, so the space X = (Sn+k − Sk−1)/G has universal
cover homotopy equivalent to an n-sphere. It follows from [6] that X is a finitely
dominated complex, hence a so-called Swan complex. Thinking of

Sn+k = Sn ∗ Sk−1
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with Sk−1 as the fixed sphere, we produce a map p̃ to Dk = pt ∗Sk−1, by sending
Sn to a point. A gravity point construction

p(x) =
1

|G|
∑
g∈G

p̃(gx)

produces an equivariant map with respect to the trivial action on Dk. This of
course uses the assumption that Sk−1 is fixed under the action of G.

Denoting (Sn+k − Sk−1)/G by X as above, we have a map

f : (Sn+k − Sk−1)/G→ X ×
◦
Dk

which is the identity on the first coordinate and p on the second coordinate.
This map is a controlled homotopy equivalence in the following sense: f has a
homotopy inverse g, and there are homotopies H from gf to the identity and K
from fg to the identity satisfying a continuous control condition. The continuous
control condition is measured in the k-disk. Specifically, let q be the projection

on the second factor, q : X ×
◦
Dk →

◦
Dk. We then require that qfH(x × I) and

qK(y × I) are small near the boundary of the k-disk, in the same sense as in
section one. The proof of this assertion is a bit complicated, and uses the full
power of the work of Anderson and Munkholm, see [1].

Imitating the last section we see that this kind of homotopy equivalence is tested
algebraically in the category B(Dk, ∂Dk; ZG), and the same kind of arguments
lead to a surgery exact sequence

Lh
n+k+1(B(Dk, ∂Dk; ZG)) → Sc(X ×

◦
Dk) →

[X+, F/TOP ]∗ → Lh
n+k(B(Dk, ∂Dk; ZG)).

The only difference from the continuously controlled sequence in the last sec-
tion, is that the ring Z has been replaced by the group ring ZG.

Theorem 3.1. Let G act semifreely on Sn+k fixing a standard Sk−1, then

(Sn+k − Sk−1)/G→ X ×
◦
Dk

described above is an element in Sc(X ×
◦
Dk).

In particular this structure set is non-empty if there exists an action as de-
scribed.

Just like in the last section there is a corresponding bounded theory. The
bounded method was the one that was actually used in [2]. So consider a Swan
complex X, i.e. a finitely dominated complex whose universal cover is homotopy
equivalent to a sphere. We may ask the question: Is there a manifold W and a
bounded homotopy equivalence f : W → X × Rk, where the boundedness of the
homotopy equivalence is measured in the Rk factor, more precisely, let q be the
projection from X×Rk to Rk. We then say f is a bounded homotopy equivalence
if f has a homotopy inverse g, and there are homotopies H from gf to the identity
and K from fg to the identity, so that the diameters of qfH(x×I) and qK(y×I)
are uniformly bounded. Algebraically this kind of bounded homotopy equivalence
is detected by the map inducing a chain homotopy equivalence in the category



CONTROLLED METHODS IN EQUIVARIANT TOPOLOGY 7

Ck(ZG), the obvious variant of the category defined in the last section where we
have free finitely generated ZG-modules instead of finitely generated free abelian
groups (Z-modules). As usual we have a surgery exact sequence

· · · → Sb(X × Rk × I,X × δ(Rk × I)) →
[Σ(X × Rk

+), F/TOP ]∗ → Lh
n+k+1(Cn(ZG)) →

Sb(X × Rn) → [X × Rn
+, F/TOP ]∗ → Lh

n+k(Cn(ZG)).

The continuously controlled and the bounded surgery sequences are essentially
the same, there is an obvious map from the bounded sequence to the continu-
ously controlled sequence, just using the fact that something bounded in Rk when
shrinked radially becomes small near the boundary. There is however a signifi-
cant qualitative difference: There is an obvious suspension operation of semifree
actions on spheres fixing a subsphere, but there is no obvious way to introduce a
suspension in the continuously controlled surgery exact sequence. The problem
is that the Poincaré complexes have to have some kind of given cell structure,
and it is not clear how one would produce a functorial cell structure in the sus-
pended version, but in the bounded version, crossing with R is a well defined
operation, and working all this together, one may obtain the following result,
which is essentially contained in [2].

Theorem 3.2. Given a Swan complex X with fundamental group G, we then
have that the simple bounded structure set Sb(X×Rk) is in one to one correspon-
dence with homeomorphism classes of semifree G-actions on Sn+k, fixing Sk−1,
where the correspondence is given by a radial completion. A semifree action is a
suspension if and only if the corresponding element in the structure set is in the
image of crossing with R.

Crossing with R kills torsion, so we get the following diagram of long exact
sequences:

→ Lh(Cn+k+1(ZG))

��

// Sh
b (X × Rk) //

��

[X × Rk
+, F/TOP ] →

��

→ Ls(Cn+k+2(ZG)) // Ss
b (X × Rk+1) // [X × Rk

+, F/TOP ] →

where the vertical arrows are induced by crossing with the reals. The map

[X × Rk, F/TOP ] → [X × Rk+1, F/TOP ]

is obviously an isomorphism and so is (less obviously) the map

Lh(Cn+k+1(ZG)) → Ls(Cn+k+2(ZG)).

It follows that the map Sh
b (X × Rk) → Ss

b (X × Rk+1) is an isomorphism. From
this it is fairly easy to conclude the following theorem

Theorem 3.3. A semifree action of G on Sn+k+1 fixing a standard subsphere Sk

is a suspension if and only if the corresponding element in Sh
b (X×Rk+1) actually

lives in Ss
b (X × Rk+1), i.e. if a certain torsion invariant vanishes.

This torsion invariant lives in K1(Ck+1(ZG)) which by [16] is isomorphic to
K−k(ZG). Since these groups are 0 for k ≥ 2 it follows that a semifree group
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action of the type considered here is always equivariantly homeomorphic to a
suspension of an action where the fixed set is a circle. There are obstructions to
desuspending any further and these obstructions are realized in concrete exam-
ples.

4. Cocompact Group actions on a Sphere crossed with Euclidean
Space

The material in this section is taken from [9]. In this section we want to discuss
a question due to Wall. It follows from Milnor’s theorem, [14] that a dihedral
group does not act freely on a sphere. It obviously follows from this, that a group
acting freely on a sphere can not have a dihedral subgroup. Wall asked whether
it might be true, that a group acting freely cocompactly on a sphere crossed with
Euclidean space can not have a dihedral subgroup. Without the cocompactness
condition, there is no hope for this: take e.g. a Swan complex X with dihedral
fundamental group. After crossing with a circle, it has O finiteness obstruction,
and it is known that the Spivak fibration does lift to BO. Crossing with (D3, S2)
removes any potential surgery obstruction, and this is seen to produce a free
action of the dihedral group on a sphere crossed with R4.

T. Farrell suggested to the authors of [9] that an interesting case to study would
be Dp ×α Zk, where α is some integral representation.

Theorem 4.1. The group Dp ×α Zk acts freely and properly discontinuously on
Sn×Rm for some n,m with compact quotient if and only if n ≡ 3 mod 4, m = k
and α considered as a real representation has at least two R−-factors.

It is relatively easy to see that n has to be equivalent to 3 mod 4 by a homology
of groups argument, and also that m has to be equal to k. The existence part
of this theorem is a classical surgery argument. It is done by doing the surgery
in a kind of ”blocked” way, to avoid having to deal with groups whose surgery
groups are not known. The non-existence part is by far the most difficult part of
the theorem. This is the part that uses controlled topology. We shall outline the
general ideas translating the problem to a problem in controlled surgery here. So
assume G = Dp ×α Zk acts freely, cocompactly on Sn ×Rk. Before we enter into
the argument we need the concept of almost equivariant maps: Given a map f
from a space to a metric space, where both spaces come exhibited with a group
action. We say the map is ”almost equivariant” if the distance between f(gx)
and gf(x) is uniformly bounded.

The first step in the argument goes as follows:

Theorem 4.2. Suppose that Dp ×α Zk acts freely, cocompactly and properly dis-
continuously on Sn×Rk. Then there is a topological action of Dp on Sn+k, which
is given by the representation α on a standardly embedded Sk−1, and away from
this Sk−1 may be equivariantly identified with the restriction of Dp ×α Zk to Dp

acting on Sn × Rk, hence is free off Sk−1.

Proof. Consider the manifold M = (Sn × Rk)/Zk and the map M −→ T k given
by classification. Up to homotopy this is a spherical fibration. We replace this
spherical fibration by a block fibration M̄ → T k, so M̄ is compact. We have a
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homotopy commutative diagram

M̄ //

��

M

��

T k // T k

and M̄ → M is a homotopy equivalence. The universal cover of M̄ is a block
fibration over Rk, so it is block (and hence boundedly) equivalent to the trivial
block fibration Sn × Rk → Rk. We thus have a bounded homotopy equivalence

f : M̃ → Sn × Rk with respect to the projection on Rk. It is easy to see this
map is almost Zk-equivariant with respect to the standard action on the second
factor of Sn × Rk. Using the bounded surgery theory [7], it is easy to see that
there is only one element in the bounded structure set of Sn×Rk −→ Rk. Hence

there is a bounded homotopy of f to a homeomorphism h. On M̃ , we have the
free action of Dp ×α Zk, and we want to consider the conjugate action by h on
Sn × Rk. First we notice this action restricted to Zk makes the projection p to
Rk almost equivariant. To see this consider

d(phzh−1x, zpx) ≤ d(ph(zh−1x), pf(zh−1x)) + d(pfzh−1x, zpx).

The first term is bounded since f is boundedly homotopic to h. The second term
is a bounded distance from d(zpfh−1x, zpx) since f and p are almost equivariant
with respect to the standard action on the second factor. Since z is an isometry
of Rk, this is equal to d(pfh−1x, px) which is bounded since f is boundedly
homotopic to h. We now consider this conjugate action on Sn × Rk, and we
want to show the projection to Rk is almost equivariant with respect to the
Dp ×α Zk-action obtained by letting Dp act on Rk by the representation. Choose

U ⊆ Sn ×Rk, compact so that
⋃

z∈Zk

z ·U = Sn ×Rk. Replacing U by
⋃

g∈Dp

g ·U we

may assume U to be Dp-invariant. Note that since Dp is finite and U is compact⋃
g∈Dp

g · p(U) must have finite diameter. Consider x ∈ Sn × Rk and g ∈ Dp. By

the choice of U , there is u ∈ U and z ∈ Z, so that x = z · u. Now

d(pgx, gpx) = d(pgzu, gpzu)

≤ d(pgzu, gzg−1pgu) + d(gzg−1pgu, gzpu) + d(gzpu, gpzu).

The first term is d(pgzu, gzg−1pgu) = d(p(gzg−1)gu, gzg−1pgu), and this is al-
ready shown to be bounded since gzg−1 ∈ Zk. The second term is

d(gzg−1pgu, gzpu) = d(gzg−1pgu, gzg−1gpu) = d(pgu, gpu)

since gzg−1 ∈ Zk acts as isometry on Rk, but gpu and pgu both belong to
⋃
gp(U)

which has finite diameter. Finally the third term is d(gzpu, gpzu) = d(zpu, pzu)
since g acts by isometry, and this term is bounded since z ∈ Zk. We are now
ready to construct the action of Dp on Sn+k. Identifying Sn+k−Sk−1 with Sn×Rk

using the join lines, one sees that a homeomorphism bounded in the Rk-factor
will be small in Sn+k when we approach Sk−1, hence defining the action on Sn+k

by the representation on Sk−1 and using the above mentioned identification with
Sn × Rk away from Sk−1 produces a continuous action on Sn+k. �
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This essentially brings us to the continuously controlled situation of the last
chapters. The gist of the argument is that Dp acts on the space pretty similarly
to the way it acts on Zk up to a compact discrepancy, and this allows the com-
pletion of the action with Sk−1 being acted on by the representation. Radially

identifying Rk with
◦
Dk we see there is an element in the continuously controlled

structure set Sh
c (Sn ×

◦
Dk) which has elements continuously controlled (with re-

spect to the
◦
Dk-factor Dp-equivariant homotopy equivalence. The thing that is

really different here is that the group is acting non-trivially on the space where
we measure the control, and hence everything has to be expressed equivariantly
rather than in the quotient space. As in the last section, we can also construct a
bounded structure set Sh

b (Sn × Rk) where the elements are equivariant bounded
homotopy equivalences of a manifold to Sn×Rk, and arguing with the surgery ex-
act sequences as before we find that the continuously controlled and the bounded
structure sets are isomorphic, by a radial identification. The appropriate defini-
tion of a category is a little bit more complicated. The main complication being,
that in order to make the algebraic surgery theory work the way it is supposed to,
we need an appropriate involution on the category to express Poincaré duality.
This is no problem in the previous chapters, where we had a trivial action on the
metric space. We need the following definition: Given a metric space E and a
group acting on E by isometries, and a commutative ring with unit R, we define
a category CG

E (R) as follows:

Definition 4.3. An object A is a free left R(G)-module together with a map
f : A −→ F (M), where F (M) is the set of finite subsets of M , satisfying

(i) f is G-equivariant,
(ii) Ax = {a ∈ A|f(a) ⊆ {x}} is a finitely generated free sub R-module,
(iii) as an R-module A =

⊕
x∈M Ax,

(iv) f(a+ b) ⊆ f(a) ∪ f(b), and
(v) for each ball B ⊂M , {x ∈ B|Ax 6= 0} is finite.

A morphism φ : A −→ B is a morphism of RG-modules, satisfying the following
condition: there exists k so that the components φm

n : Am −→ Bn (which are
R-module morphisms) are zero when d(m,n) > k. CG

E (R) is an additive category
in an obvious way.

In the case under consideration, when E is Rk with Dp acting, we shall denote

this category by CDp

k (Z).
To summarize the discussion above this definition we have the following: If

there is a free, cocompact action of Dp ×α Zk on Sn × Rk, then the bounded
equivariant structure set Sh

b (Sn × Rk) is non-empty. Still letting X denote the
space Sn × Rk/G consider the following diagram, where the upper row is the
classical surgery exact sequence of the Swan complex X, and the lower row is
the bounded equivariant surgery exact sequence for the product of X̃ and Rk

with diagonal action. The vertical map is induced by crossing with Rk as a Dp
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representation:

→ Lh(ZDp) //

��

Sh(X) //

��

[X,F/TOP ] →

��

→ Lh(CDp

k (Z)) // Sh,Dp

b (X̃ × Rk) // [(X̃ × Rk)/Dp, F/TOP ] → .

The structure of the argument now goes as follows: If the bounded equivariant

structure set Sh,Dp

b (X̃ × Rk) in the lower row is non-empty, then consider its

normal invariant in [(X̃ × Rk)/Dp, F/TOP )]. This normal invariant obviously
comes uniquely from the upper row, [X,F/TOP ], since twisted product with Rk

is a homotopy equivalence, and if that term maps to 0 in the Wall-group, it would
have to come from Sh(X), which would mean that X is homotopy equivalent to a
manifold, and thus that the dihedral group acts freely on a sphere contradicting
Milnor’s theorem. This means that the normal invariant goes non-trivially into
the Wall group Lh(ZG), and the contradiction is now obtained by computing the
transfer map at the Wall group level, and proving, that except for the case where
α considered as a real representation has 2 one-dimensional nontrivial summands,
this transfer is non-trivial, and hence contradicts the existence of an element in
the bounded equivariant structure set. The precise argument is beyond the scope
of this survey, and we refer the reader to [9].

5. homeomorphic representations

In this section again let us assume that G is a finite group. Let U1 and U2 be
representations of G and assume there is an equivariant linear homeomorphism
from U1 to U2. We want to consider the classical question of determining under
what conditions U1 and U2 have to be linearly isomorphic. It is a celebrated
result of Cappell and Shaneson that U1 and U2 do not always have to be lin-
early isomorphic. There is a very simple test for linear isomorphism coming from
classical representation theory. The character of the representation is the map
from the group to the reals given by taking the trace of the group element as a
linear transformation of vector spaces. It is well known that representations are
isomorphic if and only if they have the same characters. This obviously means
that U1 and U2 are linearly isomorphic if they are linearly isomorphic when re-
stricted to cyclic subgroups, so if there are to be homeomorphic representations
that are not linearly isomorphic, then it will have to happen for cyclic groups
as well. So from now on we shall assume that G is a cyclic group. The repre-
sentations Ui may be written as the direct sum Vi ⊕Wi where Vi is free and Wi

has no free summands. If H is a proper subgroup of G, we have that the H-
fixed set of Ui is the same as the H-fixed set of Wi. The given homeomorphism
will induce a homeomorphism of WH

1 to WH
2 as a G/H representation, hence

as a G-representation. Now determine W ′
2 so that W ′

2 ⊕ WH
2

∼= W2. We now
have V1 ⊕W1 is equivariantly homeomorphic to V2 ⊕W ′

2 ⊕WH
2 which in turn is

homeomorphic to V2 ⊕W ′
2 ⊕WH

1 . Repeating this procedure we see that we have
V1⊕W1 equivariantly homeomorphic to V2⊕W1 or in other words, we only need
to consider the situation W1 = W2 when studying homeomorphic representations.
So from now on we shall consider V1 ⊕W homeomorphic to V2 ⊕W where Vi

are free representations, and W has no free summands. An easy general position
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argument shows, denoting the unit spheres of the representation Vi by S(Vi), that
S(V1) is equivariantly homotopy equivalent to S(V2). This thus represents the
first necessary condition for homeomorphic representation. The homotopy theory
of this situation is extremely simple, the homotopy type is given by one single
k-invariant which has to be a unit in the cyclic group G.

Now assume that we have S(V1) equivariantly homotopy equivalent to S(V2).
This means that S(V2)/G is an element in the homotopy structure set of S(V1)/G.
Now consider crossing the equivariant homotopy equivalence S(V2) → S(V1) by
W . We are interested in deforming this in a bounded way, measured in W , to a
homeomorphism. Once again, we have to find a suitable category CW (ZG) which
measures bounded equivariant homotopy equivalence, and we can then set up an
equivariant bounded surgery exact sequence for this situation. The category will
consist of free ZG modules that are equivariantly parameterized by W in line
with the earlier sections, and equivariant bounded morphisms.

As in the earlier sections, crossing with W produces a map from the structure
set Sh(S(V1)/G) to the bounded equivariant structure set Sh,G

b (S(V1×W )) where
the boundedness is measured in the W factor. Assume this map is 0 on some
given element, we may then cross with a copy of the reals to kill torsion, so we
obtain that S(V1) ×W × R can be moved a bounded amount measured in the
W × R to an equivariant homeomorphism. Crossing with the reals will be an
isomorphism on the normal invariant term, and on the L-group term as in the
earlier sections.

The join of the homotopy equivalence from S(V2) to S(V1) and the identity
produces an equivariant map from S(V2) ∗ S(W ⊕ R) to S(V1) ∗ S(W ⊕ R).
Identifying S(Vi)∗S(W⊕R)−S(W⊕R) with S(Vi)×W×R the above discussion
shows that we can move the map a bounded amount measured in W⊕R to obtain
an equivariant homeomorphism, but that means that filling in with the identity
on S(W ⊕R) produces an equivariant homeomorphism of S(V1)∗S(W ⊕R) with
S(V2)∗S(W⊕R). Seeing that S(Vi)∗S(W⊕R) is the same as S(Vi⊕W⊕R) which
in turn is the same as the one-point compactification of Vi ⊕W , and that the
homeomorphism constructed has an obvious fixed point, we obtain that V2 ⊕W
is equivariantly homeomorphic to V1 ⊕ W . It turns out this is the only way
non-linear similarity can happen for cyclic groups, as expressed in the following
theorem from [8].

Theorem 5.1. The representations V1⊕W and V2⊕W are equivariantly home-
omorphic if and only if S(V2)/G and S(V1)/G are equivariantly homotopy equiv-
alent and the element defined by a homotopy equivalence transfered by W to
Sh,G

b (S(V1) × W is 0. This is the only way homeomorphic representations of
cyclic groups can occur.

We have pretty much given the proof of one direction of this theorem. The
other direction consists of an equivariant engulfing argument, and we shall not
give the argument here. Just like the previous section, we have a bounded surgery
exact sequence parameterized equivariant by W with G acting, and this kind of
homotopy equivalence is algebraically determined by CG

W (Z) which was defined in
the previous section. We once again get a surgery exact sequence. This sequence
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fits into the diagram below as the lower row:

→ Lh(ZG) //

��

Sh(S(V1)/G) //

��

[S(V1)/G, F/TOP ] →

��
→ Lh(CG

W (Z)) // Sh,G
b (S(V1)×W ) // [S(V1)×W/G,F/TOP ] → .

The vertical maps are induced by crossing with W . On the normal invariant term
[S(V1)/G, F/TOP ] → [S(V1)×W/G,F/TOP ] we obviously have an isomorphism,
and this gives rise to the next necessary condition for V1 ×W and V2 ×W to
be equivariantly homeomorphic, namely that S(V1)/G and S(V2)/G not only be
homotopy equivalent as discussed above, but the homotopy equivalence has to
have trivial normal invariant. Once these necessary conditions are fulfilled, we see
from this diagram that the question of homeomorphic representations of cyclic
group representations has been translated completely to algebra, if somewhat
unusual and complicated algebra. This algebra has been studied in [8], and as a
sample result we mention one of the the main results from [8], which is somewhat
elaborate even to state.

We need to first introduce some notation. There are no homeomorphic repre-
sentations when the order of the group is odd or twice odd. This was shown in
[11, 12], but it can also be shown using the methods indicated in this section [10].
We thus let G be a cyclic group of order 4q, where q > 1, and let H denote the
subgroup of index 2 in G. The maximal odd order subgroup of G is denoted Godd.
We fix a generator G = 〈t〉 and a primitive 4qth-root of unity ζ = exp 2πi/4q.
The group G has both a trivial 1-dimensional real representation, denoted R+,
and a non-trivial 1-dimensional real representation, denoted R−.

A free G–representation is a sum of faithful 1-dimensional complex representa-
tions. Let ta, a ∈ Z denote the complex numbers C with action t · z = ζaz for all
z ∈ C. This representation is free if and only if (a, 4q) = 1, and the coefficient a
is well–defined only modulo 4q. Since ta ∼= t−a as real G–representations, we can
always choose the weights a ≡ 1 mod 4. This will be assumed unless otherwise
mentioned.

Now suppose that V1 = ta1 + · · · + tak is a free G–representation. The Reide-
meister torsion invariant of V1 is defined as

∆(V1) =
k∏

i=1

(tai − 1) ∈ Z[t]/{±tm} .

Let V2 = tb1 +· · ·+tbk be another free representation, such that S(V1) and S(V2)
are G-homotopy equivalent. This just means that we have the same k-invariant
so the products of the weights are congruent:

∏
ai ≡

∏
bi mod 4q. Then the

Whitehead torsion of any G-homotopy equivalence is determined by the element

∆(V1)/∆(V2) =

∏
(tai − 1)∏
(tbi − 1)

since Wh(ZG) → Wh(QG) is monic [15, p.14]. When there exists a G-homotopy
equivalence f : S(V2) → S(V1) which is normally cobordant to the identity map
on S(V1), we say that S(V1) and S(V2) are normally cobordant. More generally,
we say that S(V1) and S(V2) are s–normally cobordant if S(V1 ⊕ U)/G and
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S(V2 ⊕ U)/G are normally cobordant for all free G–representations U . It is a
necessary condition for non-linear similarity between V1⊕W and V2⊕W that that
S(V1) and S(V2) are s–normally cobordant. It can decided by explicit congruences
in the weights whether two free representations are s–normally cobordant [20,
Thm. 1.2].

This quantity, ∆(V1)/∆(V2) is the basic invariant determining non-linear simi-
larity. It represents a unit in the group ring ZG, explicitly described forG = C(2r)
by Cappell and Shaneson in [5, §1] using a pull-back square of rings. To state
concrete results we need to evaluate this invariant modulo suitable indeterminacy.

The involution t 7→ t−1 induces the identity on Wh(ZG), so we get an element

{∆(V1)/∆(V2)} ∈ H0(Wh(ZG))

where we use H i(A) to denote the Tate cohomology H i(Z/2;A) of Z/2 with
coefficients in A.

Let Wh(ZG−) denote the Whitehead group Wh(ZG) together with the invo-

lution induced by t 7→ −t−1. Then for τ(t) =
∏

(tai−1)∏
(tbi−1)

, we compute

τ(t)τ(−t) =

∏
(tai − 1)

∏
((−t)ai − 1)∏

(tbi − 1)
∏

((−t)bi − 1)
=

∏ (t2)ai − 1

((t2)bi − 1)

which is clearly induced from Wh(ZH). Hence we also get a well defined element

{∆(V1)/∆(V2)} ∈ H1(Wh(ZG−)/Wh(ZH)) .

This calculation takes place over the ring Λ2q = Z[t]/(1 + t2 + · · · + t4q−2), but
the result holds over ZG via the involution–invariant pull-back square

ZG → Λ2q

↓ ↓
Z[Z/2] → Z/2q[Z/2].

Consider the exact sequence of modules with involution:

(1) K1(ZH) → K1(ZG) → K1(ZH→ZG) → K̃0(ZH) → K̃0(ZG)

and define Wh(ZH→ZG) = K1(ZH→ZG)/{±G}. We then have a short exact
sequence

0 → Wh(ZG)/Wh(ZH) → Wh(ZH→ZG) → k → 0

where k = ker(K̃0(ZH) → K̃0(ZG)). Such an exact sequence of Z/2-modules
induces a long exact sequence in Tate cohomology. In particular, we have a
coboundary map

δ : H0(k) → H1(Wh(ZG−)/Wh(ZH)) .

Our first result deals with isotropy groups of index 2, as is the case for the non–
linear similarities constructed in [4].

Theorem 5.2. Let V1 = ta1 + · · · + tak and V2 = tb1 + · · · + tbk be free G–
representations, with ai ≡ bi ≡ 1 mod 4. There exists a topological similarity
V1 ⊕ R− ∼t V2 ⊕ R− if and only if

(i)
∏
ai ≡

∏
bi mod 4q,

(ii) ResH V1
∼= ResH V2, and

(iii) the element {∆(V1)/∆(V2)} ∈ H1(Wh(ZG−)/Wh(ZH)) is in the image
of the coboundary δ : H0(k) → H1(Wh(ZG−)/Wh(ZH)).
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