CONTROLLED ALGEBRA AND THE NOVIKOV CONJECTURES FOR
K- AND L-THEORY

GUNNAR CARLSSON AND ERIK KJAR PEDERSEN

ABSTRACT. The aim of this paper is to split the assembly map in K- and L-theory for a
class of groups of finite cohomological dimension, containing the word hyperbolic groups

0. INTRODUCTION

In this paper we combine the methods of [5] with the continuously controlled algebra of
[1] and the L-theory of additive categories with involution [23] to split assembly maps in K-
and L-theory. Specifically we prove the following theorems
Let I" be a group with finite classifying space BI'. Assume ET' admits a compactification
X (meaning X compact, and ET is an open dense subset) satisfying the following conditions,
(denoting X — ET by Y).
(i) The I'-action extends to X.

(ii) X is metrizable.

(iii) X is contractible.

(iv) Compact subsets of ET" become small near Y i. e. for every point y € Y, for every
compact subset K C ET and for every neighborhood U of y in X, there exists a
neighborhood V of y in X so that if g € I and gK NV # () then gK C U.

Conditions of this type were first utilized by Farrell and Hsiang in [12]. Let R be a ring,
and let K~°°(R) denote the Gersten-Wagoner (non-connective) K-theory spectrum of R.
Then we have

Theorem A. The spectrum BI'y N K~*°(R) is a split summand of K~*°(RI).

Let R be a ring with involution, satisfying that K_;(R) = 0 for sufficiently large ¢, and
let L=°°(R) be the periodic L-theory spectrum of R with homotopy groups the Wall surgery
obstruction groups [23]. Then we have

Theorem B. The spectrum BI'y AL™>°(R) is a split summand in L~°(RI).

If K;(R) =0 for all i < 1, say for R = Z we may replace L™ by L*. In this case we get
the corollary
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Corollary C. The spectrum BTy ANL*(Z) is a split summand in L*(ZT).

Novikov conjectured the homotopy invariance of higher signatures, and proved it for free
abelian groups. It is well known that the Novikov conjecture for a group I' is equivalent to
the rational split injectivity of the assembly map. In section 3 and 5, we identify the above
splitting maps with the usual assembly map, so Corollary C verifies the Novikov conjecture
for the class of groups considered here (actually a stronger integral version of the Novikov
conjecture), see [23, Prop. 24.5] for a discussion of this.

The condition that X be metrizable is not actually necessary. It is sufficient that X is
compact Hausdorff. This is proved using a generalized Cech theory in a sequel to this paper
[7], where we also give conditions to ensure splitting, depending intrinsically on the group.
We choose to present a proof in the metrizable case since the proof is fairly easy, and it does
cover a large class of groups, in particular by [2] the above conditions are satisfied for word
hyperbolic groups.

Jointly with W. Vogell and J. Roe respectively, we have extended the methods presented
here to work in A-theory and in topological K-theory as well [9, §]

A theorem similar to Theorem B has been announced by S. Ferry and S. Weinberger.
Specifically they replace the condition that the compactification is equivariant, by the con-
dition that ET is compactified by Y, a Z-set. The definition of a Z-set is that there is a
homotopy h; of the identity such that h,(Y) C ET for ¢t > 0.

Assembly maps and related problems have been studied for a long time by many math-
ematicians under various assumptions on the group, and with various conclusions such as
rational splitting, integral splitting, integral isomorphism, and for various functors such as
K- L- A- or C*-theory. see e. g. [26], [4], [12], [13], [19], [17] , [21], [28], [3], [10], [5] and [14].

1. CONTINUOUSLY CONTROLLED ALGEBRA

In this section we recapitulate and extend results from [1].

Let E be a topological space, R a ring. We denote the free R-module generated by £ x N
by R[E]>. Here N denotes the natural numbers. Notice that a set map f : £ — F induces
a map R[E|* — R[F|>, in particular if z € E, we have R[z]* a submodule of R[FE]>.
Definition 1.1. The category B(E; R) of finitely generated free R-modules parameterized
by E has objects A, submodules of R[E]> such that denoting A (" R[z]* by A,

(i) A= dA,.
(ii) A, is a finitely generated free R-module.

(ili) {z|A, # 0} is locally finite in E.
morphisms are all R-module morphisms.

Given a morphism ¢ : A — B and two points z,y € E we denote the component of ¢
from A, to B, by ¢y. Clearly ¢ is determined by, and determines {¢j}. We call ¢y the
components of ¢.
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Notice we have an isomorphism R[z]|* x R[z]* = R[z]*° sending ((x,1),0) to (z,2i) and
(0, (z,1)) to (z,2i —1).

Definition 1.2. Direct sum @ in the category B(F; R) is defined by
A, C Rla]™ if B, =0
(A® B), =< B, C R[z]® if A, =0
A, @ B, C R[z]™ @ R[z]* = R[z]* otherwise

The special case made when A, or B, is zero, ensures the convenient formulae A & 0 =
A =0& A. With this direct sum we clearly have

Proposition 1.3. B(E; R) is a small additive category.

Remark 1.4. The reader may find it artificial to require the objects of B(F; R) to be
submodules of R[E]>, specially in view of the extra trouble in defining direct sum as above.
The justification is that B(E; R) is a small category with convenient equivariant properties
as exemplified by

Proposition 1.5. Assume the group I acts freely, properly discontinuously on the space E.
The induced action on R[E]™ gives an action on B(E; R). We then have an equivalence of
categories

B(E;R)" = B(E/T; R[T)
Proof. The I'-action on E induces an R[[']-module structure on R[E]>*. A set theoretic
section s : E/I' — FE induces an R[I']- module morphism
RT[E/T]™® — R[E]*®
which is an isomorphism with inverse ® given by

®(e)([z],n) = ) elgs([z]),n)g.

g
An object A in B(E; R) fixed under the I'-action is a submodule A C R[E|* = RI'[E/T|*
which is setwise fixed under the I-action, hence an RI’-submodule. We have
Am =AN RP[[CBHOO = @gEFAgAI

hence Ap, is a free RI- module of rank the R-rank of A,, and the local finiteness of {z €
E|A, # 0} and proper discontinuity of the I'-action implies that {[z] € E/I'|A # 0} is
locally finite in £/I". Obviously A is generated by the {A};} as RI-modules. Morphisms of
B(E; R), fixed under the I'-action satisfy

9 = g¢lg !,
so they are RI'-module morphisms, so we have completed the proof. Notice the equivalence
does depend on the set theoretic splitting £/T" — E. O
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We shall consider categories with various degrees of control on the morphisms. Examples
of this is bounded control as in [20] and continuous control as in [1], but also something that
might be considered a mixture of the two.

In the following definitions, let X be a topological space, Y a subspace , T" an open subset
of X and p: T — K a map to a topological space K, which is continuous at points of Y N'T.
Denote X —Y by E.

Definition 1.6. Let U be a subset of X and A an object in B(E). We define A|U by
(AlU), =A,ifx e U—-Y and (AlU), =0ifz e X -U -Y.

Definition 1.7. A morphism ¢ : A — B in the category B(E; R) is said to be continuously
controlled at a point y € Y, if for every neighborhood U of y in X, there is a neighborhood
V of y in X, so that

o(AlV)C BlU and ¢(A|X -U)C B X -V
in other words, ifa € V —Y and b€ X — U — Y implies ¢¢ = 0 and ¢° = 0.
This is the standard control definition in [1].

Lemma 1.8. If X is compact Hausdorff, and ¢ : A — B satisfies half the control condition
at all points of Y, 1. e. for everyy € Y and every neighborhood U there is a neighborhood V
so that ¢(A|V') C B|U, then ¢ is continuously controlled.

Proof. Let y and U be given. Find V C V C U so that ¢(A|V) C BJU. For z € Y = U we
may find a neighborhood W, so that ¢(A|W,) C B|X — V. Since X — U — UW, is compact

we have A|X — U — UW, is a finitely generated R-module, so we can find a compact set
K C X —Y so that ¢(A|X — U — UW,) C B|K, and we may replace V by V — K O

The next definition deals with control, but only in the direction of a certain map, remi-
niscent of the long thin handles in [13]

Definition 1.9. A morphism ¢ : A — B in the category B(E; R) is said to be controlled in
the p-direction or p-controlled at a point y € Y N T, if for every neighborhood U of p(y) in
K, there is a neighborhood V of y in X so that

¢(A[V) C Blp™ (U) and ¢(A|X —p~'(U)) C BIX =V
in other words ifa € V —Yand b € X —p~1(U) — Y then ¢¢ =0 and ¢ = 0.

Definition 1.10. The category B(X,Y; R) has the same objects as B(E;R), F = X — Y,
but morphisms are required to be continuously controlled at all points of Y.

These are the categories defined in [1]. The reader should think of £ = X —Y as an open
dense subset of X.

Definition 1.11. The category B(X,Y, p; R) has the same objects as B(E; R), E = X —Y
but morphisms have to be continuously controlled at all points of Y — T', and p-controlled
at all points of T NY.
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Example 1.12. The main examples we shall consider in this paper are the categories
B(CX,CY UX, px;R)

and
B(EXa EY7 pPx; R)a
where X is a compactification of ET", Y = X — ET" and px is the projection X x (0,1) — X.

Finally we need to introduce germs. Using notation as above let W be a (typically open)
subset of Y.

Definition 1.13. The category B(X,Y,p; R)" has the same objects as B(X,Y,p; R), but
morphisms are identified if they agree in a neighborhood of W. Specifically ¢, : A — B
are identified if there is a neighborhood U of W in X, so that ¢j = ¢; whena € U —Y or
b€ U —Y. Similarly the category B(X,Y; R)" has the same objects as B(X,Y; R), but
morphisms are identified if they agree in a neighborhood of W.

Following [1] we shall study the functoriality of B(X,Y; R)", but first let us recall cate-
gorical terminology: Two functors between categories F, G : A — B are naturally equivalent,
if there is a natural transformation from F' to G which is an isomorphism for each object in
A. The categories A and B are equivalent if there are functors F': A — B and G : B — A
and natural equivalences from F'G to 1z and from GF to 14. Two additive categories are
isomorphic when they are equivalent by functors which give a 1-1 correspondence of objects.
We use the symbol = in case an isomorphism is the identity on objects . A functor between
additive categories is called laz if it commutes with direct sum up to natural equivalence,
sends 0 to 0 and induces a homomorphism of Hom-sets.

Definition 1.14. A set map f : (X,Y) — (X', Y’)) satisfying the following conditions is
said to be eventually continuous at Y

(i) If K is a compact subset of X’ — Y’ then f~!(K) has compact closure in X — Y.
(i) (X -Y)C X —Y".
(iii) f is continuous at points of Y.

Definition 1.15. The support at infinity supp..(A) of an object A, in B(X,Y’; R) is the set
of limit points of {x|A, # 0}.

Clearly the support at infinity is a subset of Y.

There is a slight problem getting induced morphisms from eventually continuous maps.
We need to consider two cases, as to whether f is monic on X —Y or not. Let (X,Y) and
(X', Y") be compact Hausdorff pairs.

Proposition 1.16. An eventually continuous map f: (X,Y) — (X', Y") which is monic on
X =Y, induces a functor

B(X,Y;R) — B(X',)Y";R)
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sending A C R[X —Y]*® to A C R[X —Y]® i, R[X'" = Y']*°, and the map induced by
the identity on morphisms. When f is not assumed to be 1-1, we get a functor by sending
C ={C;} to f;C with

(fﬁc)w’ = @f(:c)::c’cx
and choosing an embedding of (fyC)y C R[z']>°. The functor is induced by the identity on
morphisms. In this case fy is only well-defined up to natural equivalence. If f sends Y — W
toY' — W' we get a functor

B(X,Y;R)\W — B(X" Y ;R

Proof. The case when f is 1-1 is clear, so consider the case when f is not necessarily 1-1.
Condition (i) ensures the direct sum is finite. We need to show that if ¢ is a continuously
controlled map in B(X,Y; R), then f;¢ is continuously controlled. Let 3 € Y’ and a neigh-
borhood U’ be given. Assume by contradiction that we can find a sequence x},y; € X' —Y’,
so that 2} ¢ U’, y; — y' and f;¢ has a nontrivial component between 2 and y;. We then
have x;,y; € X —Y so that f(z;) = «}, f(y;) = y; and ¢ has a nontrivial component between
x; and y;. Since X is compact Hausdorff {y;} has a convergent subsequence {y;} with limit
point y. The local finiteness condition on objects ensures that y must lie in Y. By continuity
f(y) = ¢/, and we may find a neighborhood V' of y, so that f(V) C V'. Clearly z; ¢ V
and we have a contradiction. In the germ case note that two morphisms are identified if
and only if the difference factors through an object A with supp (A4) C Y — W. But then
SUPPw (f3(A)) C Y' — W’ because if f;(A),, # 0 and y; — ¢, then we can find y; such that
A, # 0 and f(y;) = yi. The set {y;} must have a limit point y. This point belongs to
supps(A) C Y — W. By continuity v = f(y) soy € Y — W". O

Remark 1.17. When composing eventually continuous maps f and g that are 1-1 in the
interior, we do get fygy = (f¢);. When they are not 1-1 in the interior we only get fygy is
naturally equivalent to (fg)y.

Proposition 1.18. If fi and fy are eventually continuous maps (X,Y) — (X', Y') and
[Y = f2]Y, then fiy and foy are naturally equivalent functors.

Proof. The natural equivalence is induced by the identity. O

Remark 1.19. Given any set map f we shall use the symbol f; as given in Proposition 1.16.
In any given case of course one needs to make sure that this does indeed define a functor.

Remark 1.20. In case of a locally compact Hausdorff pair (X,Y), Y C X a proper inclusion,
the obvious identification
B(X,Y;R)" = B(Xy,Yy; R)¥
ensures that an eventually continuous map f: (X,Y) — (X', Y”’) induces a functor
fi:B(X,Y;R)Y — B(X",Y;R)”

!
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if f:(X4,Y,) — (X, Y]) is an eventually continuous map, i. e. if f satisfies an appropriate
properness condition.

Let C be a (typically closed) subset of Y.

Definition 1.21. The full subcategory of B(X,Y; R) on objects with support at infinity
contained in C, is denoted by B(X,Y’; R)¢c. Similarly we have B(X,Y,p; R)c, B(X,Y; R)¥
and B(X,Y,p; R)¥ as full subcategories of B(X,Y,p; R), B(X,Y; R)"W and B(X,Y,p; R)W

respectively.

Let Y be a closed subset of X, C' a closed subset of Y, S a closed subset of C' (e. g.
S = (). Then Y — C may be thought of as an open subset of Y/S. In case S = C then Y/S
is just the one-point compactification of Y — C.

Lemma 1.22. We have
B(X,Y;R)"™“ = B(X/S,Y/S; R)"/*~9/5.
In particular we have
B(X,Y;R)Y"Y =B(X/C,(Y/C — C/C),; R)Y/¢-¢/C.
Proof. The identity induces a homeomorphism
E=X-Y=X/S-Y/S.

Hence the objects on both sides are the objects of B(E; R). Any morphism has a repre-
sentative which is 0 except in a neighborhood of Y — (', and for such a representative the

control conditions are the same, since Y — C' is thought of as an open subset of Y as well as
of Y/S O

Next we reduce the dependency of X

Theorem 1.23. Let X be a compact metrizable space, Y a closed subset, so that X —Y
1s dense i X, CY denotes the cone on' Y . We then have eventually continuous maps

f:(X,)Y)—=(CY)Y) and g: (CY,Y) — (X,Y) so that f|Y =g|Y = 1y,
Proof. We define the eventually continuous maps
F1XY) = (CY,Y) and g+ (CY,Y) = (X,Y)

so that f|Y = g|Y = 1y. Choose a metric on X so that sup,.x(d(z,Y’)) = 1. We orient the
cone so that the conepoint is Y x0. Given 2 € X there exists y € Y so that d(x,y) = d(z,Y).
Choose one such y and define f(z) = (y,1 —d(z,Y)). If 2 € Y, obviously f(z) = (x,1),
and if z is close to Y f(z) will be close to (x,1). Given (y,t) € CY. We can find x so that
d(z,Y) = sup({d(z,Y)|d(z,y) < 1—t}, using the open denseness condition and compactness.

Choose one such z and define g(y,t) = x. If t = 1 clearly g(y,t) = y, and if ¢ is close to 1,
g(y,t) must be close to y. 0
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Corollary 1.24. There is a natural equivalence
fi : B(X,Y;R) = B(CY,Y;R),

natural in the sense that if h is an eventually continuous map h : (X,Y) — (X',Y"), then
the diagram

B(X,Y;R) — B(CY,Y;R)

B(X")Y';R) —= B(CY',Y'"; R)
commutes up to natural equivalence.
Proof. Let f : (X,Y) — (CY,Y) and g : (CY,Y) — (X,Y) be chosen as in Theorem 1.23.
Then by Proposition 1.18, f; will be an equivalence of categories with inverse g4 since f and
g are the identity on Y. If f': (X', Y’) — (CY",Y”) is chosen as in Theorem 1.23 we have

Ch - f and f’ - h agree when restricted to Y, so once again it follows from Proposition 1.18
that Chy - f; and fé - hy are naturally equivalent. O

If W is an open subset of Y, the above technique also yields
Theorem 1.25. B(X,Y; R)W = B(CY,Y; R)".
Following Karoubi [16] we have the following definition

Definition 1.26. An additive category is flasque if it admits an endofunctor ¥X*>° and a
natural equivalence 1 @ ¥ = 3*°

Let A be a small additive category. We let K(A) be a functorial assignment of A to a
spectrum whose homotopy groups are the K- groups of the symmetric monoidal category
obtained from A by restricting to isomorphisms. It is well known (from the additivity
theorem) that the K-groups of a flasque additive category are trivial. Following [20], we
define C;(A) to be the category of A-objects parameterized by Z' and bounded morphisms.
The inclusion Z! = Z' x 0 C Z**! induces a map

K(Ci(A)) = K(Ciyr(A))

which is naturally homotopy trivial in two ways since it factors through the categories param-
eterized by Z' x Z, and Z* x Z_ respectively, which have obvious natural flasque structures
by Eilenberg swindle see e. g. [20]. This gives a functorial map

YK(Ci(A)) = K(Cira(A))
or

K(Ci(A)) — QK (Cit1(A)).
We denote the homotopy colimit of

K(A) = QK (Ci(A) — ... — QK (C(A) — ...
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by K~°(A). It follows from [20], see [5] for a more detailed explanation, that K~>°(A)
is the nonconnective K-theory spectrum associated with the symmetric monoidal category
obtained from A by restricting to isomorphisms. Clearly K~ is a functor from the category
of small additive categories and lax functors to the category of spectra.

Recall the notion of an A-filtered additive category U [16]

Definition 1.27. Let A be a full subcategory of an additive category U. Denote objects of
A by the letters A through F and objects of U by the letters U through W. We say that U
is A-filtered, if every object U has a family of decompositions {U = E, ® U,}, so that

(i) For each U, the decomposition form a filtered poset under the partial order that
E, ® U, < Eg® Ug, whenever Ug C U, and E, C Eg.
(ii) Every map A — U, factors A — E, — E, @& U, = U for some «.
(iii) Every map U — A factors U = E, ® U, — E, — A for some a.
(iv) For each U,V the filtration on U @& V is equivalent to the sum of filtrations {U =
E,®oU,} and {V=FzdVs}ie toUBV = (E, P Fs)® (Uy® Vp)

Karoubi defines U/ /A to be the category with the same objects as U, but with ¢, ¢ : U — V
identified if ¢ — ¢ factors through A. We have the following [20, Cor. 5.7]:

Theorem 1.28. K~°(A) - K~>°U) — K~>(U/A) is a homotopy fibration.

Proof. This follows from [20, Cor. 5.7]. By taking the spectra that include the negative
homotopy groups we avoid idempotent completions. 0

Let X be a compact Hausdorff space, Y a closed subspace, so that X — Y is dense, C'
a closed subspace of Y, W an open subset of Y so that C C W. Put Uy = B(X,Y;R),
A =B(X,Y;R)o, Uy = B(X,Y; R)W, Ay = B(X,Y; R)%. Then we have

Lemma 1.29. U; is A;-filtered and
U JA =B(X,Y; R ¢
Uy /Ay = B(X,Y; R)WC
Proof. Direct from definitions. O
Theorem 1.28 gives the following
Corollary 1.30. We have fibrations up to homotopy
K™(B(X,Y; R)c) = K~*(B(X,Y; R)) = K~(B(X,Y;R)" ™)

and

K>B(X,Y;R){) — K=(B(X,Y;R)") - K(B(X,Y; R)"V =)
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Lemma 1.31. Let X be a compact metrizable space, Y a closed subspace so that X —Y is
dense in X, and * a point of Y. The natural map

B(X,Y:R) — B(X,Y;R)"*
induces an isomorphism on K -theory (i. e. a weak homotopy equivalence of K-theory spectra).

Proof. Let A = B(X,Y;R).. By Corollary 1.30 we shall be done if we can prove that
K~°(A) is weakly contractible. Choose a metric on X and a sequence of points xg, 1, .. .,
in X —Y converging to *, and such that d(z;,Y") is strictly decreasing. This is possible since
X —Y is open dense in X. Let A" be the full subcategory of B(X,Y; R) with A, = 0 except
for x € {z;}. Clearly A’ is a subcategory of A, but actually A and A" are equivalent. One
way is the inclusion. To get the other direction define a set map f: X — X by f(z) = z; if
d(z,Y) > d(z;,Y)and d(z,Y) < d(x;—1,Y), when x € X =Y, and f(y) =y for y € Y. This
map is clearly continuous at * (and discontinuous at all other points of V'), but since objects
of A are required to be 0 in a neighborhood of ¥ — %, we nevertheless get f;A, an object of
A’ and an equivalence of categories. To finish off the proof of the lemma notice that A’ is
flasque i. e. it admits an endofunctor U* : A" — A’ so that 1 ® U* = U* ( an Eilenberg
swindle), and hence K~>°(A’) is contractible. Specifically U> is given by

(U=(A))e; = Bjcis,
This completes the proof of Lemma 1.31. U

Lemma 1.32. Let X be a compact metrizable space, Y a closed nowhere dense subset, and
W an open subset of Y. Then

BX,YV;R\W =B(X — (Y —=W),W; R)"

Proof. The functor forgets the control along Y — W. The categories have the same objects,
namely the objects of B(X —Y; R). If a morphism in B(X,Y; R)" becomes 0 in B(X — (Y —
W), W; R)" | that means that the components of the morphism are 0 in a neighborhood of
W, but that means the morphism is 0 in B(X,Y; R)". This shows the functor is monic on
Hom-sets. To see it is epic on Hom-sets, consider a morphism in B(X — (Y — W), W; R)W
represented by ¢ : A — B. We may assume A and B are 0 except in a neighborhood of
W, so ¢ is automatically controlled at interior points of Y — W. Hence it is no loss of
generality to assume that Y is the closure of W. We need to show that ¢ is equivalent
to a morphism which is controlled at points of OW. For every point z € W we find a
neighborhood U, C B(z, 3d(z,0W)) so that no non-zero component of ¢ reaches from U,
outside the ball B(z, 2d(z,0W)). We let U be the union of all the U.s and replace ¢ by a map
whose components are equal to ¢'s when two points are in U and 0 otherwise. Rechoosing ¢
to be this new representative, we claim ¢ represents a morphism in B(X,Y; R)" i. e. that
it is controlled at points of OW. Let y be a point in W and consider a J-ball around y. We
let V = B(y,§/4). If a € V and ¢¢ or ¢ is different from 0, we must have a € U, some
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z € W. We have
d(z,y) < d(z,0) + d(a,y) < d(z,OW) /2 +6/4 < d(2,)/2 + 6/4

so d(z,y) < 0/2. Since a € U, and ¢} or ¢ is different from 0, we have b € B(z, 5d(z, 0W))
and

d(b,y) < d(b,z) +d(z,y) < d(z,0W)/2+0/2 <d(z,y)/2+ /2 <.

Hence a non-zero component of ¢ does not reach outside the d-ball. Thus ¢ represents a
map in B(X,Y)" and we have shown the functor is epic on Hom-sets. O

Definition 1.33. A (reduced) Steenrod homology theory [15, 11] is a functor from the
category of compact metrizable spaces and continuous maps, to graded abelian groups (with
h.(pt) = 0), satisfying the following axioms

(i) h is homotopy invariant.
(ii) Given any closed subset A of X there is a natural transformation
0: ho(X/A) — hy_1(A)
fitting into a long exact sequence

.= hp(A) = hyp(X) = hy(X/A) = hy1(A) — .

(iii) Given a compact metric space, which is the countable union of metric spaces along
a single common point (like Hawaiian earrings), \/ X;, then the projection maps
pi -V X; — X, induce an isomorphism

ha(\ Xi) = T ha(X0)

These axioms are sometimes called the Kaminker-Schochet axioms.

Given any generalized homology theory, there is a unique Steenrod homology extension.
Uniqueness was proved by Milnor [18], existence by Kahn-Kaminker-Schochet and Edwards-
Hastings [15, 11].

Definition 1.34. A functor £ from compact metrizable spaces to spectra is called a Steenrod
functor if it satisfies the following conditions

(i) k(CX) is contractible for any cone C'X.

(ii) If A C X is closed, then

is a fibration (up to natural weak homotopy equivalence).
(iii) Given a compact metric space \/ X; which is the countable union along a single
point of metric spaces X;, then the projections induce a weak homotopy equivalence

k(V Xi) = [Tk(X;)

We have the following
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Proposition 1.35. Let k be a Steenrod functor. Then m.(k(X)) is the unique Steenrod
homology theory associated with the spectrum k(S°). If X is a finite CW -complex, then
k(X) is weakly homotopy equivalent to X A k(S°).

Proof. The maps X — X x [ sending x to (z,0) or (z,1) fit into X — X x I — CX
giving homotopy invariance. The connecting homomorphism of the fibration gives the long
exact sequence, and axiom (iii) gives the wedge axiom, hence X — m,(k(X)) is a Steenrod
homology theory. We need to show that when we restrict to finite CW-complexes we get
the homology theory associated to the spectrum k(S°). This however is proved in [27] (see
Theorem 3.1 for the full statement). In particular it is proved in [27] that for any finite CW
complex X, there is a weak homotopy equivalence of spectra

X AK(SY) 2 k(X)

thus 7, (k(X)) restricts to the usual homology theory on the category of finite CW-complexes.
0

Our definition of a Steenrod functor might be called a reduced Steenrod functor, since
it sends a point to a contractible spectrum. We may of course get an unreduced Steenrod
functor by the usual device of adding an extra basepoint.

Theorem 1.36. Let X be a compact metrizable space, then K~ (B(CX, X; R)) is a reduced
Steenrod functor with value SK~°(R) on S°. In particular if X a finite CW-complex then
QK~>°(B(CX, X; R)) is weakly homotopy equivalent to X N K~*(R).

Proof. We need to prove conditions (i), (ii) and (iii) for the functor sending X to K ~°(B(CX, X, R)).
(i) is proved in [1], and so is (ii), but not quite in this generality. Consider

K™(B(CX,X;R)\) — K *(B(CX, X;R)) — K *(B(CX, X))
This is a fibration by Corollary 1.30. We first want to show that the inclusion
B(CA,A;R) — B(CX,X;R)4

is an equivalence of categories. Define a set map f from CX to CX to be the identity
on X, and on CX — X a point z is sent some point a in C'A such that d(z,a) realizes
inf{d(z,a)la € CA,d(a,A) > d(x,X)}. If this set is empty, send = to the cone point.
Clearly f is continuous at points of A, (and discontinuous at points of X — A, but since
objects of B(CX, X; R)4 are required to be 0 in a neighborhood of X — A, we still get a
functor

which is an inverse to the inclusion up to natural equivalence. It follows from Lemma 1.22,
Lemma 1.31 and Corollary 1.24 that K~>°(B(CX, X; R)X~4) is naturally weakly homotopy
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equivalent to K~*°B(C(X/A), X/A; R)), so we have verified condition (ii). Finally consider
B(C(\ X;),V Xi; R). Let x denote the wedge point. We have

Cc(\/ X)), \/ Xi; R)) ~ (Cc(\/ x:), \/ Xi; R)VY)

by Lemma 1.31. The category of germs B(C(\/ Xi),\/Xi;R)VXi** is equivalent to the
product of the categories B(C' X, X;; R)™X~* since only small neighborhoods of X; —* matter,
so there can be no interaction between the components at the germ. It is proved in [6] that
K™% commutes with infinite products, so

E(J[(B(CX:, Xy R)Y ) = [[ K~=(B(CX;, Xi;; Ry ).
Moreover
K~(B(CX;, Xi; R ™) ~ K~°(B(CX;, X;; R))

by Lemma 1.31, and we are done. The final remark follows from Proposition 1.35 U

We define Steenrod homology of a pair by h, (X, A) = h,(X/A). Combining Theorem
1.36 with Corollary 1.24 we have proved

Theorem 1.37. Let X be a compact metrizable space, Y a closed subspace so that X —Y
1s dense in X, W an open subset of Y. Then there is a natural isomorphism

where h,_1(—; K~°R) denotes the Steenrod homology theory associated to the algebraic K-
theory spectrum of the ring R (non-connective version).

Remark 1.38. Notice that the proof of Theorem 1.36 identifies the map
K~=(B(CX,X;R)) — K~*(B(CX, X; R)* ™)
with the Steenrod functor of K~*°R applied to the collapse map X — X/A.

Definition 1.39. Let E be a locally compact space such that ., the one-point compact-
ification is metrizable (e. g. E a finite dimensional C'W-complex), and S a spectrum. We
define

W (E3S) = b (ES)

where h® is the unique reduced Steenrod homology theory associated to the homology theory
with spectrum S.

Theorem 1.40. Let E be a locally compact space with metrizable one point compactification.
Consider E=FE x1C E x (0,1]. Then

K. *(B(E x (0,1], E; R)®) = hi!\(E, K~*R)
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Proof. By Lemma 1.32
B((E x (0,1))+, E.; R)¥ 2 B(E x (0,1], E; R)®

and by Lemma 1.31 B((E x (0,1])+,E.; R) and B((E x (0,1])., E; R)¥ have the same
K-theory. Finally Theorem 1.37 shows that the K-theory of B((E x (0,1])4, E4; R) is the
reduced Steenrod homology of F,, with a shift in dimension. 0

2. SPLITTING THE K-THEORY ASSEMBLY MAP

Let ' be a group. We shall consider a finite free [-CW complex F with a compactification
X (meaning X compact, and F is an open dense subset). This compactification is supposed
to satisfy conditions (i) through (iv) from the introduction.

If £ is an ET with a compactification satisfying these conditions, (so in particular BI is
a finite complex) the aim of this section is to show that the K-theory assembly map splits.

Theorem 2.1. BI', A K~>°(R) is a split factor of K~°°(RI").

Some of the lemmas needed do not require all the conditions. The proof follows the
strategy of [5], but replacing h'/- as well as bounded K-theory by continuously controlled
K-theory, and the natural transformation by an induced map. In view of Theorem 1.40,
what we are doing is of course using a continuously controlled model for h*/.  Given a
spectrum A with I'-action, recall the definition of the homotopy fixed set

A" = Mapp (BT, Ay).

The collapse map ET; — S° induces a map from the fixed set AT = Mapp(S°, A) to the
homotopy fixed set.

Remark 2.2. There is an important special case where the map from the fixed set to the
homotopy fixed set is a weak homotopy equivalence. When A = [[; B, and the I'-action
permutes the factors we have
AhF = (Map<r+7 B))hr = MapF(EF+7Map(F+7B)) = MapF((‘EF X F>+7 B) -
Mapp (T4, Map(ET, B)) = Map(ET,, B) ~ B = A"
Let C'X be the cone of X, with X x 0 as the cone point, and identify X x 1 with X.

We denote X — E by Y and the projection map X x (0,1) — X by px, and consider the
[-equivariant functor induced by collapsing X, from C'X to ¥X:

B(CX,CY UX,px;:R) — B(EX,XY, px;: R)

Notice that the modules on both sides are parameterized by E x (0,1), but the con-
trol conditions are quite different. Denoting QK ~>*(B(CX,CY U X,px; R)) by S and
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QK~>°(B(XX,XY,px; R)) by T. We study the diagram

SFHTF

-

ShF - o ThF

and prove the following statements
(i) ST ~ (E/T);y A K—°(R).
(i) TV ~ K~°°(RI).
(iii) ST ~ S,
(iv) Shl' ~ "L,
It is only (iv) that requires X to be contractible.
The proof will be a sequence of lemmas. First consider T7".

Lemma 2.3. QK ~*(B(XX, XY, px; R))" ~ K~(RI).

Proof. Taking fixed sets and applying K~ clearly commutes, so we need to study the
category B(XX, XY, px; R)''. We shall show that
B(3X(E/T),0U1; RT") = B(I,0U 1; RT").

A priori we require control at 0 and 1 and along Y x (0,1), but only in the px-direction.
Control along Y x (0, 1) in the px-direction is automatic by equivariance because of condition
(iv). To see this let ¢ : A — B be an equivariant morphism, (y,t) € Y x (0,1) a point and
U a neighborhood of y in X. We need to show that we can find a neighborhood V' of (y,t)
in CX so that
¢(AlV) C B|(U x (0,1)).

Choose 0 < ¢; <t < €2 < 1 and a compact fundamental domain K C F ( so £ = UrgK).
By compactness there are only finitely many R-module generators in K X [e, €] , SO we may
find L C E compact and 0 < §; <t < dy < 1 so that K C L and

¢(A|K X [61,62]) C B|L X [51,52].

By condition (iv) we may find a neighborhood W of y in X so that if gL N W # () then
gL C U. We claim V = W X (e, €) will do: For any point a = (p,s) € V, p lies in some
translate gK of K hence gK N'W # (), but that means gL C U and by equivariance

¢(Aa) C ¢(A|9K X [61,62}) C B‘gL X [51,(52] C B’U X (O, 1)

and the proof that control is automatic along Y x (0, 1) is finished by Lemma 1.8. Arguing
as in Proposition 1.5 we thus get

B(XX,%Y,px; R)' = B(X(E/T),0U 1; RT")
Since E/T" is compact Corollary 1.24 shows that
B(X(E/T),0U1; RT") =2 B(1,0U 1; RT")
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and by Theorem 1.36 QK ~>°(B(I,0U 1; RT")) is weakly homotopy equivalent to K ~>°(RI").
U

We now go on to study S'. Thinking of £ = F x 1 C E x (0,1] we get
Lemma 2.4. B(CX,CY U X, px; R)¥ = B(E x (0,1], E; R)E

Proof. We have B(CX,CY UX,px; R)¥ = B(CX,CY UX;R)? and B(CX,CY UX;R)¥ =
B(CX, X; R)¥ because the categories have the same objects as in B(E x (0,1); R) and
morphisms subquotients of the morphisms in B(E x (0,1); R). The equalities follow because
any morphism has a representative which is 0 except for a neighborhood of E, so we may
assume it is 0 in a neighborhood of C'Y — Y, and control conditions along C'Y — Y are thus
automatically satisfied. Finally B(CX, X; R)F = B(E x (0,1], E; R)¥ is a direct consequence
of Lemma 1.32 U

Lemma 2.5. We have weak homotopy equivalences

K>(B(CX,CY UX,px;R)) ~ K~°(B(CX,CY UX,px;R)¥)
and

K>=(B(CX,CY UX,px;:R))' ~ K~°(B(CX,CY UX,px;R)")"
Proof. Let A denote B(CX,CY U X, px; R)cy . Clearly the quotient category
(B(CX,CY U X,px;R)/A=B(CX,CY UX, px;R)”,

but A has a flasque structure, by an Eilenberg swindle shifting modules to the left as follows:
Choose a continuous function a : X — [1, 00) satisfying a(m) > 1 whenm € F and a(Y) =1
. Define U* : A — A by

(UOO(A))(m,t) = @ Am,a(m)"t

where we let A, ) = 0 when s > 1. This sum is clearly finite, and

{(m, )|(U>(A)mp) 7 0}
is locally finite because A is 0 in a neighborhood of E. To get the statement on fixed
sets, since K~*° commutes with taking fixed sets, we need to consider the fixed category.
Defining A = (B(CX,CY UX, px; R)cy)', the argument goes through as above, noting that
an RI'-module which is 0 in a neighborhood of E must be 0 in a neighborhood of X. U

Remark 2.6. This is the point where we need control along the map px. If we required
continuous control, then equivariant maps could not have a non-zero component between
(p,s) and (q,t) when s # t because such a component would be translated by the group
to points close to Y x (0,1) contradicting control. Hence A would not be flasque, because
the flasque structure requires a natural transformation with a non-zero component between
(p,s) and (q,t) with s # ¢.

Lemma 2.7. (B(CX,CY U X,px; R)®)' = (B(E x (0,1], E; R)®)F



CONTROLLED ALGEBRA AND THE NOVIKOV CONJECTURES 17

Proof. Immediate from Lemma 2.4. 0
Lemma 2.8. Assume I' acts freely properly discontinuously on a space E. Then
(B(E x (0,1], B; R)®)' = B(E/T x (0,1], E/T; R)®/T
Proof. The map
py s RIE]® — R[E/T]®
induced by projection induces an isomorphism
R[E]* @gr R — R[E/T|*.

An RI-module A parameterized by E x (0,1) is sent to the R-module A ®gr R. Going
backwards, an R-module B parameterized by E/T is sent to p; '(B). Since we are taking
germs at E and components of a morphism have to become small near E, there is only one
choice when lifting a morphism. O

To finish off showing ST = (E/T"); A K~>°(R) we need the following theorem
Theorem 2.9. Let E be a finite, free U-C'W -complex. Then
QK (B(E x (0,1], B; R)*)' ~ (E/T)y A K™™R
Proof. By Lemma 2.8
(B(E x (0,1], B; R)*)T = B(E/T x (0,1], E/T; R)P/T.
Lemma 1.32 shows that
B(E/T x (0,1], E/T; R)?/" = B(C(E/T), E/T U x; R)E/T,
and Lemma 1.31 shows that
K~°(B(C(E/T),E/T Ux; R)F/T) ~ K=>°(B(C(E/T), E/T U x; R)).
Finally Theorem 1.36 shows that
QK >(B(C(E/T),E/TUxR)) ~(E/T)y NK ™R.

Corollary 2.10. ST = (E/T'), A K=(R).
Proof. Combine Lemma 2.5, Lemma 2.7 and Theorem 2.9. U
Theorem 2.11. Let E be a finite free I'-CW complex. Then

K(B(E x (0,1], B; R)") — K~>°(B(E x (0,1], E; R)*)""

15 a weak homotopy equivalence.
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Proof. The proof is by induction on the I'-cells of E. To start the induction assume F =
[. In this case the category B(E x (0,1], E; R)E is equivalent to the product category
[I,er B(g x (0,1],g; R)?. This follows since we take germs at E and demand control at
points of E, so near E a component of a map can not reach from one element in £ =TI to
another.

(B(E % (0,1], B R)")" = B((0,1], ; R)'

by Lemma 2.8. The projection maps induce a map

([ Bgx (0,1],g:R)*) — [[ K= x (0,1], g; R)?

ger gel

which is ['-equivariant, in the action that permutes the factors, and a weak homotopy equiv-
alence by [6]. The fixed set on the product is the diagonal, which may be identified with
K=(B((0,1],1; R)'). Under this identification the map of fixed sets

K~°(B(E x (0,1], E — (5~ (0,1, 9; R)?))"

gel

is the identity. On homotopy fixed sets we get a weak homotopy equivalence since the map
is equivariant, and unequivariantly it is a weak homotopy equivalence. Finally

HK B((0,1],1; R)Y) HK B((0,1],1; R)H)"

is a weak homotopy equivalence, see Remark 2.2. Assume inductively that E is obtained
from N by attaching one free G-cell, e™. Consider

B(N x (0,1, N; RN L B(E x (0,1], B; R)® % B(E x (0,1], E; R)E—N.

Let’s denote QK ~*° applied to this sequence by A — B — C. The sequence A" — B — CT
is
(NT) ) NKTR — (E/T), NK~R — (E/T)/(N/T) AN KR,

by Theorem 2.9 and Remark 1.38 hence a fibration of spectra. The composite functor gf
factors through B(N x (0,1], N; R)? which is equivariantly equivalent to the trivial category.
Unequivariantly A — B — ' is a homotopy fibration (A Steenrod functor applied to
N, — E, — E./Ny). Letting D denote the homotopy fibre of B — C we get an equivariant
map from A — D which unequivariantly is a weak homotopy equivalence, hence a weak
homotopy equivalence of homotopy fixed sets. Since homotopy fibre and homotopy fixed
sets commute we have shown that

AhF N BhF N OhF

is a fibration sequence. By our induction hypothesis we have A" — A" is a weak homotopy
equivalence, so to finish off the proof it suffices to show that C* — C"'' is a weak homotopy
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equivalence. This however is entirely similar to the start of the induction. Since £ — N =
I' x €™ where €” is an open n-cell and we are considering germ categories we have

B(E x (0,1], B; )" = [[ Blg - e" x (0,1], g~ e"; R}
and the I' action permutes the factors, so this completes the induction step 0

Corollary 2.12. S = Ghl',

Proof. Consider the equivariant functor combining taking germs and forgetting control
B(CX,CY UX,px;R) — B(CX,CY UX,px; R)¥ — B(E x (0,1], E; R)*.

We want to show that when we apply K~°° and take fixed and homotopy fixed sets respec-
tively, we get a weak homotopy equivalence. On fixed sets this follows from Lemma 2.5 and
Lemma 2.4. On homotopy fixed sets it follows since the functor is equivariant, and unequiv-
ariantly it induces a weak homotopy equivalence by Lemma 2.5. The proof is now finished
by Theorem 2.11. 0

So far we have not used the assumption that X is contractible. That however is needed
to show that S™" — T is a weak homotopy equivalence. The proof of Theorem 2.1 will be
completed once we have

Theorem 2.13.
K™=(B(CX,CY UX,px; R))" — K~*(B(XX, %Y, px; R))"
1s a weak homotopy equivalence.

Proof. Consider the diagram

B(CX,CY UX;R) —2—~ B(XX,%Y;R)

| )

B(CX,CY UX, px; R) “— B(SX, XY, px; R)

we need to show that d induces a weak homotopy equivalence when applying K~*° and
taking homotopy fixed sets. Since d is equivariant it suffices to show that d induces a weak
homotopy equivalence unequivariantly, we show this by showing that a, b and ¢ induce weak
homotopy equivalences. We can conclude that a is a weak homotopy equivalence by the
following three reasons. First

K>(B(CX,CYUX;R)) - K>(B(CX,CY UX;R)")

is a Steenrod functor applied to collapsing the contractible space C'Y, see Remark 1.38 and
Theorem 1.25. Secondly, we have a weak homotopy equivalence

K~B(CX,CY UX,px;R) — K~°(B(CX,CY UX,px; R)”
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by Lemma 2.5. Thirdly, the categories
B(CX,CY UX;R)* and B(CX,CY UX,px; R)*

are equal by Lemma 2.4. Similarly ¢ induces a weak homotopy equivalence because K~*°
applied to B(XX,XY; R) is a deloop of K~>*°(B(X,Y; R)) by Theorem 1.23 and Theorem
1.36, but so is K~>°(B(XX, XY, px; R) by an application of Theorem 1.28. Finally b induces
a weak homotopy equivalence because it is a Steenrod functor applied to collapsing the
contractible subset X by Theorem 1.37. 0

This completes the proof of Theorem 2.1

3. IDENTIFYING THE ASSEMBLY MAP
In the previous section we have described a map
BT AN K™(R) — K~*°(RI[T']).

We called it the assembly map. In this section we justify this by proving the map is the same
as what is usually called the assembly map. This is based on results of Weiss Williams [27].
To describe the result we need to recall some definitions from [27]: Let F' be a homotopy
invariant functor from finite complexes to spectra, sending the empty set to a contractible
space. The functor F'is called excisive if it sends a homotopy pushout of spaces to a homotopy
pushout of spectra (i. e. if m,(F(B)) is a homology theory). Weiss-Williams prove

Theorem 3.1. Let G be a homotopy functor from finite CW complexes to spectra, such
that G(0) is contractible. Then there is an excisive functor G* and a natural transformation
G*(B) — G(B), which is the identity on a point. If F(B) — G(B) is a natural trans-
formation from an excisive functor F which is a homotopy equivalence on a point, then
F(B) ~ G*(B) by a homotopy equivalence making F(B) ~ G*(B) — G(B) the given
natural transformation. Furthermore F(B) ~ G*(B) ~ B, A F(x).

The natural transformation F(B) — G(B) is called an assembly map, and the theorem
thus says that a homotopy invariant functor has an essentially unique assembly map.
To apply this theorem, we need to describe two functors F' and G. Let

F(B) = QK >(B(B x (0,1], B; R)?)

Then F' on the category of finite complexes is an excisive homotopy invariant functor to
the category of spectra. We define GG as follows: Let B be a finite complex, F a universal
covering space for B, and T' the group of covering transformations (so I' is isomorphic to
the fundamental group of B. Give E a length metric induced from B and let ¢ be the
projection on the second factor E x (0,1] — (0,1]. Notice that if X is a compactification
of E satisfying conditions (i) and (iv) of Theorem 2.1, then (B(E x (0,1], E,q; R)®)l' and
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(B(CX,CY UY, px; R)P)L are the same subcategories of B(E x (0,1)). Hence we may try
to define G by

G(B) = QK™((B(E x (0,1], E,q; R)")")
The problem is that the assignment of F to B is not functorial without a basepoint. This
however is solved by the following lemma:

Lemma 3.2. Let p: E — B be a universal covering and g : £ — E a map so that pg = p.
Then the induced map on B(E x (0,1], E,q; R)F fives (B(E x (0,1], E, ¢; R)E)"

Proof. By covering space theory, ¢ is multiplication by some element . Hence ¢ is equivariant
with respect to the I'-action and the I'-action conjugated by ~, but the fixed category with
respect to the ['-action and the conjugated I'-action is the same. 0

We thus do have that G is a functor of B. Applying QK> to the equivalence
B(B x (0,1], B; R)" = (B(E x (0,1], E; R)")"
followed by the forget control map
(B(E x (0,1], B; R)*)" — (B(E x (0,1], B, q; R)")"

gives a natural transformation F(B) — G(B) which by the above mentioned results of
Weiss—Williams is the assembly map, since it is the identity on a point.

Remark 3.3. In the above discussion G(B) is homotopy equivalent to K~ *°(R[[']). This
identification is of course not independent of choice of basepoint.

Remark 3.4. The category B(E x (0,1], E, q; R) is easily seen to be flasque, whenever E is
noncompact, say F = ET with BT finite. It follows that B(E x (0,1], E, ¢; R)* has trivial K-
theory since B(E % (0, 1], E, q; R)y is also flasque. Hence we obtain, that whenever we can find
a T-equivariant subcategory U C B(E x (0,1], E, ¢; R)® containing (B(E x (0,1], E, q¢; R)®)"
such that B(E x (0,1],E; R)Y — B(E x (0,1], E,q; R)¥ factors through U by a functor
inducing isomorphism in K-theory, we get a splitting of the assembly map. In this paper
we choose U by continuous control in a compactification of ET". One may always try to
let U be the subcategory where morphisms also are required to be bounded. This remark
recovers a result from [5], saying that if bounded K-theory with labels in ET' is isomorphic
to hlS(ET; K~=(R)), we get a splitting of the assembly map.

4. L-THEORY OF ADDITIVE CATEGORIES
In this section we recall and expand various results due to Ranicki. Specifically we prove:

Theorem 4.1. Let U be an A-filtered additive category with involution preserving A, thus
inducing an involution on A. Let K be the inverse image of Ko(U) under Ko(A") — Ko(U").
Then up to homotopy there is a fibration of spectra

LM (AN — LMU) — LU/ A)
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Theorem 4.2. Let U be an A filtered additive category with involution preserving A. Then
up to homotopy there is a fibration of spectra

L-°(A) — L-°(U) — L-°(U/A)

To explain the terms in these theorems we recall Ranicki’s L-theory of additive categories
with involution: Let U be an additive category. We shall consider chain complexes U, in U.
If not otherwise stated, the chain complexes are always supposed to be finite i. e. U; = 0
except for finitely many 4, but we do not require U; = 0 in ¢ < 0.

An additive category with involution U, is an additive category together with a contravari-
ant functor x : Y — U, sending U to U*, and a natural equivalence #x = 1. We shall be
working with small categories, and in our applications *x will be equal to the identity.

Given a chain complex U,, the n-dual chain complex U™ * is defined by (U"™*), = U™ =
(Un—)*, and boundary (—1)" times % applied to the boundary map. If U, and V. are two
chain complexes, Hom(U,, V,) is the chain complex of abelian groups which in degree r is
@erq:r HOID(UI” Vq) :

Let U, be a chain complex, then Hom(U*, U,) has a Z, action given by T'(f) = (—1)P?f*,
f:UP — U, and T the nontrivial element in Z,. Notice an n-cycle in Hom(U*, U,) is a chain
map ¢ : U"* — U,.

Let W be the standard Z[Zs]-module resolution of Z

W ... = Z[Z) =5 7[Z,) 25 7)2,] =5 Z[Z)

define the Z|[Zs]-module chain complex
WoqU =W Xz[22) (HOHI(U*, U*),

An n-chain ¢ is a collection {¢s € Hom(U*, U,),,—s|s > 0}, so with an n-cycle ¢ comes a chain
map 1o : U"* — U,. Ranicki defines an n-dimensional quadratic complex in U, (U, %) to
consist of a chain complex U, in & and an n-cycle v € Wy U,. The quadratic complex is
called Poincaré if the chain map (1 + T)vo : U"* — U, is a chain homotopy equivalence.
Similarly Ranicki defines quadratic pairs, and quadratic Poincaré pairs, so that bordism
and gluing operations are defined as in a manifold category. The n-dimensional quadratic
Lh-group L!(U) is defined to be the cobordism group of -dimensional quadratic Poincaré
complexes. Notice that the (n + 4)-dual of the double suspension of a chain complex U,, is
the double suspension of the n-dual of U,, and this together with the 2-periodicity of W gives
a 1-1 correspondence between n-dimensional and n+4-dimensional Poincaré complexes. This
correspondence is called double skew suspension, and it works in all dimensions (including
n negative).

Important for our purposes is that to a quadratic n-dimensional complex, a pair is assigned
so that the pair is Poincaré specifically [24, Prop. 13.1]
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Proposition 4.3. There is a natural one-one correspondence between the homotopy equiva-
lence classes of n-dimensional Poincaré pairs in U and the homotopy equivalence classes of
-dimensional quadratic complexes in U.

This correspondence is given by sending the pair to the algebraic mapping cone. Roughly
speaking, the algebraic mapping cone of the duality map of an n-dimensional quadratic
complex is a null cobordant (n — 1)-dimensional Poincaré complex.

Ranicki relates this categorical approach to the usual approach in the following theorems:
Let R be a ring with involution

Theorem 4.4. If U is the category of f. g. free R-modules, and involution given by duality,
then L"(U) coincides with the usual L-groups L"(R).

Idempotent completion enters as related to LP-groups.

Theorem 4.5. Let U be as above, If K is an involution invariant subgroup of Ko(U"), then
LyU™) = Ly (R)

The L-groups being defined as bordism groups, Ranicki [23] defines a (Kan)-A-set L ()
where the n-simplexes are n-ads of n + i-dimensional Poincaré complexes. This A-set is
naturally based by the 0-chain complex. A /AA-set model for the circle has one 0-simplex, the
basepoint, and two 1-simplexes, the basepoint and one more simplex. The A-set model for
the loop space is determined by what that one-simplex is sent to, so

QL (U) = L, (U)
in the world of A-sets. Upon realization of the A-set there is a map
QLY )] — QLY ()|
which is a homotopy equivalence. The skew double suspension
Li(U) — L, (U)

which is the double suspension of the chain complex, and the identity on the quadratic struc-
ture gives an isomorphism of A-sets. In Ranicki’s original treatment of algebraic Poincaré
complexes an n-dimensional Poincaré complex was assumed to be concentrated between di-
mensions 0 and n. By giving that up, and only assuming chain complexes to be finite [23]
the 4-periodicity becomes exact, and negative dimensional Poincaré complexes make per-
fectly good sense. Realization of the A-sets IL”(U/) now gives a four periodic spectrum. We
denote this spectrum, with homotopy groups, the L-groups of U functorially assigned to U
by L"(U). We wish to establish the analogue of Theorem 1.28 for this spectrum.

Definition 4.6. Let A be a full subcategory of . A chain complex U, is A-dominated if
there is a chain complex C, in A and chain maps r : C, — U, and i : U, — C, such that ri
is chain homotopic to the identity.
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Recall the idempotent completion U” of an additive category U has objects (U,p), p :
U — U,p* = p and Hom((U,p), (V,q)) C Hom(U,V), the subset for which qg¢p = ¢. If
K C Ko(U") is a subgroup, we denote the full subcategory of U with objects (A, p) so that
the stable isomorphism class of (A, p) lies in K by U"E.

We have an inclusion of ¢/ in U”" as a full subcategory sending A to (A, 14). Clearly this
inclusion factors through (o),

Proposition 4.7. Let U be an A-filtered category. A chain complex U, inU is A-dominated
if and only if the induced U | A-chain complex is contractible.

Proof. Assume U, is A-dominated by C,. The induced U /A-complex of C, is isomorphic
to the O-chain complex, hence U, is U/ A- homotopy equivalent to the 0- chain complex,
so contractible. If U, is A/U-contractible, we have maps T,:U — Uis1 in U/ A so that
dis1 L +T_1d; = 1in U/ A. Choose representatives I'; in U for ;. Assume U; = 0 for i > n.
The map 1-T",_1d,, : U,, — U, factors through A, hence (since U is A-filtered) we may choose
U,=A,®V, sothat 1-T',_1d, factors through A,. Next decompose U,,_1 = A,,_1BV,,_1 so
that d,|A, factors through A,_; and 1 —d,I",_1 — ', _od,—1 : Up_1 — U,_1 factors through
A,—1. Continuing this process we get a chain complex A, in A which we claim dominates
U,. We define r : A, — U, to be the inclusion and i : U, — A, to be 1 —I'd — dI'. It is easy
to see that ¢ is a chain map and i = 1 — I'd — dI" so I is a chain homotopy from 77 to the
identity. ([l

This is an algebraic analogue of the connection established in [25] between a proper ho-
motopy equivalence and a finitely dominated space.
We need the following lemma from [22]

Lemma 4.8. Let A be a full subcategory of U, U, an A-dominated chain complex in U. Let
K be the inverse image of Ko(U) under the induced map Ko(A") — Ko(U"), and let UM
be the full subcategory of U™ with objects (A,p) ® U, [(A,p)] € K. Then the induced chain
complex in UMY, under the inclusion U — UNS is chain homotopy equivalent to a chain
complex in ANK,

Proof. The explicit formulas in [22] show that U, is homotopy equivalent to an infinite chain
complex of the form

AL AT AL AT A A,
But in A" this is homotopy equivalent to
0—(A,p) — (A4p1,1) — ... —
and [(A4,p)] € Ko(A") must map to an element of Ky(U). O

We may now prove the main theorem of this section. Special cases of this theorem have
been proved by Ranicki.
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Proof of theorem 4.1. Let U"E be the full subcategory of U” with objects (A, p) ® U, where
(A, p) is an object of AMK. Clearly UK is A filtered, and UMK | AN is equivalent to U/ A.
By the bordism approach to L-theory we get a fibration

Lh(AAK) N ]Lh(u/\K) N ]Lh(A/\K _ u/\K)

We have L*(U) — L"(U"E) is a weak homotopy equivalence since any chain complex in UK
is homotopy equivalent to a chain complex in #. Given a Poincaré pair ((As, ¥a) — (U, Yy))
with A, in AN and U, in UMK, the quadratic chain complex (U,,vy) in UM/ AN s
Poincaré, since chain complexes in A™X are equivalent to the O-chain complex in YK / ANE.
Applying this to n-ads of Poincaré pairs induces a map L(AM — UM) — L(U/A). Given
a chain complex U, in U/ A. We want to find a chain complex U, in U such that the
induced chain complex in U /A is isomorphic to U,. Choose representatives d; U, = U,
in U for the boundary morphisms. This may not be a chain complex because d;_1d; is
not necessarily 0. It factors through A however, so we define U, inductively by Uy = U,
U1 = Ul and d1 = 31. Write UQ = A2 D U2 so that agdl factors U2 D AQ — A2 i Uo,
and let dy be Uy — Uy @ Ay &, U,. Then dyd; = 0 and renaming ds to be the composite
Us — Uy — Us, we may decompose Us similarly, and by a finite induction we get the chain
complex U,. Noting that the projection maps U; — U; induce isomorphisms in U/ A it is
clear that the induced chain complex in U/ A is isomorphic to U,. Similarly a quadratic
Poincaré structure ¢ on U, lifts to a quadratic structure on U, by choosing representatives,
but not necessarily to a quadratic Poincaré structure. Since quadratic complexes are in one
to one correspondence with Poincare pairs (The correspondence being the algebraic mapping
cone) there is a Poincaré pair (A, — V) such that the algebraic mapping cone is homotopy
equivalent to U, . In U/ A, U, is Poincaré which is the same as saying that A, is contractible
by Proposition 4.7. That in turn by Lemma 4.8 means that A, is homotopy equivalent to
a chain complex in A"K so we have found a Poincaré pair in AN — YE mapping to U,,
hence

L(AM — Uy - LU/ A)

is an epimorphism on homotopy groups. A relative version of this argument shows it is a
monomorphism. |

So far we have not discussed torsion. Following Ranicki, given an additive category U with
involution, and a system of stable isomorphisms ¢xy : X — Y so that any composite which
happens to be an automorphism represents 0 € K;(U), and given a *-invariant subgroup S
of K;(U), one may define the groups L5 (A) and the simple L-spectra L (A). Slightly more
general, if we only require that any composite which happens to be an automorphism lies
in a *invariant subgroup H of K;(A), LY(A) may be defined for any *-invariant subgroup
such that H C S. By methods entirely analogous to the above one obtains
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Theorem 4.9. Let U be an A-filtered additive category with involution. Assume A and U
have compatible systems of stable isomorphisms. Then we have a quasifibration

L*(A) — L*U) — LU/ A)
where K = Im(K,1(U) — K1(U/A)), and s refers to the trivial subgroup.

Remark 4.10. If F is non-compact, it is usually quite easy to find a system of stable
isomorphisms for the various subcategories of B(F; R), by Eilenberg swindle on the objects.

In the above remark it is important to note that we only have Eilenberg swindle on the
objects, not a functorial Eilenberg swindle, since this would imply that the L-theory of the
category vanishes as seen in the next Lemma.

Definition 4.11. An additive category A with involution is flasque if there is a functor
¥ : A — A and natural equivalences X°x & %3 and 1 ¢ X = ¥,

Lemma 4.12. If A is flasque then L;(A) = 0.
Proof. Let (A,,v) be an element of L;(A). Then

(NFA,, X)) 2 (A, & A, XCv D)
hence (A, v) = 0. O

A
A

Let Ci(f) be the functor from small additive categories to itself with objects parameterized
by the R*, and bounded morphisms.We recover a theorem due to Ranicki.

Theorem 4.13.
Ly (Con(U)) = Ly (C(U))
and
Ly (Cia(U) = Ly (C(U)").
In particular
Ly 1 (Ci(U)) = Ly(U)
and

Ly (Ci(U)) = LyU"™).

Proof. We prove the particular case, since the general case is entirely similar. Let A be the
full subcategory of C;(U) with objects A such that there is an n with A; = 0 for i > n
sufficiently large. Clearly A is flasque so
Im(Ky(U) — K1 (G U/ A)) = Ki(Ci(U/A))
and the quasifibration
L"(A) — L"Ci(U)) — L"(Ci(U/A))

shows that L'(Cy(U)) = L"(C,(U)/A). Let C(U) be the full subcategory of C;(U) with
objects A such that there is an n with A; = 0 for i < n. The category C, (U) is flasque, and
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C,(U) is B-filtered, where B is the full subcategory of C;(U) with objects that are 0 both at
large positive and negative values of the point in R. We thus get L"(B) = L*(C(U)/B) but
B is equivalent to U and C, (U)/B is equivalent to C;(U)/.A and we are done. O

Following Ranicki we may define
Definition 4.14. Let A be an additive category with involution
L, Z(A) = L2+i+2(ci+2(/4))
where we write s for —2 when —i = 2, h for —i when —¢ = 1, and p for —¢ when —¢ = 0.

The point of Ranicki’s definition is that he shows it agrees with the usual definitions in
case A is the category of finitely generated R-modules , R a ring with involution.

Lemma 4.15. If a functor f : A — B of additive categories with involution induces isomor-
phism on K-theory (when restricted to isomorphisms) and on L-theory with one decoration,
then it induces isomorphism on L-theory with any decoration.

Proof. This follows from Ranicki-Rothenberg exact sequences. U
Let A be an additive category and consider the inclusion
Ci(A) C Ciy1(A)
The map on /\-sets
L?(Cz’(A)) - L?(CiJrl(A))
is homotopic to the constant map in two ways: The cellular chain complex of ([0, 00),0)
obtained by subdividing at integral lattice points

]

defines an element in symmetric L-theory
LY(Co(Z) — Cio,00)(Z))
and pairing with this element gives a map
Lj(Ci(A)) — L1 (Cisa(A))

which is a A-set homotopy from the inclusion to the constant map. (The element in
LY(Co(Z) — Cpp,00)(Z)) is actually the generator under the isomorphism L' (Co(Z) — Cio,o0)(Z)) =
L%(Z) = 7). Similarly pairing with the chain complex of [0, —oo) gives a null homotopy, so
combined we get a map

SL(Ci(A)) — L"(Cit1(A))
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and hence
L"(Ci(A)) — QL*(Ci11(A))
and the composite

L"(Ci(A)) — QL (Ci11(A)) — QL"(Ciy1(A))

is a weak homotopy equivalence, since on homotopy groups this is exactly the map described
in Theorem 4.13.

Definition 4.16. The spectrum L~>°(.A) is defined to be the homotopy colimit of
L"(A) — QL*(C1(A)) — QPL"(C2(A)) —

It is clear that IL.™>° is a functor from the category of small additive categories and lax
involution preserving functors to the category of spectra.

Lemma 4.17. Let B be an additive category. If A is a full subcategory, inducing isomorphism
on Ky, then
L(A) — L(B)

is a weak homotopy equivalence (any decoration on the L-theory).

Proof. We need to show the map induces isomorphism on homotopy groups, but any chain
complex in B is homotopy equivalent to a chain complex in A, so from this it follows that
LM A) — L"(B) is an isomorphism, and since the inclusion induces isomorphism on K-theory
Lemma 4.15 finishes off the proof. O

Finally we are ready for

Proof of Theorem 4.2. We get this result using Theorem 4.1. For any additive category with
involution C we have L"(C) ~ IL"(C"°) by Lemma 4.17 above. Let

K; =ker(Ko(C;(U)) — Ko(Ci(U/A))).
Using Theorem 4.1, we then have fibrations
LM (Ci(A)M) — LMC(U)) — L*(CiU) /Ci(A))

Noting that C;(U/)/C;(A) is equivalent to C;(U/.A) by an equivalence which is the identity on
objects, the proof is completed by contemplating the diagram

Lh (A/\KO) QLI’L /\Kl QQLh /\K2
QLh (Cl (A) /\0) Q2Lh /\0 QS]Lh

which shows that taking homotopy colimit of the upper row is the same as taking homotopy
colimit of the lower row. O
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5. THE L-THEORY SPLITTING

In this section we apply the results of the last section to obtain a splitting of the L-theory
assembly map. Throughout this section R will be a ring with involution satisfying that
K_;(R) = 0 for sufficiently large i. The proofs are extremely similar to the K-theory proofs,
given the requisite techniques from the preceding section. First however we need to worry
about the involution. Given an object of one of the categories B(X; R),B(X,Y),..., we
denote the full subcategory with objects A such that A, has a basis of the form {(x,7)} by
By(X;R),By(X,Y;R),.... All the results of section 1 hold for these categories since they
are cofinal and have the same K.

If R is a ring with involution, we get an involution on B(X; R) as follows: On objects
is the identity. On a morphism ¢ : A — B, we define ¢* : B* — A* by (¢); : By — A is
the map B, — A, with matrix, the conjugate transpose of ¢¥ : A, — B,. Here elements of
the ring R are conjugated by the involution on the ring.

Remark 5.1. We are identifying A, with its dual via the basis, and dual basis, and use the
matrix description of the dual map.

We shall prove L-theory results similar to the K-theory results, replacing Theorem 1.28
by Theorem 4.1 and Theorem 4.2.

Notice equivalent additive categories (with equivalence preserving the involution) have the
same L-theory.

As in K-theory we get

Lemma 5.2. Let X be a compact metrizable space, Y a closed subspace, so that X —Y is
dense in X. Let C' be a closed subset of Y, W an open subset of Y with C" C W. We then
have fibrations up to homotopy

L~°(B(X,Y;R)c) — L °(B(X,Y;R)) — L™°(B(X,Y; R)" )

and

L~(B(X,Y;R){) - L =(B(X,Y;R)") — L™(B(X,Y; R)"~°)
Proof. Direct from Lemma 1.29 and Theorem 4.2. U

Lemma 5.3. Let X be a compact metrizable space, Y a closed subspace, so that X —Y is
dense in X. The natural map

By(X,Y;R) — By(X,Y; R)¥
induces an isomorphism in L-theory with any decoration.

Proof. The flasque structure on By(X,Y; R), preserves the involution, so this follows from
Lemma 4.12 and Lemma 5.2. 0

Theorem 5.4. Let X be a compact metrizable space, R a ring with involution. Then
L (By(CX, X; R)) is a Steenrod functor, associated to the 4-periodic I.~°°(R)-spectrum.
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Proof. We need to verify the conditions of Definition 1.34. In [1] it is proved that the K-theory
of B(CCX,CX;R) is 0 by showing one can write B(CCX,CX; R) as the union of flasque
categories. If (C,,v) represents an element in L (B,(CCX,CX; R)), the (C,,v) will have to
be in one of these flasque categories, hence it must represent zero, so L"(B,(CCX,CX; R)) =
0, and hence so is L=®°(B,(CCX,CX; R)) by Lemma 4.15. Assume A; are additive categories
with involution satisfying that there exists j independent of 4, so that K_;(.A;) = 0. It is
clear that L"(IT1A;) ~ IIL"(A;) as A-sets since a quadratic Poincaré complex in a product
category is just a product of quadratic Poincaré complexes and any quadratic Poincaré
complex is represented by a length one or 2 chain complex. Since these A-sets satisfy the
Kan condition, we get a weak homotopy equivalence of spectra L"(IL.4;) ~ IIL"(A;) upon
realization. Combining with the K-theory result and Rothenberg-Ranicki exact sequences
we get
L7(I1A;) ~ ITL™>°(A4;)
It thus follows that
L™(By(C(\/ Xa). \/ Xai R)) ~ IIL™(B,(C X4, Xo; R))

since the K-theory proof only involved flasque subcategories and equivalences of categories.
Finally using Theorem 4.2, we get a fibration

L™(B,(CX, X; R)4) — L™(By(CX, X; R)) — L™™(B,(CX, X; R)*~*))
but then the proof is finished as in Theorem 1.36, using Lemma 5.3. O

We can now formulate and prove a splitting theorem in L-theory.

Theorem 5.5. Let I' be a group satisfying the conditions in the introduction, and let R be
a ring with involution so that K_;(R) = 0 for sufficiently large i. Then BI'y AL=°(R) is a
split factor of L=>°(RI).
Proof. Having provided the requisite technical tools in Theorem 4.2, and Theorem 5.4, the
proof proceeds formally as in the K-theory case: Apply QL™ to

B(CX,CY UX px;R) — B(XX,XY,px; R)
and call the resulting spectra S and T'. We now study the diagram

SF HTF

L

ShF I ThF

and prove the statements
(i) ST ~ (E/T)y AL™(R).
(i) TV ~ L=>°(RI).
(iii) ST ~ ST
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(iv) SM" ~ Tt

(i) and (ii) follow from Theorem 4.2, (iii) is an inductive argument over the cells as in the
K-theory case using Theorem 4.2, and the above mentioned fact that L-theory commutes
with products. Finally (iv) follows because L™ is a Steenrod functor, and we are collapsing
a contractible subspace. 0]

Finally we need to identify the splitting map with the usual assembly map.
Theorem 5.6. The map of spectra BT, AL™°(R) — L™>°(RI[T']) is the usual assembly map.
Proof. This follows formally arguing as in Section 3 O

This is needed to see that our results imply the Novikov conjecture for the class of groups
considered, see [23, Prop. 24.5]. It also has the useful consequence that a diagram of assembly
maps

B, ALY(R) LY(R[T))

i |

BT, AL™®(R) —= L~=(R[T))

will be commutative. Here ¢ denotes any decoration. In particular if the decoration is chosen
so that LI(R) = L=°°(R) we obtain the splitting with other decorations than —oco. This can
also be proved more directly using Theorem 4.1.

Remark 5.7. The analogue of Remark 3.4 holds in L-theory as well.
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