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THE S'-TRANSFER IN SURGERY THEORY
BY
H. J. MUNKHOLM AND E. K. PEDERSEN

ABSTRACT. Let S' = X — Y be an S'-bundle of Poincaré spaces. If f: N > Y is a
surgery problem then so is the pullback f: M - X. We define algebraically a
homomorphism ¢': L,(Zm(Y)) - L, (Zm( X)) and prove that it maps the surgery
obstruction for f to the one for f.

1. Introduction, statement of results. The purpose of this paper is to describe
algebraically the homomorphism of Wall groups induced by pullback to the total
space of an S'-bundle.

Specifically, let X . ¥ be an S'-bundle of Poincaré spaces, dimY =/, and let

N — Y, v, — £ be a surgery problem with Y as target. Pullback defines an S'-bundle
M — N and we also get a surgery problem M — X (the bundle map also given by
pullback).

It is well known, and follows easily from Wall [5, Chapter 9], that this construction
defines a homomorphism

p*: Li(Zp,wy) = Li(Zm, wy), p=mY¥,m=mX,

e =ys or h, which we proceed to describe. To do this we need the following
construction: Denote the element of 7,( X) defined by S' C X by ¢ and the bundle
orientation map p — Z/2Z by w. In Z# we introduce the following operation:

o= {g, o(e(g) =1,
g™, w(e(g))=-1.
This operation extends linearly to an automorphism of Z# which in turn induces an
automorphism x — x‘ of the ring M(Z7) of r X r matrices.
Also let x —» x* denote the standard anti-involution on M/(Zx); thus, g* =

wy(g)g ™" for g € m. We denote the induced map Z7 — Zp by ¢.
We may now state our

MAIN THEOREM. The homomorphism
p*: Li(Zp; wy) > Li, (Z7; wy)
is given as follows:

Let | = 2k be even and a € M (Zp) represent an element (the self-intersection form)
[a] € L5 (Zp, wy). Also choose an arbitrary & € M(Z7) with ¢(&) = «. Then there
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278 H.J. MUNKHOLM AND E. K. PEDERSEN

is a unitary (special unitary if € = s) matrix A€ M, (Z7) of the form
7 (=D (' = 1)1
? @+ (=) !
giving a well-defined element [A] of L, (Z7,wy) and p*([a]) = [A]. Here 1, is the
r X r identity matrix. The exact form of the r X r matrices indicated by ? is immaterial
(see [S, Chapter 6]).

Let | =2k + 1 and let A € M(Zp) be a unitary matrix representing an element of

L5, (Zp,wy). Choose A€ M, (Zw) with @(A) = A and write J for the 2r X 2r
matrix (33). Then there exist 2r X 2r matrices 6 and X over Zw so that

A*JA = 70" — (1) g + X0 — ") + .
For any such choice, the matrix

s 7 . 0 I
WZ(K /{) whereK:( )
X

A=

0 -k, 0

represents a well-defined element of L5, ,(Zm, wy) (as self-intersection form) and
p([A) =Wl

REMARKS ON DIMENSIONS. There are no dimensional restrictions in the theorem.
In low dimensions one defines the surgery obstruction by crossing the surgery
problem with CP2 Since the geometrically defined transfer is easily seen to
commute with crossproduct with CP?, we get that the surgery obstructions are
always related as stated in the theorem.

The reader may consult §2 for matrix representations of Wall group elements.

The results were announced in the Amer. Math. Soc. Abstracts, February 1981.
They were previously known for product bundles [4], and, more generally, for
orientable S'-bundles where the surjection of fundamental groups is split, [2]. In [3]
A. A. Ranicki outlines a program leading to similar results.

2. The algebraic S'-transfer map. Let ¢: 7 — p be a surjective group homomor-
phism with cyclic kernel generated by ¢ € 7. Also let wp: p = {1}, wgt m - {*1}
and w: p - {=1} be group homomorphisms related by the identity wg(g) =
w(P(g))wy(g), g € m. It is the goal of this section to define a homomorphism of
Wall groups

@' Li(p; wg) = Liy (73 wg)
called the algebraic S'-transfer map (¢ = s or k).

We describe the Wall groups in terms of matrices. This is done briefly in §2A. In
§2B we set up the algebraic situation in which the algebraic S!-transfer is naturally
defined. Finally in §§2C, D we give the definition of ¢' for / even and / odd,
respectively.

2A. Wall groups in terms of matrices. Let R be a ring with unit and with a given
anti-involution  — r*. We extend the anti-involution over the ring M, (R) of m X m
matrices over R by putting (a;;)* = (a};). We shall translate Wall’s definition (see
[5]) of the groups Li(R) into matrix terms (using also ideas of Ranicki along the
way).
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Each element of L5,(R) is represented by some a € M,(R) (some r = 1) for
which

(2A.1) a+ (-1)“a* € GI(r, R) (andis simple, if e = s).
The sum is defined by

(2A2) [a] +[B]=[a®B]

where, as usual, a ® 8 = (§ g). The equivalence relation is generated by
(2A.3) [(g (‘))] — 0,

(2A.4) [« +v = (-1)s*] = [a] forany» € M/(R),
(2A.5) [6*ac] = [a] for any ¢ € M,(R) which is invertible

(and simple if ¢ = s).

Elements of L5, . (R) are represented by 2r X 2r matrices 4 = (¢2) € U(R)
where U* = SU, if e = 5, Uf = U, if ¢ = h. This means that

(2A.6) A*JA =T + 60— (-1)"6*

for some 6 € M, (R). Here J = ({}) and if € = s it is also required that 4 be simple.
Note that K =J + (-1)"J* is invertible and A*K4 = K so A is invertible with
A" = K~'4*K.

However, from Wall’s description of L5, , ,(R) we know that the equivalence class
of A depends only on (}). Thus we shall describe elements of L, (R) as
equivalence classes [}] of such 2r X r matrices (3)- The representatives must satisfy

(2A.7) 7*B=»— (-1)"»* for somer € M,(R),
(2A.8) ( 73) : R > R*" is a split injection.
The sum is given by
m]  [m] _[m®n

+ = )
(249) HEX [B.eﬁz]
Finally, the equivalence relation is generated by

1| _

(2A.10) [0] =0,

" B

2A.11 [ ] = ,

(2A.12) [B] [(0*) n. Z‘;]

for any o6 € M,(R) which is invertible (and simple if ¢ = s),

(2A.13) B]

1)v)n+/3
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To see that, indeed, these relations do hold, note that in terms of the full unitary
matrix A = (g 4) they come from left (or right in case of the second part of (2A.12))
multiplication by

[ o) (0] e (L il

respectively. To see that the relations suffice to describe L5, , (R), note that they
include left multiplication by a full set of generators of TU*(R) (compare §6 of Wall
(SD.

2B. The algebraic set up for ¢'. Let R be a ring with unit. Suppose given

an anti-involution r — r* of R,

an automorphism r — r‘ of R, and

aunitz € R
such that the following identities hold:
(2B.1) r¥ = rt*,
(2B.2) (t—=VDr=r'(t—1),
(2B.3) m=r" (= (r)'),
(2B.4) =1,
(2B.5) t'=1.

Then the ideal (¢ — 1)R is 2-sided so we have the projectionp: R — R = R /(t = DR.
By (2B.4-5), R inherits an anti-involution * and an automorphism 7 (7 — 7' = ¢(r’),
if 7 = @(r)). By (2B.3), { is an involution. To make notation fit with the standard
one in the prime example (see (2B.16)) we shall write » for the composite anti-involu-
tion ¥/ = 7% on R. Thus we have anti-involutions in R and R which are both called .
But they do not correspond under ¢. Instead, one has

(2B.6) o(r)* =o(r™).
We shall have occasion to also use ¢! € R and the inverse automorphism r — r
To shorten notation let us write s for ™' in both instances. Note that we then have

(2B.7) res =¥,

(2B.3) (s=Dr=r(s—1),
(2B.9) srt=r%,

(2B.10) s* =1,

(2B.11) sS =z,

(2B.12) o(r)* = o(r*),
(2B.13) s'=s, =1,
(2B.14) st =1ts=1 (intwo senses).

We extend the anti-involutions to the matrix rings M,(R) and M( R ) by using them
on each entry and transposing. And we extend the automorphisms s, ¢ to M,(R) by
using them on each entry. We can identify M (R)/(t — 1)M(R) with M(R) in the
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obvious way. The projection M(R) — M/(R) then is the map of matrix rings
induced by ¢. We continue to call it ¢. All the above identities then make sense, and
are true, when we let r € M, (R).

(2B.15) EXAMPLE. By a set of fundamental groups and orientation data we shall
understand an exact sequence of groups

Z57 50 - (1)

with a compatible action w: p = {=1} (i.e. i(w(p(g))(n)) = gi(n)g",n EZ,g E 7)
and with orientation homomorphisms wg: p — {1}, wg: 7 - { =1}, satisfying

(2B.16) we(8) = wa(o(g))w(e(g)), g€

Let there be given such a set and a commutative ring A with unit. We take R = A,
the group ring. We let ¢ = i(1) and we define * and ¢ on a group element g € 7 by

g =wg(g)g™!, g' =g ifw(e(g) =1,
= -gs ifw(e(g)) =-1.
The conditions (2B.1-5) are easily verified. Also, one can identify the projection

R — R with ¢: A7 — Ap (induced by @: 7 - p). Then the induced anti-involution on
Ap becomes the standard one, i.e.

g*=wy(8)g"', g'=w(2)g Z€op.

(2B.17) ExaMPLE. The above algebraic example comes from geometry. In fact, if f:
E — Bis a locally trivial manifold bundle with fibre S' then the homotopy sequence
7(S") - m(E) - m(B) - 1, together with the orientation maps wp, wy and the
action of 7,( B) on 7,(S"), fits into the scheme.

2C. Definition of ¢': L5, (R) - L5, (R). Let 9: R - R be as in §2B.

Abuse of language. In defining Lj(ﬁ ) we allow torsion in {+1} C K l(ﬁ ), but in
L(R) we allow torsion in {=¢'| i € Z} C K |(R).

Of course, if R = Zm, R = Zp as in Example 2B.15, we may allow torsion in
(=), respectively {+p}, when we define Lj, to give the usual definition of

J(group ring). With both interpretations we have

(2C.1) THEOREM. If a € M ( R) represents an element [a] € L} «( R)anda € M/(R)
has (&) = a, then
(5] =
B

represents an element of L5, (R) and

#((a) = 3]

defines a homomorphism ¢': L5, (R) > L5, (R).

D (s —1) )

&+ (1) a*s

PrOOF. We first verify (2A.7-8). Since ¢(B) = (a + (-1)* a*)f is known to be
an isomorphism, there must exist y,8 € M(R) with yB+8(s—1)=1, ie.
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((-1)*8, v)(3) = 1. Also,
8 =v— (-1)"»* wherer = (-1)*(¢ — 1)a".

Finally, if ¢ = s, we must show that the “completion” (;3) of (}) to an element of
U’(R) (see (2A.6)) actually is simple. From the definition of U”(R) we know that
o*B + (-1)*o*n = 1. Now, apply (-)** and note that 8°* = (-1)*B¢. You then get

B(-1)t0* =1—p(z —1).
Since B lifts the simple matrix a + (—1)*a*, it follows from Theorem 1.1 of
Munkholm and Pedersen [1] that the matrix

L2 el
t—1 (-1t

is simple. Hence, so is (j }), which equals

_ k+|s B —
((1) (1)0 )(t—l (—l)pkto)(—ol (1))

We go on to show that [}] depends at most on « (i.e. not on the lifting &). In fact,
any other lifting has the form & = & + (s — 1)# and this makes

B =B+ (7= (-1)*)(s— 1),

so a reference to (2A.13) settles the matter.
We next note that ¢'(a, ® a,) = ¢'(a;) + ¢'(a,). Thus, we just have to show that
the relations (2A.3-5) are respected. If a = ({ ) then [}] becomes

(_l)k(s_l) 0 0 1 1 0
0 D=1 | =| D's 0| |0 1l _g40=0

0 1 0 0 0 0

(_l)ks 0 0 0 0 0

Here, for the first equality we have used (2A.11) followed by (2A.13) with» = (?__9).
Next (2A.12) with the obvious ¢ and finally (2A.9-10).

If we replace a by a + » — (~1)*»* then we may keep B unchanged by replacing &
by & + # — (-1)%(#t)**. Thus (2A.4) is respected.

Finally we consider (2A.5). If we replace a by 6*ao where o is simple, then we can
lift o to a simple isomorphism 6. We can replace & by 6°*@6. Then B is replaced by
6*B6". Since 6 'né' = n we see from (2A.12) that [}] is unaffected. When o is not
simple we first stabilize, i.e. replace a by a + J (recall J = (J)). Since 6 ® 7 ® 1
(where 7 = 07!) is simple we already know that a and the matrix

(oEB'r@l)*(a@J)(o+'r€9l)=o*ao€9(g To*)
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give rise to the same element of L3, ,(R). Thus, it suffices to show that (3 §) gives
rise to the trivial element. Write 7 for some matrix with ¢(7) = 7’. We have to show
that

-D*(s—1) 0
0 D (s—1)

0 *

(-1)*#s 0

represents 0. We add some copies of (§) and use (2A.12) to permute columns and
rows until we get to

(CD)*Gs—1) o 0 0]
0 1 0 0

0 0 (-D*s—-1) o

0 0 0 1

0 0 #* 0

0 0 0 0
(-D#s 0 0 0

0 0 0 0

From Theorem 1.1 of [1] we know that there exists an invertible matrix of the form

e -
a=1" Y
t—1 p

(it suffices to choose ¥ and p so that #°*p = 1 — ¥(¢ — 1)). Now apply (2A.13) with

0 0 0 -¥*
y=10 0 (D"t 1ps
0 0 0 0
0 0 0 0
This brings you to the matrix
X 0 .
k _ =S

0 X1 gherex= (D= 1) o),B: O s
g /(1) 0 1 F*(s—1) (-1 tp*s

and A is as above. Now B is easily seen to be invertible. Thus the matrix we arrived
at is equivalent to (use (2A.12))

0 XB-!
x4yt o

1 0

0 1

which represents zero provided XB™' = (-1)**!( X(4*)™")* (use (2A.11) and (2A.13)).
And the latter identity is easily checked.
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2D. Definition of @': L, (R) = L5, (R).
Abuse of language (as in §2C). Recall that J = (§3) € M, (R), K =J + (-1)4/*.
LetJ = (39) € M(R),
.. " 0 1
R=J+ (-1) s =
s ((—l)ks 0)
and note that K* = K.

If [4] € L} k+,(R) and if 4 € M;,_,(R) has @(A) = 4, then we see from (2A.6)
that there exist 2r X 2r matrices § and X over R so that

(2D.1) A*JA =56 — (-1) 6* + 1 — )X + J.
Since s = ¢! this is the relation mentioned in the Main Theorem of the introduction.

(2D.2) THEOREM. For any choice of A, § and X as in (2D.1), the matrix

(5 4
0 X
represents an element of L5, .,(R), and ¢'((A]) = [W] defines a homomorphism ¢':
L5 o(R) = Lo R).
ProOF. We first show that W really represents an element of L5, . ,(R), i.e. that
A=W+ (-DFT'W* is a (simple if ¢ = s) isomorphism. Applying (-1)*(-)"*s to
(2D.1), and adding the results to (2D.1) one gets

(2D.3) ' A*RA=R+ (1 —s)( X+ (-1)""' %)
from which
(2D .4) A*RAR* =1+ (1 — 1)s(X + (-1)"" ) K>,

From Theorem 1.1 of Munkholm and Pedersen [1] it then follows that

AR s(X+ (<)< R0 R
t—1 AK*

is a (simple, if e = s) isomorphism. Now apply ¢, multiply on the right by

( (_ 1 )k+ 1 Ie* 0 )
0 Kt
and on the left by (9). The result is a (simple, if ¢ = s) isomorphism which happens
to be A.
We proceed to show that, for a fixed 4, [W] is independent of the choice of A, 6
and X. First note that the kernel of ¢: M, (R) — M, ,(R) is generated by

. ~ 0 1 —¢
=K+ (-1)"'K* = :
L=Krn D=1 0
Thus any new choice of A must have the form 4, = 4 + LB for some B € M, (R).
In (2A.6) one may compensate by taking 6, = 6 and
_ X4 B TA — (<1)CArTB + (-1)

k-+1

B*(1 —s5)J*B
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(for this computation use JL = (=D (s — 1)JJ*, [**J = (1 — 5)J*J and J*JJ* =
J*). A simple computation then shows that

PRIRUREEE
B 1/\lo XxJ\o 1 0 X
has the form » — (- 1)¥* '»* with

0 0
T (BK B*JE + é*if*,i)
(note that JJ* + J*J = 1).

This shows that any change in the lifting 4 can be followed by a change in X so
that [W] is unaltered. Thus, we have to show that, for some choice of A4, [W] is
independent of the choice of § and X. We first need the following: If you stabilize 4
then you may stabilize 4, § and X in such a manner that [W ] is unchanged. We leave
the straightforward proof to the reader after remarking that when we write the
matrices in question out as 2 X 2 matrices consisting of r X r matrices then the
stabilizations take the form

. @ 1 adl1 7§00
V& B o0 go1)
(2D.5) §= (én 0~|2) . 0~|1®0 6712690
. 21 22 021 90 022@0
¥ = X X . 90 x,90
X Xp X, 90 %,®0)°

(2D.6) LEMMA. After a possible stabilization of A, one can choose a lifting A for
which there exist matrices d, z, y, b € M, (R) such that

[ 5) e [ 3l

are simple isomorphisms. For any such choice the quadratic form W of Theorem 2D.2 is
equivalent to
W = (-2 (s — 1)@ 2*sij + (=1)*a"*8
: 0 %

and to

wr = | DB = D5 (<) B sa +
g 0 i)

COROLLARY. [W] is independent of the choice of §, X.

PrROOF OF COROLLARY. The equation (2D.1) is equivalent to the following four
identities:

(2D.7) &*t=s0, — (‘l)kéls? +(1—5)x,,
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(2D.8) a*f=s0,— (-1)Gr+0—s)F,+1,
(2D.9) i*E =56, — (-1)“3 + (1 — $)%y),
(2D.10) %8 = 56y, — (-1) 85 + (1 — 5)%y,.

Here 6,,, %,, enters only in (2D.10) and 6, X only in (2D.7). Therefore, one can
obtain any variation in 4, X by first varying 6,,0,,,0,, %\, %,,, X,, while keeping
6,,, %,, fixed and next 1nterchang1ng the roles of the indices 1 and 2. The fact that
W, depends only on 4, Z, 1, B and %, shows that the first variation leaves [W] fixed.
Similarly, one uses Wj to handle the second variation.

PROOF OF LEMMA 2D.6. After stabilization we can assume that the Whitehead
torsion of A is represented by an r X r matrix, say b~'. Then A(b @ 1) and A(1 ® b)
are simple so they can be lifted to simple matrices over R, at least after stabilization.

We can now take
a 1 a y
N d . .
(f B) " (z b)

to be liftings of A(b ® 1) and A(1 @ b), respectively. Let

15 00 1B°
o= | (D@ 0 0 (D'
0 0 1 0
0 1 0 (-D*—1)]
and
(D)z*as 0 0 @™+ (1) i
. 0 0 0 (-1)*%,,(t — 1)
X, 0 (—l)kflz(’ - 1)
0 0 0 (1—s)f5+(-1)B™7

Then @ is a simple isomorphism and the identities (2D.7-10), together with those
derived from them by applying the operation (-)°*s, suffice to show that

a 0
(%) k+1
WP = 6 0 +tr—(-1)" ¥
0 0 %, O
0 0 s O
where @ = 7**sd + (-1)ka**%, 6 = %,; — (-1)¥x},. Finally, conjugation by

1 0 0 0

0 1 0 0

0 0 1 0

—su*  —s0*  —sX); ¢

takes the right-hand matrix into a stabilization of W,.
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The proof that W is equivalent to W is similar. It uses

(-1) 6 0 0 &
o — 7 0 0 (- &
0 1 0  (-De-1)
0 0 (-1)* 0
P00 (<) prE 4+ bra
’— 0 0 x3 (—l)ki”(t - 1)
0 0 O (1 —1)
0 0 0 (1—s)6; +a*¢

and otherwise proceeds as above.

The following description of [W] as a cokernel is inspired by A. A. Ranicki [3].
We do not use it anywhere in the following, but it does fit nicely with the geometric
considerations in §4F.

(2D.11) PROPOSITION. Let 4, Z, ij, B, by,, %, be as above. Let

The radical of the quadratic form (R*", W,) is the image of
B°
(-1 |: R >R,
D=1
and the cokernel of this map, with its induced quadratic form, represents [W'].

ProOF. Direct computations show that

B 0
(w+ (0'wz)| D' :(0)
D (1)
and
B*
(Bo*s, (-1, (D (s — D)W | (D 5 | =v— (D"
D' -1
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where » = (1 — 5)63,. (These computations really form a subset of those in the proof
of Lemma 2D.6). Hence the radical contains the image claimed. Since

17 0 1B°
(-D'a 0 (D'
0 1 (=D -1)

is invertible (and simple if ¢ = s),

17 0
(-D*a 0
0 1
splits the cokernel involved. Since
o\ 0
(-D*a o] W (-1 a° o] =W,
0 1 0 1

the proof is complete. S
We now know that [W] depends only on A. We must check that it depends only '
on [A4] € L5, (R). Stabilization has already been taken care of and obviously
¢'(1) = 0, so it suffices to check that 4 and AZ give rise to the same element [W] for
every = in a set of generators of the group TU ¢(R). If = lifts to £, then from (2D, l)
we have

(ASY*JAS = 56, — (-1)“G* + (1 — 5)S*XE + E*J2
where §, = £*§3. Thus, if

(2D.12) SHJS = J + 58, —(-1)"d3*
for a suitable 6, it follows that
gy | K A2
AZ) = S
R e
Since

v Mr

M
S —————
.

(1 0 )(K A)(l 0) _ (K A
o 3*/lo x/lo 2 0 3x
this finishes the proof, provided we can also obtain

(2D.13) £ is a (simple if ¢ = s) isomorphism.

We shall go on to check that (2D.12-13) can be guaranteed for all three kinds of
generators of TU “(R).

5= 0 1
RGN

Case 1.
s= % 1) anduake = " ©
T ks o) AR BTk o

M

Lift to
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Case 2.

z= (V—(—ll)kv* (1))

Take

[ e
~——

5= : Noa=(?
T\si— (D' 1) 2T \o
where 7 covers ».
Case 3.

(e

where o is a (simple if ¢ = §) isomorphism.
If o lifts to a (simple, if € = s) isomorphism G then one takes

(el el

If o does not lift to an isomorphism then (we have ¢ = 4 and) at least ¢ © o' does.
Since we already know that
P(4) =g (4®1) =¢'((4®1)(2D ")) = ¢'(4Z) + ¢'(27),

it suffices to show that ¢'(27') = 0.
If we lift 27" to (§” 9) where p covers 6" and 7 covers o, then we see that '(Z™")
is represented by

0 1 7 0 0 0 0 0
k - _ k _ ~
Ds 0 0 p| .4 |GV (ks+I ) 0 0 5
0 0 0 ¥ -D7F 0 0 7
0 0 0 0 0 0 0 0

where 7 = 1 + (1 — s)¥. From Theorem 1.1 of [1] we see that

7 ¥'s
A= Y
t—1 ¢
is invertible. Hence, so is

p= (0 3)a( 0" o) [0
1 0 0 t (_ 1)k+ lf' :
But by permuting the basis elements, the above representative for @'(Z7!) becomes
9 2) which represents 0 because

[ o) (5 )0 5)=(6 4)

2 o
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3. The main theorem for / = 2k. We consider an S'-bundle with group O(2), say
p: X - Y, of finite (and simple if ¢ = s) Poincaré complexes. There results a set of
fundamental groups and orientation data as in Example 2B.15. Hence, if the formal
dimension of Y is 2k we have the algebraic S'-transfer map @' L (Zp; wy) —
L5, (Z7; wy) as in Theorem 2C.1. We shall prove

MAIN THEOREM, ! EVEN. If ®: N2* > Y is a surgery problem with pullback ¥:
M — X, then the surgery obstruction o(¥) is given by the formula o(¥) = 'o(D).

PROOF. We can assume that @ is k-connected and that we have immersed spheres
with trivial normal bundles S¥ X D* (i = 1,2,...,r) such that the following hold:

(3.1) We have given liftings S* X D* in the universal covering of N, and the S
form a Zp-basis for K, (N).

(3.2) The spheres S X 0 are in general position.

Now a double point D on U, S¥ X 0 is, by definition, an unordered pair {P, Q}
with P € Sk, Q € S/k (and P # Q if i =) which coincide in N. To each double
point D, Wall (§5 of [5]) associates a matrix a;, € M,(Zp) which may be described
as follows: Order the double point, say with P before Q. Then a, = 0, except for the
(i, j) position where it is +g for some g € p. The group element is determined by
the fact that in the universal cover N, P € S¥ X 0 coincides with g0 € g(§k X 0).
Here group elements are identified with covering transformations as usual. The sign
is determined by the relation between the given orientation of N at P, and the
orientation at P coming from Sk X 0 and g(Sk X 0) (general position guarantees
that these two k-dimensional submanifolds “span” the whole N at P).

Now o(®) is represented by a = Za, where the sum extends over all double
points D. We shall see that each double point will give rise to two terms in o(¥). To
describe o(¥) we must first find disjoint framed embedded spheres generating
K, (M). The inverse image of the image of S* X D¥ in M is an immersed S X D*
X S'. We shall call it =¥ x D* X S'. If {P, Q} is a double point, as above, then
P X 0XS'"and Q X 0 X S' coincide in M. If we slide a neighborhood of P along
the S'-direction we can change the immersion so that:

(3.3) If {P, Q) is a double point for U, S¥ X 0 in N, then (P,0,0) € Sk X D* X
S'! coincides with (Q,0, ) € =¥ X D* X s! (we think of S' as R/Z).

Then for any small § we have disjointly embedded framed k-spheres =} X D* X
[-8, 8] (i = 1,2,...,r). An easy application of Gysin sequences reveals that

(3.4) K, (M) is generated by the spheres SkX0X0,i=12,...,r,over Zm.

Following §6 of Wall’s book [5], we let U= U, 2 X D* X [-§,8], My =M —
int(U), and 3U = U, Zf X o(D* X [-8, 8]). Then K, , (M,, dU) is a free Z7-mod-
ule of rank r (with a preferred basis if ¢ = 5). Also, K, (0U) is free with a basis
consisting of e, = 2K X 0X & (i=1,2,...,r) and f;=p, X d(D* X [-4,8]) (i =
1,2,...,r) where p; € = is arbitrary. And

(3.5) o(¥) is represented by the matrix (}) of 3: K, (M,, V) - K, (3U) (with
respect to the preferred basis if € = ).

In fact, Wall’s description is the following: Identify K, (0U) with a standard
kernel H, using the basis above. Identify K, (M,,0U) and K, (U,dU) with
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subkernels in H, using the boundary maps. Then o(¥) is represented by any unitary
matrix (}3) which maps K, ,,(U,dU) (simply) onto K,.,(M,, dU). Since
K, (U,0U) has basis f,....f,, this means that (}) becomes the matrix of 9:
K, . (M,,0U) - K, (3U) as claimed.

REMARK. Apparently Wall thinks of K, (U, dU) as having e,,...,e, as a basis.
Then he defines TU(R) to be those automorphisms which leave span{e,} invariant
(and induce a simple isomorphism on it if ¢ = 5), whereas we have required that
span{ f,} be fixed. Compare also his formula at the top of his p. 58 with our (2A.13).

In view of (3.5) we now go searching for a (preferred, if ¢ = s) basis for
K, . (M,, 9U) which is isomorphic to K, , (M, U) under excision. Since we have to
compute boundaries, we prefer to represent homology classes where they really exist,
i.e. in the universal covers. It is easily seen that we have a commutative diagram

st st o= ¢!
) ) !
M - M - M
l ! l
N = N - N

where M is the pullback of M over N, M is the universal covering and M — N is a
principal S'-bundle. Here §' = R if 7,(S') = 7,(M) is monic and S' = R/nZ if the
image of 7,(S"') has order n. The map S' — S' is the standard covering of degree
n< oo. .

We fix the generator for m(S') in the usual way. Then its image ¢ € m,( M),
viewed as a covering transformation, coincides with the action of 1 € S' in M. Also,
if § € # = m,(M) is any covering transformation and z € S', then

(3.6) 28(x) = g(w(p(8))z)(x).

The immersed $* X D* in N and =* X D¥ X S' in M are covered in M by an
immersed S¥ X D* X §' which we call £* X D* X S'. Since unit translations in the
S'-direction correspond to applications of t € =, we see that:

(3.7) If the (ordered) double point {P,Q} has P =gQ in N, then there is a
unique § € 7 which maps to g in p, and for which (P,0,0) € ¥ X D* X S! coin-
cides with 2(Q.0,3) € g(E* X D* X S"). Consequently, (P,0, z) coincides with
£(0.0,3 + w(g)2).

It is clear that the singular cylinders 2* X 0 X [8,1 — 8] represent elements in
K, (M, U). Since one also has geometric generators for K, , (M) (namely ¥ X 0
X S') and for K,(M) (namely * X 0 X 0) one can compare the exact sequence

0- Ky (M) = K (M,U) > K (U) > K (M) >0
to the direct sum of r copies of the algebraic exact sequence
T -l
0-Zp->Zr >Zm—>Zp—->0

(where T= 1+t + --- +¢"'). The five lemma then implies:
(3.8) The singular cylinders C = 2}‘ X 0X[6,1 —8] form a Z7 basis for
Ky (M,U).
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REMARKS. (1) If n = oo there are slight modifications: K, (M) =0 and ¢ — 1:
Z7 — Z7 is monic.

(2) If e = s we need to know that the above basis is a preferred one. This follows
easily from the explicit geometric nature of the basis.

Now C has two obvious boundary components, namely 2" X 0 X (1 — &) which
is homologous in QU to et = ((E5 X 0 X 8) = ¥ X 0 X (1 +8), and £ X 0 X
§ = e;. Hence, the component of 9C,, after the basis elements {e;},1se;(- l)k(t F—1.
If E™" K, (M,,0U) - Kk+,(M,U) is the excision isomorphism, then 3(EC)
contains the same term, but it also contains terms involving the f. In fact, the
excision creates a boundary component of type f whenever the cylinder 2" X 0 X
[8,1 — 8] is intersected by some component h(Z¥ X DX X [-8, 8]) of U Each
double point gives rise to two such intersections (with i and j interchanged in one of
them). Let the double point {P, Q} glve rise to a;, = e, (eg) when ordered with P
first (e = =1). By (3.7), (Q,0,3+ z) € £¥ X Dk X S' coincides with
27(P,0, w(g)z) € g7'(2k X D¥ X §! ) for a umque & above g. Consequently, C is
intersected by g~'(2% X D* X [-8, 8]) ing (P X D*) X [}~ 8,1+8]CcZkx 0 X
[8,1 — 8]. The orientation of [+ — 8, 3 + 8] is w(g) times that of [§,1 — 8], and the
orientation of §'(P X D*) viz-a-viz £¥ is the same as that of g™'(P X D*) viz-a-viz
Sk(in N).

Here we know that S$* and g k. together, give the e-orientation at P. Hence,

g7'(Sf) and S* give the ewB(g)-orlentation at Q. But also, g7'($,) and g~'(P X D¥)
give the wy(g)-orientation at Q. It follows that the orientation of g~'(P X D*) and
S at Q differ by & and we get:

(3.9) If the double point {P, Q}, with P put first, contributes e; (eg) to a then it
contributes e; (ew(g)g) to B.

Now consider {P, Q} with Q put first. Its contribution to a is well known to be

e, (e(=1) wy( g)g“) Hence, by (3.9) its contrlbutlon to B is of the form

(e( 1 wg( g)g ) where g~! is some lift of g~!. However, we still have to
determme the relationship between the lifts of g and g~!. In (3.9), § is determined by
(3.7), i.e. by the equation (P,0,0) = §(Q,0, 3). When we interchange P and Q and
remember (3.6), this becomes

()" (P,0,3), w(g)=+1,
g'(P.0,3),  w(g)=-1

(2,0,0) ={

This determines é‘:' as w(g)s(g")7!, and the contribution from D to 8 becomes

Bp = sw(g)(eij(g) + (‘l)keji(Sgt*))-

If we lift a =Z2pe;,(eg) to @ =2pe; (ew(g)g’), we get the desired formula,
B = & + (=Dka*s.

REMARK. In (3.3) one could slide the neighborhood of P some extra full turns
around in the S'-direction. This would replace § by gt’ for some i. In this way any
lifting & of a can be geometrically realized. Hence §3 actually constitutes a full proof
(without reference to §2) of the Main Theorem (for / = 2k).



THE S'-TRANSFER IN SURGERY THEORY 293

4. The main theorem for / = 2k + 1. The situation is exactly as in §3, i.e. we have
a pullback diagram

vM - X
! l
N - Y

of ‘-Bundles; N - Y, vy — § is a surgery problem of dimension 2k + 1, and we
have the algebraic S'-transfer ¢': L5, ((Zp; wy) = L5, o(Zm; wy) from Theorem
2D2.

. “MAIN THEOREM, / ODD. The surgery obstructions o(®) and o(¥) are related by the
’ formuls'o(¥) = ¢'(o(P)).

. By '§6 of [5] we have embedded, framed spheres S* X D¥*'in N (i = 1,2,...,r)
fsué}ﬁ that the spheres S* X 0 (with a chosen path to the basepoint of N) form a basis
" fot the Zp-module K,(N). Also letting U= U, S} X Df*!, Ny = N\int(U), and
U = U, Sk X SF, the surgery obstruction o(®) is represented by the matrix (}) of
3: K, (N, dU) - K, (3U) with respect to a (preferred if ¢=s) basis for
K, . (N,,0U) and the obvious basis for K,(0U ). The latter is geometrically repre-
sented by the spheres S¥ X p,, g, X S¥ along with paths o, from ¢, X p, to the
basepoint of N. (The orientation of S¥ X D¥*! is chosen to coincide with the
orientation of N at the basepoint when transported along o,.)
4A. Geometric generators for K, , (N,, dU). Let T¥*! be a “sphere with holes”, i.e.
a (k + 1)-dimensional sphere with a number of disjoint (k + 1)-disks removed.
Hence, 0T**' is a union of k-spheres, and if f: (I'**',0T) - (N,, dU) is any
continuous map while y is a path from f(I'**!") to the basepoint, then these data
specify a unique element of H,, ,(N,, U) (i.e. really of H,, ,(N,, U) where N, is the
restriction of the universal covering N to N,). It seems natural to consider the
following
CoNJECTURE. K, (N,,0U) has a (preferred, if ¢ = s) basis consisting of r
immersed “spheres with holes” I';, i = 1,2,...,r, in general position. The self-inter-
sections of UT; is a set of paths with endpoints on 9(U, I,), and each boundary
component of each T} is embedded as a S} X { pt} or as a { pt} X SF.
In this subsection we prove that it suffices to consider the case when the conjecture
holds.
In fact, by [2], the geometrically defined transfer homomorphism L%, , (Zp; wy)
- L5, ,(Zm; wy) depends only on the fundamental group and orientation data.
Thus, it suffices to prove the theorem for suitably chosen examples. We use Wall’s
realization theorem (Theorem 6.5 of [S]) to produce such examples. First of all, there
exist a manifold W of dimension 2k and a map W — Y which induces an isomor-
phism on 7, and an epimorphism on m,. We replace S' > X - Y by its pullback
over W X Ivia W X I - W — Y which does have the same fundamental group and
orientation data. To avoid excessive notation let us assume Y = W X I.
By the theorem of Wall quoted above any element [}] € L5, (p; wy) can be
obtained as the surgery obstruction of a map ®: N - Y. We proceed to recall how
®: N - Y is constructed.
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We perform surgery on 1,: W — W to kill r trivial (k — 1)-spheres, thereby
replacing W X I by its boundary connected sum with r copies of S X D**! and W
by its connected sum with r copies of S X S*,

(4A.1) The resulting kernel X, is the sum of r standard planes. After choice of a
path from each S* X S¥ to the basepoint a basis for K, is given as e, = S* X pr
(i=12,...,r),f=pt X Sk(i=1,2,...,r).

We think of the matrix (}) as the r elements

(4A.2) fj = Ee,"?,j + Eflﬁu

in the above kernel. For any g € p, e,g is represented by S X pt with its original
path to the basepoint followed by a loop representing g. Similarly, f,4 is represented
in terms of p¢ X S¥ and its path to the basepoint. Hence,

(4A.3) ¢, is represented by a disjoint collection of S* X pt and pt X SF, together
with paths to the basepoint. S} X pt (or pt X S¥) has the standard orientation if the
corresponding term e;g (or fh) appears with a + in (4A.2), otherwise it has the
opposite orientation.

We wish to represent each {, by one immersed sphere. This is obtained by the
addition described in §5 of [5], i.e.:

(4A.4) Tubing up the various spheres which appear in (4A.3), along disjoint tubes
homotopic to the path from one sphere to the basepoint followed by the path from
the basepoint to the other sphere and matching orientations, we get { , represented by
an immersed sphere Z; with a path to the basepoint.

As in [5] we see that surgery is possible on this collection of k-spheres, i.e. there is
a regular homotopy Z(¢), 0 <z <1, of the Z’s so that the Z,(1)’s are disjointly
embedded. When we perform the surgery, the result is mapped to W by a simple
homotopy equivalence, and the trace N of the surgery with its map ® to Y represents
(3}

zln this surgery problem, K, , (N, 9U) has a basis consisting of the cores of the

handles attached, i.e. consisting of embedded (k + 1)-disks with boundaries Z(1).
We now extend Z (1 — ¢), 0 <7 <1, to a regular homotopy of all of N, by using a
collar of the boundary to taper it down to the trivial regular homotopy. This replaces
the basis disks by immersed disks I/ where 31 is immersed as Z; = Z;(0).

The regular homotopy Z,(¢) really came from doing a number of Whitney tricks.
When we undo these and taper off the undoing in a collar we create double point
paths but no other singularities (see Figure 1).

We finally “fill in” the tubes that were used in (4A.4). This changes I} to the
required I.

FI1GURE 1

4B. Analysis of double point paths. Each boundary component of T is labelled as
ee;g (or &f;h); € indicates the orientation inherited from I; in comparison to the one
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coming from S*¥ X D**! and g is determined by the path o, from the basepoint to
Sk x D**!, through T to its basepoint, and back to the basepoint via the path ¥,
of I ‘

Now consider a double point path D for I', =T, UT;, U --- UT,. Let the two
endpoints be the intersection of ee; g, and e,f h;, and the intersection of
€3e,,8,, €4f,,h2, Tespectively. Call D of type I if (in the original) ¢e, g, is joined to
ese,, 8, (and consequently, &, £, h, is joined to &, f, h,). Call it of type 1L if g€, g, is
joined to e, f, h, (and ¢, f, b, to ese;,8,). Finally, let (j, k) be determined by the fact
that the intersection occurs between I’ and T, (thus ee, g, C I).

If D is of type I, then g, = [0,/'7/y,] and g, = [o;'r"y,] with 7/, 7" paths in T,
(recall that o; is the path from S} X S* and v, the one from T)). Similarly,

=17

h, = [0 '7;v,] and h, = [0 '7{'y,]. It follows that g{'h, = g;'h, (the triangles 1,7/"D
and 7;7;’D can be filled in inside Z)).

In case of a double point path of type II, a similar analysis reveals that
gi'hy = h3'g,.

One can also analyse the orientation matters for a double point path D. The
results are

ee,wp(g)) = —&36,wp(g5) if D is of type I,

4B.1 ,
(4B.1) e,ewp(g)) = — (1) e5eawg(h,)  if Dis of type I1.

Recalling that g* = wy(g)g ™', we see that the above can be summarized in:

(4B.2) If a double point path D is of type I, then €&, g¥h, = —e,e,8%h,. If it is of
type 11, then e, 8%h, = —(—~1)*ese,h%g,.

By (4A.24),0Z = 3, em,, + 2, f;B;,. Also let 9, respectively ®,;, be the set of
double point paths of type I, respectively II. To each D € 9%),;, we associate a matrix
zp = e, (&,6,w5(81)g1 'k, ). We then claim

(4B.3) 8= 3 (zp— (-1)z3).

DeDy

The proof is easy: Recall that e, (g) is the r X r matrix with g in position (i, j) as
the only nonzero entry. Terms of the form e, ,(*8) in 7, respectively B, correspond
bijectively to boundary components of type S} X pt, respectively of type pt X S¥, in
0Z;. Terms in n*B correspond bijectively to self-intersections of U ;90Z;. These come
in pairs (determined by double point paths). By (4B.1) the contribution of the two
ends of a path of type I cancel in #*8. And the terms from the two ends of a path
D € 9, have the form z,, — (-1)*z3,.

4C. Surgery below the middle dimension in the total space. The spheres E,, F,.

We consider the S'-bundle trivialized when restricted to U = U’_, Sk X D*¥*! C
N. Thus, we have the diagram: '

st = gl
! !

UxXS' ¢ M - X
! ! !
U C N - Y
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Also, recall that we take S' = R/Z. We perform surgery on each S¥ X D¥*1 X [- 1,
#]. The resulting surgery problem M’ — X has M’ = M, U V' where M, = p~'(N,),
N, =N — int(U), and V" is the disjoint union fori = 1,2,...,r of

V= (SEX DI X[, U (D X DI X (3))
U ((_l)lek+l X Slk X[_%’ %])
U (_D’k+l X D’k+l X {%})

We choose paths 6, from S* X D¥*! X {3} to the basepoint of M covering o, in N.
And we orient the embeddings so that the product orientation on S} X Df*! X S,
transported to * along 6,, gives the chosen standard orientation of M there. The signs
in the above description of ¥} indicate how the various pieces of V; must be oriented
in order to make ¥/ oriented (and contain S* X D}*' X [4, 3] as a positive piece).

Since K,(N) is generated by the S* X 0, it easily follows that K, (M) is generated
by S¥ X 0 X 0 (use a Gysin sequence). Thus, ¥': M’ — X is k-connected, and to
compute o(¥) we just need to find a set of spheres immersed in M which generate
K, (M) and compute their (self- and mutual) intersections.

Using the above orientation conventions we see that there are some obvious

embedded spheres in the kernel of ¥': M’ — X, namely

(4C.1) E = (-1)(0x D}*' x {=4}) U (0 x $* x[-4,4])
L UED T ox DET X (L)),
(4Cc.2) F=(-1)"(DF"x0x {1})) U (-1 (skx0x[4,3])

U (-D¥*!' x 0% {3)})

(i=12,...,r).

Clearly, E, and F, intersect transversely at (0,0, 3) and (0,0, 3) and an easy
computation—using the above path 6, and the above orientation conventions—shows
that

(4C.3) E-F=1-1t.

4D. Liftings of the “spheres with holes” to M; the spheres G,. We view the
immersed “spheres with holes” T as immersions I';: Z; - N, where 2 is a nonsingu-
lar sphere with an adequate number of disks removed. Let M, = p~'(N,) and recall
that 3M, = U, S} X S¥ X S' under the trivialization from §4C.

(4D.1) We can choose a lifting

r M,
3 !
N

N

such that each boundary component of the form S} X pt (respectively pt X SF) is
lifted to S X pt X 0 (respectively pr X S} X }).
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The proof is easy: Since surgery was done only above U, we still have an
S'-bundle above N,. It becomes trivial when pulled back to = ,» S0 some lifting f}
certainly exists. To obtain the extra conditions on the boundary we use such an
arbitrary lifting f‘j only outside a collar 9= X [0, 1] of the boundary 3% . We may
assume that T, maps this collar, in a collar preserving way, to a collar of 3U = U S}
X Sk. Thus on any one component §* X [0,1] of 3=, X [0, 1], one has L(x,1)=
(x g, t) (or Ii(x, t) = (g, x, t)) for a fixed g. At one end of the collar one then has
(x,0) = (x, 4,0, f(x)) (or T(x,0) = (g, x,0, f(x))) for some map f: S* - S'. Let
j; be a homotopy from f= fo to f;, the constant map with value 0 (or 1) in
R/Z = S'. Then f‘!(x, t)=(x,q,t, f(x)) (or fj(x, 1) =1(q,x,1, f(x))isalift of [,
on the collar which produces the desired result. It is then clear that:

(4D.2) One gets immersed spheres G;: Sk*1 - M’ by capping off the holes in L
and extending the map F 2, - M, by D"+1 X gX0orgXx Dk x4,

For each one of the tmmersed spheres so constructed we choose a path 7, to
basepoint covering the path y, from I‘j to basepoint. Then G, represents a homology
class in K, ,(M’). Clearly, the sphere E, intersects G, precisely in one point for each
capped-off boundary component D}*! X g X 0. The intersection point is counted
with a group element § € 7 given as § = [6, - 7 - ¥,] where 7 is a path in f‘l It
follows that g covers the group element g € p assigned to the boundary component
in question. Also the orientations have been chosen to make the sign of the
intersection point fit with that of the boundary component. Hence, we get

@4D3) E, -G, =i, F,-G,= B where 1, B are r X r matrices over Zx with
(1) =n,9(B) = B.

When we come to compare the algebra with the geometry, the algebra dictates the
extra condition that (g) is part of an invertible matrix as in Proposition 2D.11 (see
also Lemma 4F.1). Thus we shall need:

(4D.4) For any matrices 7, 8 with @(7) = 1 and @(B) = B, one can construct the
immersed spheres G, such that E,, - G, =, F, - G, = .

ProOF. It suffices to show that one can multiply the group element § in the
discussion preceding (4D.3) by s*', and that can clearly be done by letting the
homotopy f, in the proof of (4D.1) run once extra around in the S!-direction
(positively or negatively) before “settling down” at 0 or 3.

4E. Computing the self-intersections of G,. Let G, = G, U --- UG,. In this section
we prove:

(4E.1) The self-intersection matrix X of G, satisfies the equation

(1= 5)x =48 — s0 + (-1)*f°*
for some § € M,(Z), compare (2D.10).

PrROOF. We must put G, in general position before computing. This can be done
by pushing along the S'-direction alone. The various disks used to cap off the holes
in the spheres with holes in (4D.2) are all disjoint. Thus, any double point for G,
occurs above some double point path D for T',, and we may view X as a sum of
contributions from each D. Similarly, ﬁ‘*ﬁ is, in a natural way, a sum of contribu-
tions from each double point path (just like 7*8 in (4B.3)). We shall construct § as a
similarly indexed sum. Thus the equation in (4E.1) will be proved by proving it for
each double point path D separately.
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FIGURE 2

The inverse image p~'(D) of the double point path is a cylinder, and the
trivialization can be chosen so that one of the double point paths goes straight across
as in Figure 2. The other double point path will wind around somehow, some
number of times, say a. After a regular homotopy fixing endpoints we may assume
that the winding occurs with even speed as in the picture (where a = +3). We get
double points X, X;,..., X, because of this winding. Irrespective of the type of D,
we have a fixed situation at the left end of the picture: We have liftings of S,’f X pt
and pt X Si’f with fundamental group element g, and 4, in p, and with signs ¢, ¢,.
The associated intersection of E, and F, with G, have intersection “numbers” ¢, g,
and ¢, h, as in the discussion preceding (4D.3). The wiggly line at T symbolizes the
path 6, from S" X S" X S! to the basepoint. Also, the two wiggly lines in the
left-hand side represent paths from boundary components Sk X pt X 0 and pr X S}

1 through the “sphere with holes” F to its basepoint and along ¥, to the basepomt
of M Thus the loop from the basepomt to T, directly up to S" X pt X 0 along S',
and back to the basepoint through F and 7, is §,. Similarly, k| is represented by the
path to T, directly up to pt X S} X 5 along the negative S' dlrecuon and back to
the basepoint through f‘J and ,.

Each double point X, comes with a sign and a group element in 7. All X, obviously
have the same sign, and consideration of a standard model of the situation reveals
that it is given:

(4E.2) sgn(X,) =sgn(a) - w(g,) - ws(g)) - &, (=sgn(a) - w(g) - &e,).

Throughout the rest of the proof we assume that a = 0, leaving the other case as a
pleasant exercise. From the picture we see that:

(4E.3) The group elements associated to X, X,,...,X, are gi'h,
gr'shy,....g7's .

To get the information we need about a, we must distinguish between double
point paths of type I and II, but we must also take into account whether the
S'-bundle is orientable or not along the path. In the first case we speak of type I.A
or II.A, in the latter of type 1.B or I1.B. We claim that:

(4E.4) The number a satisfies the equation

gr's Vh, = g;'th,, Dof type LA,
=g;'h,, D oftypel.B,
=h3'¢,, D oftypell.A,
= h3'sg,, D of type IL.B.
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ProoF. Consider first case 1.A. In Figure 2 one writes ¢e;, &, at R, g, ﬁz};z at S.
The path to the basepoint at the right-hand end is at P. Thus, we can compute the
group element of the intersection point X, to be g;'t4,.

In case 1.B one still writes ese;, £, at R and ¢, fizﬁ , at S. However, the orientation
of S' has now been changed so the path to the basepoint now starts at Q (recall that
boundary components covering some S,.’; X pt occur only at level 0 in the S'-factor,
and the path to the basepoint starts at level 3). The group element of X, is then
computed to be g;'%,.

In cases II.A and B one has to write & ﬁ2h~ ;at Rand gse, g, at S. For I1.A one has
the path to the basepoint starting at Q and the group element of X, becomes ﬁ;‘gz.
And for I1.B the basepoint path starts at P, and one gets A5'sg,.

REMARK. When we compute the self-intersections of G,, we use the convention
that the e-sheet comes before the f-sheet. However, in the above proof we must, of
course, use the same sheet as the first one in both computations of the group element
of X,. Therefore, in cases II.A and B in the proof above, at the right-hand end of the
cylinder, the f-sheet comes first.

We can use (4E.4) and (3B.1) to compute ¢, #{*s%h, in terms of e,¢, g5*h,. The
results are nice,

(4E.7)  e6,8*s%h, = —e56483%h,, D of type 1,

=- (—l)ke3e4slf‘2*g2, D of type 11, w(h,) =1,
= — (=1) ese41h5*g,, Dof typell, w(h,) = -1,

but the proof is rather tedious, since we have to divide it into 12 different cases. In
fact, each of the types I.A and B divides into two cases according to w(g,;). (Note
that w(g,) = w(g,) in type L.A, while w(g,) = —w(g,) in type 1.B.) And each of the
types IILA and B divides into 4 cases depending on w(g,) and w(h,). (Note that
w(h,) = w(g)) and w(g,) = w(h,) in type IL.A, while w(h,) = -w(g,) and w(g,)
= —w(h,) in type IL.B.) As an illustration, we do the case IL.B, w(g,) = 1, w(h,) =
-1
In that case, w(g,) = 1 and w(h,) = -1 s0

e,e,81*s%h) = 16w (8))87'sh,
= &,e,wp(8)) 581 's " 'h,
= = (=1)*eseqwz(, ) sh3'sg,
= (1) eseqmp () sh3'sg,

(‘1)k53£45h~’55g2

= —(‘1)k£3£4h~52*552
k s g ~
= —(=1)"eseqthy*g,.
The remaining 11 cases are treated similarly.

On the other hand, from (4E.2,3) one can immediately compute (I — 5)%,. One
gets

(4E.8) (1= 5)%p = g185¢;,(&1*(1 — s)hy)
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(recall that e, (y) is the r X r matrix with y in position ( j, k), zeros elsewhere).
And one can compute ij°*8 to be

(4E.9) %8 )p = e, (162870, + e (e:e485%h,), D of typel,

= e, (e16,87*h)) + e(e36483*h,), D of type 1.
A little bit of bookkeeping based on (4E.7-9) reveals that F*8 — (1 — s)% = s6 —
(= 1)%** when one takes § to be given by

(4E.10) b, =0, ) D of type I,
= eye4te, (83*h,), D of type IL.

4F. Finishing the proof. The elements E,, F,, G, have a self-intersection form
which is precisely the matrix W, of Proposition 2D.11 (see (4C.3), (4D.4) and
(4E.1)). We might finish off the proof by purely algebraic considerations using the
fact that the form W is nonsingular on a direct summand of rank 2r, and the fact
that K,(M’) is also of rank 2r.

We do, however, prefer to have a completely geometric description of the surgery
obstruction and only then refer to Lemma 2D.6 to show that it coincides with the
algebraically defined obstruction of §2D. This strategy is based on

LEmMA 4F.1. If

a i 7 n
< | € GL(Z and has < | = ( ),
(2- B ) 2r( 77) n q>( B ) B
then K, . (M’) has a L basis consisting of the elements H, = 2, Ez, + E,(—l)"'F,de,
j=1,2,...,r, and the elements G,, j = 1,2,...,r.

Before proving the lemma let us note that the self-intersection form w.r.t. this
basis gets the matrix W, of Lemma 2D.6 so that we do indeed finish the proof.

In the proof of the lemma we assume that ¢ has finite order n (the alternative case
is slightly easier). Also, recall the decomposition M’ = M, U V* of §4.C. We shall
use the 5-lemma and the diagram:

(Zp) Kysa( Mg, Mg O V')
0 a 7 5 7\
(l,) (Z B) (5)
(Zp)" @ (Zp)" Ki(Myn V)
(5 o)
0 0
(Zm) ® (Z7)" ! Kir (M)
0 P
((—1)k(:— ) o )
0 -1
1 0 0)
0 a 1
: B
(Zp) ®(Zm) ®(Zr) ——————>Kis (Mo, Mo N V') @ Ky (V, Mg N V)
0 ¢ O n ¢ 0
(1 0 qo) (Z Z) (B 0 q>)

(Zp) ®(Zp)’ Ki(My 0 V')
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In the left-hand column we have T=1+ ¢ + - - - +¢"~ !, and the column is exact.
The right-hand column is a Mayer-Vietoris sequence, hence alsg exact.

The Gysin sequence for (M,, My, N V') - (N,, dU) gives isomorphisms (Zp)" =
Ky 11(No, 0U) = K o(My, My 0 V') and K, (Mo, My N V') = K, (N, 3U) =
(Zp)". Both of these appear as equalities in the diagram. Also M, N V' = U, Sk X
SkEX S' so K, (MyN V') and K, (M, N V') are free Zp-modules with bases
SkEX p, XS, g X SkX S (i=1,2,...,r) and S¥ X p, X 0, g, X S* X 0, respec-
tively. Finally, K, , (V', M, N V') = K, (V',0V") is a free Z7-module with basis
D}tV X p, X 0and g, X D' X4 (i=1,2,...,r).

In the left-hand side all modules are given their obvious Zp- or Zm-bases. We can
then specify the maps in terms of matrices. All the horizontal arrows given in terms

of the matrix
a 1
: B

are isomorphisms (of course, a = @(d), z = @(Z)), and the map I sends the standard
basis to the elements H,,...,H,, G,,...,G,. Thus, the proof is complete if we verify
that the diagram commutes.

The map from K,  ,(M,, My N V') to K, (M, N V) is given by (z)s_ rather than
(3) because in the diagram

K, 11(Ny, V) = Ky 12( My, 97)
=) 12
K,(3U) — 5 K, ,(dU X S

the operation — X S' commutes with the action of p only up to the sign given by w.
Once this is realized, it is clear that the top square commutes.

In the next square S} X p, X S' and ¢, X S} X S' map to (-1)*FT and E,T,
respectively. A direct computation then shows the square commutative.

Next, the elements E,, F,, G, of K, (M’) are seen to map to

(-1)(g, X D} X 1) (1 = 5), (DF X p, X 0) (1 — 1)
and

g — 2(D}*' X p x0)i, — Z(g; X D' x 1)B,,
J J
respectively. Here g,, i = 1,2,...,r, is the Zp basis for K,. Hence, the third square
commutes.
Finally, the last map on the right-hand side obviously is as indicated so the
bottom square commutes.
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