Math. Ann. 265, 2344 (1983) l I

© Springer-Verlag 1983

Semifree Topological Actions of Finite Groups on Spheres

Douglas R. Anderson''* and Erik K. Pedersen?

1 Department of Mathematics, Syracuse University, Syracuse, NY 13210, USA
2 Department of Mathematics, Odense University, Camposvej 55, DK-5230 Odense, Denmark

We recall that an action of a finite group G on a manifold M is topological if G acts
via homeomorphisms and that it is semifree if for any xeX the isotropy subgroup
G,={geGlgx=x} is either trivial or G. The set of points of the latter type is called
the fixed point set and is denoted by Fix(G).

Let G be a finite group and n and k be integers. The problem considered in this
paper is the following: For which (G, n, k) does there exist a semifree topological
action of G on §"** with Fix(G) a standard (i.e. unknotted) S*? The emphasis in
this question should be on the way in which G, n, and k are interrelated and not on
viewing these parameters individually. For example, the following problems are of
interest: Suppose G acts on $*** with Fix (G) a standard S*. Does G act on §"**~*
with Fix(G) a standard $*~!? (The converse is obvious by suspending the action.)
For fixed (G, n), what is the minimum value for k?

In the case when k= —1 [i.e. Fix(G)=# and G acts freely], this problem has an
extensive literature. In particular, in [3] Cartan and Eilenberg show that if G acts
freely on S” for some n, then G has periodic cohomology of period d (necessarily
even) and n=rd— 1 for some integer r = 1. Furthermore, in [14] Milnor shows that
all subgroups of G of order 2p (p a prime) must be cyclic. In their work on the
spherical space form problem [23, 11, 24, 10], Madsen, Thomas, and Wall proved
the following converse to the above results.

Theorem (Madsen, Thomas, Wall). Let G be a finite group such that every subgroup
of G of order 2p (p a prime) is cyclic and suppose G has periodic cohomology of
period d. Let n=2rd—1 where r is an integer =1. Then G acts freely on S".

For many groups G satisfying the group theoretic hypothesis in this theorem,
this result is best possible; i.e. G cannot act freely on S~ ! where r is an odd
integer. For some of these groups G, the problem of whether G acts on a sphere of
the “period dimension” (i.e. S~ ') or more generally S~ !, r an odd integer, is still
unresolved due to difficulties in calculating Swan’s finiteness obstructions [22] and
surgery obstructions.
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In the case when k=0, the result of Cartan and Eilenberg [3] still applies and
G must have periodic cohomology of even period d. Milnor’s theorem [13],
however, cannot be applied in this setting and it is unknown whether subgroups of
G of order 2p must be cyclic. Indeed, settling this question is one of the interesting
outstanding problems in this area.

If we concentrate on the groups of periodic cohomology which do satisfy the
condition that subgroups of order 2p are cyclic, the main interest is in which values
of nand k can occur and, in particular, in what happens when n=rd for r an odd
integer. In the case when k=0, this problem has been considered in a slightly
different form by Hambleton-Madsen [7] and by Milgram [12]. (One need only
one point compactify their problem to get ours.)

The main thrust of this paper is to supply the topological arguments needed to
reduce the existence problem stated above to a problem of calculating appropriate
surgery obstructions. This result is stated precisely as Theorem A in Sect. 1. We
also prove the following as a corollary to Theorem B (see Sect. 1 for a statement of
that theorem):

Theorem. Let n=4. If the finite group G acts semifreely on S"** with Fix(G) a
standard S*, then G acts semifreely on S"*! with Fix(G) a standard S*.

Thus, from the point of view of the existence of actions, it suffices to consider
the cases when k< 1.

This paper is organized as follows: Our main results Theorems A and B are
explained and stated in Sect. 1; Sect. 2 contains some results in lower L-theory
needed to prove part of Theorem A; that part of the proof of Theorem A is in
Sect. 3; Sects. 4-6 develop the results needed to prove Theorem B; while Sect. 7
contains that proof; Sect. 8 completes the proof of Theorem A, and Sect. 9
speculates on the classification problem.

1. Preliminary Observations and Statements of Theorems

For the sake of definiteness in this section and the rest of this paper, we shall

consider
S"tk={xeRrtk*1 ] [x]=1},

SR = {x=(xy, . s Xpiks )ES" Fxp 4, =0}
and for I=k—1,k,
S'={x=(xy, .., X, - )ES" ¥|x;=0 for i2[+2}.

In particular, §"**~1~§*=S*"!, We shall also consider the standard sphere pair
(S"** $¥) as being fixed and any action of G on S"** as arising from a
homomorphism @ : G—>Homeo(S"**, §¥), the group of homeomorphisms of $"**
that restrict to the identity on S* and shall fix an identification of §"**— S* with
Sn- 1 X Rk+ l.

If we now have a semifree action of G on §"** with Fix(G)=S*, then G acts
freely on S"**—S*=8""1x R**! and it follows from Cartan and Eilenberg [3]
that G has periodic cohomology of period d and if G+ Z,, n=rd. (Whether G must
satisfy the 2p-condition of Milnor [13] is not known, however.)
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The interrelationships among G, n, and k now become dependent on the period
of G. In particular, if d=2, G is finite cyclic and there are two possibilities: G=Z,
or G=Z,(n>2). In the first case there are linear semifree actions of G on $"** with
Fix(G)=S" for any n and k. In the latter case, there are linear semifree actions of G
on $"** with Fix(G)=S"* for any even n (the only values of n possible) and k.
Furthermore, in these two cases the linear actions exhaust the possible homotopy
types of the orbit space S"**— S*/G. In the rest of this paper, therefore, we shall
assume that d (and thus n) is at least 4. We remark that in this case if Fix(G) =S¥ is
locally flat, it is necessarily unknotted by [15].

Lemma 1.1. If n=3, the orbit space X =S""*—§*/G is a polarized complex in the
sense of [11].

Proof. We clearly have given a preferred homotopy equivalence h: :X—S"" ! where
X is the universal cover of X and a preferred isomorphism 7,(X, x,)—G. Thus, it
suffices to show X is finitely dominated. This, however, follows directly from [6,
Lemma 3.5].

Since for n=rd, there is a bijection between homotopy classes of polarized
complexes and generators ke H(G; Z)~Z; obtained by taking the first
k-invariant [24], we shall let X(x) denote the polarized complex corresponding to
k. We recall that such polarized complexes are Poincare duality complexes whose
Spivak normal fibre space admits a topological (in fact, a smooth) normal
invariant [11, Theorem 3.1]. We fix one such normal invariant v(x) : X(x)—»BTOP
and recall that any other normal invariant for X(x) differs from v(x) by an element
xe[X(x); G/TOP].

The following theorem is our first main result:

Theorem A. Consider the following statements :

i)k There exists an element x€ [X (k) ; G/TOP] whose surgery obstruction 0(x) =
in L, " (G).

ii) There exists a semifree topological action of G on S"** with Fix(G)=S* and
S"**— S*/G homotopy equivalent to X(x).

If n24 and n+ k=5, then i) implies ii). If n=5 then ii) implies i). Thus i) and ii)
are equivalent for n> 5.

It seems quite likely that n>5 in the second half of Theorem A can be replaced
by n=4. Thus, it is likely that i) and ii) are equivalent whenever n=4.

In this theorem the functors L, *,( ) (k=0) are defined inductively by setting

()= L?_ (m), the Wall group based on projective modules, and then setting

L, **Ym)=coker{c,: L, (m)=L,  (nx Z)}

where ¢:n—n x Z is the obvious inclusion. These groups have been investigated
by Ranicki [19]. In particular, he shows that there is a natural homomorphism
L* (m)— L, %*(n) that fits into a Rothenberg type exact sequence

‘-_’H(ZzaK—(k+1)(7t))_’Ln 1(“)_’L (H1)(75)_’H(22§K—(k+1)(”))"

Thus, although the surgery obstruction 6(x) of Theorem A originally lies in
L7_(G), it is only its image in L7 * (G) that plays a role in Theorem A.
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We remark that Theorem A actually contains more information than our
problem, as originally stated, requires. In particular, it includes the homotopy type
of S"*k—§%/G.

Our next main result is the following theorem:

Theorem B. Let G act semifreely on S"** with Fix(G)=S* Let n+k26. Suppose
that either k=2 or that k<1 and that an obstruction O€ K _,(G) vanishes, then there
is a G-invariant subspace M of S"** meeting S* in S*~' and an ambient isotropy
h,:S"k—S§"k (0<t=<1) such that hy=1,h,(M)=S""*"1 and h|S*=1 for all t. In
particular, G acts semifreely on S"**~! with Fix(G)=S§*"1.

If k=0, O is essentially a Siebenmann end invariant and has already been
investigated by Edmonds [6]. If k=1, O is the Quinn invariant of a parametrized
end which is described more carefully in Sect. 6.

We recall that two actions g, and ¢, of G on the manifold M are isotopic if
there exists a level preserving action ¢ of G on M x [ such that g|M x {i} =g,
(i=0,1).

A simple Alexander isotopy argument proves the following proposition :

Proposition. Let ¢ : G—>Homeo(S"**,5%) be a semifree action of G on S"** with
Fix(G)= S* and suppose S"**~ ! is G-invariant. Let ¢,: G—~Homeo(S""*~ 1, §*71) pe
the restriction of @. Then g is isotopic to the suspension of @,.

If we combine this proposition with Theorem B we see that every semifree
action of G on S"** with Fix(G)=S* is isotopic to a suspension provided that
n+k26and k=2 and that if k<1, there is an obstruction to “desuspension up to
isotopy” lying in K_,(G) (k=0,1).

2. Some Results in Lower L-Theory

Let X (respectively Y) be a finite (respectively, finitely dominated) Poincaré
complex of dimension n— 1 whose Spivak normal fibre space admits a reduction to
BTOP. [For example take Y to be the Swan complex X(x) in Sect. 1.] The
following proposition, whose proof comes later in this section, is the starting point
of the proof of the sufficiency part of Theorem A:

Proposition 2.1. i) Let n+k=S5. If there exists xe[X ; G/TOP] whose surgery
obstruction 0(x)=0 in L;* (n,X)), then there is a homotopy structure
f:M->XxT*' whose normal invariant is n*x where n:X X T**1>X is the
projection.

ii) Part i) holds with X replaced by Y.

The proof of this proposition depends on the following result concerning the
lower L-groups:

Proposition 2.2. For every k21 there exists a monomorphism y,:L ¥ (m)
=L **YnxZ) defining a natural transformation of functors. Further-
more,
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i) If k=1, the following diagram commutes

L?_ | (m) Lo, L\ (n)
x St X1
Linx 2)-%s Lo(n x Z)

where ¢ is the usual homomorphism and x S* is obtained by taking the Cartesian
product of an L? surgery problem with S*.

il) If k>1, then 10, =0x1 1 Xi
Proof. The homomorphisms y, are defined inductively as follows: To define x,
consider the following diagram

Tx

0—> Li(n)

x S1 % S1

Lh, (ix Z)—Z2 I (X 2% 2)

n

!
ll l(l X 1), :
_ 1)
0— L' (nxZ)—=— ! (nxZXZ)— LA(nxZ)—>0

in which Z’ is infinite cyclic, 6:n—»>nxZ' and G:axZ->nxZxZ are the
inclusions as the “first” factor, and t: Z’ x Z— Z x Z’ switches the two factors. The
top row is exact by the definition of L~ ! ; while the bottom row is exact by [20] or
[19]. Since the left half of the diagram commutes, there is an induced homomor-
phism y, making the whole diagram commute. Clearly y, defines a natural
transformation of functors.

Once y, is defined for i<k, y, , , is obtained by replacing h, p, — 1, and x S* in
the above diagram, respectively by k— 1, k, k+ 1, and ,. It is then clear once again
that y, ., is a natural transformation of functors.

To show y, is monomorphic for all k21, it suffices to observe that for all k=0,
there is a commutative diagram

0— L ** (n) —— L ¥nx 2') ——— L *(n)——0
Xk Xk
P L;ffl(an’XZ)ﬂf—ll'—»L;ff‘(an)
(1x7), 1

0—L;¥mx Z)— Ly} ax Zx Z)—— L} e x 2)—0

where :nx Z'—>x and :nx Z x Z'—n x Z are projections on the “first” factor,
¢=1l-o,n,, and £=1-5,7,. [Thus ¢ is the splitting of the split short exact
sequence

N

0— L Hm 5 Ly Hm x Z)— L% D(m)—0
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complementary to #,..] In the case when k=0 and one replaces —k, —k+1, and y,
in this diagram by p, h, and x S' respectively, the vertical maps (1 x 1), %, and ¥,
are split monomorphic by [20] or [19]. It follows that y, is monomorphic. The
general case now follows easily.

In order to prove i), we recall first that there is a commutative diagram

0 Li(x) % MaxZ) —— L2 () —0
bl
L, ax2) = s (ax 2/ x Z) st

ll 1(1 X1T)y

0— L, (ax2Z)—2— 5 (aXZXZ)— L' (1)—0

with exact rows by [20] and [16]. If one now maps this diagram into the diagram
used above to define y, via the usual maps of L4( )— L’ ( ) where (a, b) is (s, ), (h, p)
or (p, — 1), the resulting (three dimensional) diagram commutes. The commutative
square on the right hand end of this diagram yields i).

The proof of ii) is similar to that of i) and is omitted.

Proof of 2.1. The proof of i) is by induction on k. The case k=0 is proved in [16]
essentially by the following argument: Observe that there is a commutative
diagram

[X;G/TOP] —— L3, (n,(X)) —— LE_,(n,(X))

Pad x §1 x $1

[X x8'; G/TOP] — Li(xn,(X) x Z)— L=, (X) x Z)

in which n* is induced by the projection n:X xS'—>X. Thus if #(x)=0 in
L2 (n,(X)), 6(n*x)=0 in LXx,(X)* Z) and the result follows from the surgery
exact sequence.

Suppose i) holds for k— 1 where k= 1. It then follows from 2.2 that the diagram

[X ; G/TOP] — 2 L%~ Y(x, (X)) —— L7* (r,(X))
n* x* Xk
[X X T*; G/TOP]—— L', , (,(X) X ZH—— L*_, (n,(X) x Z¥)

commutes where 7 : X X T*—X is projection, y*=yxox, ... 1 T =(xSY)x* "1, and
is the composite of the usual surgery obstruction map

0:[X;G/TOP]-L}_,(n,(X))

and the maps g; of L-theories. In particular, 6(n*x)=0in L?_, , (r, (X x T%) and
this case now follows from the case when k=0.
Part ii) is an easy consequence of part i).
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3. The Proof that i) implies ii) in Theorem A

It follows immediately from 2.1 that there is a homotopy equivalence
f:M—X(x)x T"*, where M is a compact manifold whose normal invariant is
7*x. Let M be the universal cover of M and notice that M supports a free action of
G (in fact, of GxZ**!). The proof of the sufficiency part of Theorem A is
completed by proving the following proposition.

Proposition 3.1. There is a homeomorphism d:M~—S""1 x R** ! which induces a free
action of G on S"~'x R**'. This induced action is bounded in the R**" factor;
hence, it extends to a semifree topological action of G on S"** with Fix(G)=S

We recall that if Y is a compact space, a function f:Yx R¥**—>YxR**! is
bounded in the R** ! factor if there exists a number N such that for all xe Y x R**1,
|n(x)—nf (x)] <N where m:Yx R***—R**! is the projection.

Let Homeo, (Y x R**!) be the group of homeomorphisms of ¥ R¥*! that are
bounded in R** ! factor and Homeo (Y*S¥, S¥) be the group of homeomorphisms of
the join Y+S* which are the identity on S*. We recall that there is a homomorphism

y :Homeo, (Y x R***)—Homeo(Y*S*, §%)

obtained by the following modification of an idea due to Kirby [9] (cf. also [1, 2]):
Let h:Yx R¥*1>Yx R¥*! be bounded in the R¥*! factor and consider the
diagram

Yx R 128 yx pktl 50— Ya Sk

N

YXRk+1 1xe Yx D¥t1 Q [ Y*Sk

where ¢: R¥*1—IntD**! is a radial homeomorphism and Q is the quotient space
of Yx D¥*1 obtained by identifying (y, t) with (v, ) for all y,y’e Y and te S*. It is
easy to see that setting &' =1 on y x $* (for any ye Y) yields a homeomorphism h’ of
Q extending h. It is also easy to see that there is a homeomorphism of pairs
9:(Q,yx S9—(Y,S* 8. Let h"=gh'g~'. Then p(h)=h" is the desired homeo-
morphism,

Proof of 3.1. The remarks above show that the last clause of 3.1 follows directly
from the rest of it. Thus we need only find d and show the induced action of G is
bounded in the R**! direction.

To do this we consider first the diagram

M i) X(K)XT*+1 hx1, gn—1y Tk+1
p . |axt

M—L5 X (1) x T

in whigh q:X(x)-X(x) is the universal cover of X(x), p is a pull back, f covers f,
and h is the preferred homotopy equivalence given by the polarization of X(k).
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Then (M, f)e hS*(X(x) x T**!) and the normal invariant
(M, f)=(qx D)*n(M, f)=(gx 1)*z*(x) = (7)*q*x
where % : X(x) x T** 1 =X (i) is the projection. It now follows that
(M, (hx 1) f)ehSH(S"~1 x T¥*1)
and that
n(M, (hx 1)) =@*(h™)*g*x)

where k™! is a homotopy inverse for hand 7: 8"~ ! x T**'—8""1 is the projection.
Since n—1=rd—1is odd, n,_ ,(G/TOP) vanishes and so does n(M (hx1) f ). Hence

(M, (h x DHEIm{D: L, (Z4 ) —hSS"™ I x T 1)}

[Since Wh(Z**')=0, L* and L° theory coincide.] It now follows from
[8, Theorem 10.2] if n=5, or from [8, Remark 3, p. 44] if n=4, that there is
a homeomorphism d: M—S8"~* x T**! which we may assume induces the identity
on fundamental groups.

Let d:M—S""'xRK*! be a lift of d to universal covers. Then d is
homeomorphism and the following diagram commutes:

M d Sn—lka+1

pl ‘ lm

M_f’_)sn—l x Tk*1

where e is the exponential map. Since M and M support free actions of G with
respect to which p’ is equivariant, there are free actions of G on §"~! x R¥*! and
§"~1x T**1 with respect to which 1 x e is equivariant. Since the action of G on M
induces the identity on the fundamental group, the same is true of the action of
G on §""'x T**1, It now follows that the lifted action of G on §"* x R¥*1 is
bounded in the R*** factor. This completes the proof of 3.1 and of the fact that if
n+k=5, then i) implies ii) in Theorem A.

4. Some Lemmas Concerning Quinn Ends

The proofs of the ii) implies i) part of Theorem A and of Theorem B are both based
on the observation that the part of the orbit space S"**/G near the singular set S*
can be regarded as an end in the sense of Quinn, [17] and [18], and on an analysis
of that end. In this section we shall establish some general lemmas about Quinn
ends (henceforth called simply ends) that will be used in studying the end of $"**/G
near S¥. We assume the reader is familiar with the terminology of [17, Sects. 1 and
2]

Let e: M—X be an end where M is a manifold with compact boundary. We say
that e is eventually collared if for every neighborhood U of the end there is a
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manifold neighborhood N of the end such that NC U, INNOM =@ and such that
there is a commutative diagram

N—— X

ON x [0, 00) 250N

where h:(N,0N)—(0N x [0, 0),0N x 0) is a homeomorphism of pairs and p, is
projection on the first factor.

If e;: M,—~X (i=1,2) are ends, we shall say that e, and e, are eventually locally
equivalent if either M, CM, or M,CM,, and if for every neighborhood U of the
end ¢, (i=1,2) and every neighborhood V of xeX, there is a neighborhood U’ of
the end e, _; and a neighborhood ¥V’ of x such that U'ne; 1 (V')CUne }(V).

Lemma 4.1. Let e, e, : M—X be eventually locally equivalent ends.

i) Let P denote any of the following properties: onto, 0— LC, or 1 — LC. Then
e, has property P if and only if e, has property P.

ii) If X is compact and e, is eventually collared, then e, is tame.

Proof. Part i) is obvious. To prove part ii) we need the following sublemma:

Sublemma 4.2. Let e, e, : M—X be eventually locally equivalent ends where X is a
compact metric space with metric g. Let UCM ;"M ,. Then U is a neighborhood of
the end e, if and only if U is a neighborhood of e,. Furthermore, given 6 >0 there is a
neighborhood U of the end e, such that for all ye U, g(e,(y), e,(y)) <0.

Proof. Let U be a neighborhood of e, (i=1,2). Then ¢l:M,—U—-X is
proper. Hence, since X is compact, (¢)”'(X)=M,— U is compact. But then
€;_l:M;_,— U—X is clearly proper and U is a neighborhood of the end e, _;,. The
first part of the sublemma follows.

To prove the second part of the sublemma, let xeX and V, be the ball of radius
0/2 with center x. Then there exists a neighborhood U’ of the end e, and a
neighborhood V,CV, of x such that U.ne; *(V)Ce; }(V,). Since X is compact,

r

there are finitely many of the V}, say V; ,...,V;, which cover X. Let U= () U,.
i=1

Then U is a neighborhood of e, hence also of e,. Let ye U. Then for some j
(=j=w),
yeUne; '(V;)CU, ne; '(V, )Cer 1(V, ).

Thus e,(y)e V.,CV,, and e,(y)CV,. Since the diameter of V, is less than 4,
(e, (), e,(»)) <9 and the sublemma follows.

We return to the proof of part ii) of Lemma 4.1. Let U be a neighborhood of
the end e, and ¢>0. (Since X is compact, we can replace the function &:X—(0, c0)
by a constant.) By the sublemma there is a neighborhood U’ of the end e, such that
for all ye U, g(e, (y), e,(y)) <e¢/3. Without loss of generality, we may assume U’ C U.
Since e, is eventually collared, there is a manifold neighborhood N of the end such
that NCU’ and a homeomorphism h:N-0N x [0, o) such that e,IN=(e,|ON)
‘p1h where p,:0Nx[0,00)—»dN is projection on the first factor. Let
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9,:0N x[0,0)=0N x[0,0) (0=t<1) be given by g,x,s)=(x,(1—1t)s), and
h,=h"'g,h (0=t<1). Then h|ON =1 and we extend h, over M by setting h,=1 on
M —N. Clearly hy=1, h,(M)CM—N, and h(M—U)CM—N for all . Further-
more if xe M, then the diameter of {e,h,(x)I0=t=1} is 0 if xe M —N; while if
x€N, then for any r, s satisfying 0=r, s<1 we have

ole;h,(x), e;h(x) = ole;h,(x), e, h,(x) + e, h,(x), e h(x)) + (e, hx), e,h (X))

Since xe N, h(x)e NCU’ for all t. Hence the first and last terms are less than ¢/3 by
the choice of U'. The middle term is zero by the choice of h, Thus,
diam {e,h,(x)0=<t<1} <t independent of x and e, is tame. This completes the
proof of the lemma.

Lemma 4.3. Let e;: M,—X (i=1, 2) be ends and suppose there exists a covering map
q:M,—M, with finitely presented group of covering transformations such that
e, =e,q. Then

1) The end e, is onto (respectively, 0—LC) if and only if e, is onto
(respectively, 0— LC).

ii) If e, is 1—LC, then e, has constant fundamental group the group of covering
transformations of q:M,—M ,.

iii) Suppose X is locally compact and locally simply connected, e; (i=1,2) is onto
and 0—LC, and e, is 1 —LC. Then e, is tame if and only if e, is tame.

Proof. Part i) is obvious; while ii) follows from the observation that since e, is
1—LC, the group of covering transformations of M, over M, is the (constant)
fundamental group of e,. To prove iii) observe first that since e, is 1— LC it has
constant fundamental group the trivial group. It follows from [17,
Proposition 1.7] that e, (i=1,2) is tame if and only if it is homologically tame.
Since e, =e,q, the calculations necessary to verify the homological tameness of e,
and e, are identical. Hence iii) follows.

5. The Ends of the Action near S*

In this section we describe three ends related to the action of G on §"** (the non-
equivariant end of §"** near S¥, the equivariant end of $"** near S, and the end of
S"**/G near S*) and derive their basic properties.

To describe the first end we first fix a homeomorphism f: S"*¥— 8"~ 1xS* that is
the identity on S* and let ¢, : "**—D* be the composite

Sn+k S Sn—l*sk csl X*Sk""Dk+l

where ¢: 8" ! —x is the constant map and the last map sends the formal sum (in
the sense of Milnor [13]) (1 — )x®ty (0=t <1;yeS*) to tye D** . Then ¢,|S* is the
identity and c; }(S¥)=S*.

Let rD**! be the disk of radius r about the origin and rS* be its boundary.
Clearly M, =S""*—¢; }(int1/3D** *US¥) is a submanifold of $"** homeomorphic
to 8*x D"—5§*x 0. Let e, : M, —S* be the composite

¢,|: M, »D** 1 —Int(1/3D** 1) ¥
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where ¢ is the radial retraction g(x)=x/|x]. We note that if p:S" 'S
—(S""'uSt)—>S* sends the formal sum (1—-0z@ty (O<t<l; zeS"™ !y
yeS¥) to ye Sk, then e, is the restriction of the composite

ST (FTUS YUSH Lo M kS — (ST USH) E 8K to M.
Thus, there is a homeomorphism A such that the following diagram commutes
M,—2——5F
h 1
§" xSk (0,112 s*

where p, is projection on the second factor (i.e. e, is topologically a projection).
The following lemma is obvious:

Lemma 5.1. The end e, is onto, 1 — LC, and eventually collared.

We now define ¢, : S"*¥—D**? by ,(x)=|G| ™' Y ¢,(gx) where |G| is the order
of G and the summation runs over geG. It is easy to see that ,(x)e D** 1, ,|S* is
the identity and ¢, *(5%)=S* and that ¢, is G-equivariant with respect to the trivial
action of G on D**1,

Let ¢,:8"**/G—-D"*' be the map induced by ¢,. Thus ¢,=C,q where
7:8" ¥ 8"**/G is the quotient map. Clearly ¢,|S* is the identity and ¢; 1($¥)=S*
By altering ¢, via a homotopy fixing ¢; *(D*** —2/3D**!), we may replace ¢, by a
new map ¢, which is transverseregular to 1/3S*. Let

M,=8""*/G—(c; '(Int1/3D** )uSH
and let e, : M,—S* be the composite
cyl: My~ D" 1 —Int(1/3D** 1) -5 S*.

Finally let M, =4 '(M,) and e, =e,q.

Lemma 5.2. The ends e, and e, are eventually locally equivalent. Hence e, is onto,
1—LC, and tame.

Proof. The first sentence follows immediately from the observation that if U is a
aeighborhood of the end e, (i=1,2) and VCS* is a neighborhood of xeS*, then
Une; '(V)uV is a neighborhood of x in S"** and that such neighborhoods form a
sofinal family of neighborhoods of x in $"** The last part of the lemma is
mmediate from 4.1 and 5.1.

Lemma 5.3. The end e, is onto, 0— LC, has constant fundamental group G, and is
‘ame.

Proof. This is immediate from 4.3.
‘In the sequel, our interest is not so much in the whole of the ends ¢, (i=1,2, 3)
15 1n a part of them which we now describe.
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6. The Ends of the Action near R*

The proofs of the necessity part of Theorem A and of Theorem B actually use
some ends obtained by restricting the ends of Sect. 5 to a certain copy of R*CS*,
This section describes these ends, their main properties, and the construction
based on them that will be needed later in this paper.

We regard D* (respectively, S¥) as {xe RY|x|£1}  (respectively,
{xeR¥*||x|=1}) and define a: D*—>S* by a(x)=((1—]x|*>)*/2,x). Let D be the
image of a, N,=¢; '(IntD), and

fi=¢ 'ale;:N,~R* (i=1,2,3)
where o: R¥—D* is a radial embedding onto IntD*. We shall call f; the part of e,
over R* (i=1,2,3).

It is clear that there exists a homeomorphism h such that the following diagram
commutes

N, —2L R¥

hl l

§"~1x REx(0,1]-22 R*

where p, is projection on the second factor. Thus f; is onto, 1 = LC, is eventually
collared, and has a completion f, : N,—R* Furthermore, h extends to a ho-
meomorphism i: N, —8""! x R*x [0, 1] such that f, =p,h.

Since the LC properties, the possession of a constant fundamental group and
homological tameness are obviously inherited by the part of an end over an open
set, we see that f; (i=2, 3) is onto, 0— LC, has constant fundamental group, and is
homologically tame. Thus, f; (i=2, 3) is tame by [17, Proposition 1.7]. In fact, the
following stronger result holds:

Proposition 6.1. i) If k=2, then the end f,: N,—R* has a completion f,: N ,— R~
ii) If k=0, 1andn+k=6,thenthe end f3:N3— R, has a completion fy:N;—-R*
if and only if an obstruction O€ K _,(G) vanishes.
iii) If k=0,1 and n+k=6, then the end NyxS'—2>N,~L>R* has a
completion where p is projection on the first factor.

It is the end obstruction O of part ii) of 6.1 that is the obstruction of Theorem B
in the case when k=< 1.

Proof. Since f, is a tame end with constant fundamental group G, it follows from
[18] that there is a sequence obstructions Oy f;) eH Y(R*; K _ {G)) whose vanishing
is necessary and sufficient for the existence of a completion of f;. Since
H}/(R*; K _{G)) vanishes if j+k and equals K_,(G) if j=Fk, there is only one
possible non-zero obstruction among the O(f;); namely O,(f;)eK_,(G). In
particular ii) follows.

The rest of the proof now divides into two cases. If k> 2, then K_,(G)=0by a
result of Carter [4] and part i) follows immediately. If k< 1, K_,(G) is non-zero in
general ; hence, O,(f;) may not vanish. However Proposition 1.8 of [18] shows that
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the end obstruction of N, x §'— N, —R* is essentially obtained from O,(f,) by a
multiplication by x(S'). Hence, this end obstruction vanishes and part iii) of the
proposition follows.

Corollary 6.2. If the end f, has a completion fy: N;— R, then there is a principal
G-bundle §: N,— N, such that f,=f,q is a completion of f,.

Proof. This is obvious.

Let f: N—R* be a completion of the end f: N— R¥, suppose that N has two
components N and &,N, and fix a collar ¢:0,N x I—N such that ¢(x,0)=x. A
tapering is a function t: R*—(0,1] such that lim #(x)=0. A tapered embedding

T:8,N x(0,1]—- N is one of the form T(x,s)= c(x, stf(x)) where t is a tapering. In
this case T is said to be associated with t. The shaded region in Fig. 1 below shows
the image of a tapered embedding in 0,N x (0,1]. If ¢, and ¢, are taperings with

OONx1

Fig. 1

t,(x)<t,(x) for all xeR* and T, T, :0,N x(0,1]—N are the associated tapered
embeddings, then

T8,V x (0,11 CInt T, (3,N x (0, 1])

and the closure W of the region between these two images has the canonical
product structure h:0,N x [0,1]— W given by h(x, s)=c(x, (1 — s)t, f(x) + st, f(x)).

In order to describe the construction underlying the proof of Theorem B we
assume that either k=2 or that k<1 and Oeﬁ’_k(G) vanishes. In either case
f3:N3—R* has a completion. We now fix completions f;: N;=R* of f; (i=1,2,3)
such that f,=7,7 as in 6.2. We also fix collars ¢;:0,N; x I->N; with ¢/(x,0)=x
(i=1,2,3) such that hc,=(hld,N,)x 1, where h:N,—S5" ! x R¥x[0,1] is the
homeomorphism above, and such that c,(7 x 1) =gc,. Then corresponding to any
tapered embedding T;:0,N, x (0,1]>N, there is a unique tapered embedding
T,:0,N, x(0,1]->N, satisfying Ty(gx 1)=gT, which is said to be associated
with Ty,

Lemma 6.3. Let T, :0,N;x (0,1]- N, CS™** be a tapered embedding. Then
i) There exists a tapered embedding T,:0,N,x(0,1]—> N, whose associated
tapered embedding T,:0,N, % (0,1]->N,CS"** has

T,(0,N, % (0,1])CInt(T,(6,N, % (0,1]))

. ii) For any tapered embeddings T,, T, as in i), there is a tapered embedding
I[:6,N, x(0,1]=N, CS"** such that

T(0,¥, X (0, 17)CInt T3, N, x (0, 1]).
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Proof. We observe that if T; is a tapered embedding with associated embedding T,
then T,(6,N, x (0,1])ulntD%, is a neighborhood of D¥ in S$"** and that such
neighborhoods are cofinal in the collection of all neighborhoods of D% . A similar
observation holds for T,(0,N,u(0,1])uIntD% . The lemma is then an immediate
consequence of these observations.

Suppose now that we have tapered embeddings

T, ;:0oN; x (0,11 N,CS"** (i,j=1,2,3)

such that
a) The associated taperings ¢, ; satisfy f, J(x)<t, ,(x)<t; ,(x) (xeRY
(i=1,2,3);
b) T, ;is zissociated with T ;(j=12 3);
) 7‘2,1.(601_\_72 x(0,1])CInt Ty (9,N, x(0,1])(j=1,2,3); and
d) T}, (06N, x (0, 17)CInt T, ;_,(6,N, *(0,1]).
We set
W=C1(ImT1Y2_ImT2,z)7
OW=T, ,(0,N;x1) (i=1,2),
Vy=Cl(ImT, ,—ImT, ,),
V,=Cl(ImT, , —ImT, ,),
U,=Cl(ImT, ,~ImT, ),
and
U,=Cl(ImT, ; —ImT, ,),
where Im T ; is the image of T, ;. In Fig. 2 below we draw these images inside N,
and over R*. In this figure the image of T; | lies below the curve labelled T, ; The
region W is shaded. ’

W)
11'_1, 1 ~Tas
1,2 <T2.2
T3 191 <T23
Rk
Fig. 2

In Fig. 3 we show the same regions as subsets of §"** Here R* is included in
Stk as the northern hemisphere of $*C §"** so we have inverted the above picture.
In particular, the image of T; ; lies above the curve labelled T, .. Notice that all the
tapered regions “converge” to oD% =S§*~1c Sk §*+k. "
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Fig. 3

We now define a deformation retraction R; of W onto d;W to be the composite

inc X 1

WxI VXI5 V,cU s w

where d, pulls V;into 0, relative to 0,W via the canonical product structure on V;
and r; pulls U, into W relative to W via the canonical product structure on
ClImT, ,~ImT, ,) in the case of r, or on CI(ImT, , —ImT, ,) in the case of r,.
We have therefore established the following lemma :

Lemma 6.4. There are deformation retractions R;: Wx I-W (i=1,2) of the region
Wonto 0,W (i=1,2). Thus W is an h-cobordism.

7. The Proof of Theorem B

This section contains the proof of Theorem B. The basic idea of the proof is to
make an appropriate choice for the embeddings T, (i,j=1,2, 3) described at the
end of Sect. 6. The key step in the proof is the following proposition whose proof is
temporarily deferred:

Proposition 7.1. | f the end f,: N,— R* has a completion, it is possible to choose the
embeddings T.; (i,j=1,2,3) of Sect.6 such that there is a homeomorphism h of
(8" % DxS*~T onto the subspace WS ™! of S™** such that h|S*~1=1.

Assuming 7.1 the proof of Theorem B goes as follows: Let Oe K (G (k=0,1)
be the end invariant of f,: N,~R* as in 6.1. Then if, k<1 and 0=0, or, if k=2,
then £, N ;= R* has a completion and we choose embeddings T, ;(i,j=1,2,3)asin
"L Let M=T, ,(9,N, x 1)US*~". Since T, , covers T, ,, M is G-invariant. But
dlso 7.1 provides a homeomorphism h:(S" ! x )*S*"'>WuS¥~! such that
h((S" 1 x D)*S*"1)=9,Wus*"!=M. Thus M is an (n+k—1) sphere. Further-
Tore, we can ambient isotope M onto 9, WuS*~! fixing $* by pushing M in

across the product structure on W coming from h. Since

:)nf-
0,WuSH =T, ,(S" ! x RYusk!
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can easily be ambient isotoped onto $"**~! fixing S*, the proof of Theorem B is

completed.

We turn now to the proof of 7.1. The first step is to show that considered as a
subspace of N,, W has a “small” product structure. The main ingredient in the
proof of this fact is an extension of the thin h-Cobordism Theorem [17,
Theorem 2.7]. We refer the reader to [17] for the definitions of the terms used in

this extension:

Proposition 7.2. Let ¢>0 and m=6 be given. Then there is a 6 >0 such that if the
proper map e: (W™, 0, W™)—R* is (5, 1)-connected and is a (5, h) cobordism then
there is an e-product structure h:(0, Wx 1,0, Wx 0)— (W, d, W) with h|o, W x 0 the
identity.

Proof. This follows from the arguments given in [17] to prove the thin
h-Cobordism Theorem and from refinements of them due to Chapman [5].

Now let >0 be given and let >0 be the constant given by 7.2 corresponding
to e and n+k. (Recall n+k=6!)

Lemma 7.3. It is possible to choose the embeddings T; ; (i,j=1,2,3) of Sect. 6 such
that if (W,0,W) is the pair described in Sect. 6 and

e=f,|1W:(W,0, W)—R*
then e is (3, 1)-connected and is a (3, h)-cobordism.

Corollary 7.4. Let W be considered as a subspace of N,. Then there is a
homeomorphism

hy (8" U x REX 1,81 x R*x 0)~(W, 9, W)
such that h,|S"~!' x R*x0=T, , and for every (x, y)eS"~ ' x R¥,
diam {eh,(x, y, 0t <1} <e.

Proof. The corollary follows immediately from 7.2 and 7.3.
The proof of 7.3 requires two sublemmas:

Sublemma 7.5. Let #>0 be given. Then there exists a tapered embedding
T:0,N, x(0,1]1- N, such that for any xeImT, |fi(x)= f,(x)|<n where f, and f,
are the ends of Sect. 6 and | | denotes the metric in R*.

Proof. Since the ends f, and f, are eventually locally equivalent by 5.2 and the fact
that f;=¢,|N, (i=1,2), for each ze R* we can find a neighborhood U, of the end e,
and a neighborhood V, of z in R* such that for all xe U,nfi ' (V)CN,,
Ifi(x)= f,(x)|<n. A standard argument shows that there is a countable set
{z|l=1,2,...} such that only finitely many z, lie in any closed disk and the
corresponding ¥, ’s cover that disk. It is now straightforward to find a tapering
function t: R*—(0, o) with associated tapered embedding T:0,N, x(0,1]-N,
such that for any integer m> 0, T(f; {(mD*)x [0, 00))C A U., where the intersection
runs over {z|z,emD*}. Clearly T is the desired tapered embedding,

Sublemma 7.6. Let n>0 be given. Then there exists a tapered embedding
T:0,N;%x (0,11 N, such that for any x€d,N,, diam {f, T(x,)0<t<1} < n.
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Proof. This follows directly from the fact that f, has a completion f,: N,—>R*bya
standard argument.

Proof of 7.3. We use 7.5 to choose the tapered T; , such that for all x in Im T, ,,
[fi(x)= f,(x)|<d/6. We then apply 6.3 and 7.6 to find a tapered embedding
Ty, :9,N3%(0,1]=N, such that for all xed,N,, diam{f,;T; ,(x,0)0<t=1}
<8/6 and such that Im(T, ,)CInt(Im T, ;) where T, ,:0,N, % (0,1]->N, is
the tapered embedding associated with T, ,. Notice that for all xed,N,,
diam{f,T, ,(x,1)0<t=<1}</6 since T, , is associated with T ;. Finally we
apply 6.3 repeatedly to find the tapered embeddings T;; (i=1,2,3; j=2,3)
satisfying the conditions a) to d) given in Sect. 6.

T T2 Tz Ta2 T3

SR — T ———

Fig. 4
We claim that for these choices of T ; (1,j=1,2,3), e: (W, 51W)—>R" has the
properties required by 7.3. To see that e is a (J, h)-cobordism, we show that the
deformation retractions R;: W x I—9,W (i=1,2) of Sect. 6 have diameter <.
(The reader may find Fig. 4 above helps to understand the following estimates.) To
estimate the diameter of R, let xeW and 0=t,,t,<1. Then
leR,(x,t,)—eR,(x,t,)| S|eR,(x,t,)—ed,(x, )|
+led,(x,t,)—ed (x,t,)|
+led,(x,t,)—eR,(x,t,)|.
Now led,(x,t,)—ed,(x,t,)|=0 since d,(x,t,) and d,(x,t,) lic on the ray
T, J(xx(0,1]) and e= f,l is constant on this ray. Furthermore, if [=1,2
[eR,(x,t)—ed,(x,t)| <|eR,(x,t)— fR,(x, )|
+|f2R,(x, t;)—fzdl(xa tx)l
+1f,d, (%, t)—ed,(x, 1)l

where the first and last terms are </6 since e= f,| by the choice of T, ;- On the
other hand R,(x,t) and d,(x,t) lie on a ray T, ,(yx(0,1]) for some yed,N,.
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Hence the middle term <J&/6 by the choice of T,,. Thus for I=1,2,
leR,(x,t,)—ed,(x,t)| <d/2. That R, has diameter <& now follows easily.

A similar proof shows that R, has diameter <0.

Figure 4 is closely related to Fig. 2. Here the vertical straight lines are the
images T, j(aoﬁ ) ((=1,2,3); while the “vertical” curves are the images T, j(OON 5)
(i=1,2, 3). The horizontal broken lines (respectively, “horizontal” broken curves)
are the canonical product structure on the region between T, , and T, ,
(respectively, between T, , and T, ;). We recall that the segments in the canonical
product structures lie on rays of the form T, ,(zx (0, 1]) for i either 1 or 2. The
deformation R, pulls a point of W along a broken straight line until it moves
outside W. At this point it is pushed back inside W by projecting along an
appropriate broken curve.

We now show that e: (W, 0, W)— Rk is (8, 1)-connected. To do this, let (R, S) be
a relative 2-complex and suppose given a commutative diagram

SS W
n e
RS Rk
We wish to construct g: R— W with g|S=r and such that |eg(x)—r(x)| <4 for all

xeR. To do this we observe that the above diagram can be enlarged to the
following diagram

SLHW o V,BsUxRExI

n le =fil lfx ‘[Pz

R;Rk — Rk;_}Rk
where h is a homeomorphism and p, is projection on the second factor (cf. Sect. 6).
Thus, we can regard hs as a triple of functions s/, s, s; and r as an extension of s/,
to R. But since n24, s, extends to r}: R—>S""'; while s5 obviously extends to
ry:R—1. Then g': R—V, given by g'(x)=h"1(r(x), r(x), r;(x)) satisfies ¢’|S=s and
fig =r.

Let ¢: V;— W be the composite ¥, CU, — W, where r, is as described at the
ex}d of Sect. 6, and setg =g0g'. Clearly ¢|S = s and since the argument estimating the
diameter of R, given above shows that |fir (z)— f,(2)|<d/2 for all zeV,,
leg(x)— r(x)| <6 for all x. Thus g is the desired map.

This completes the proof of 7.3.

Proof of Proposition 7.1. Choose the embeddings T; ;(i,j=1,2,3) such that 7.3 and
7.4 apply and consider the diagram

(Sn-l XI)*Sk—l‘i(sn-lxl)ka&‘?_Sn—lxIkaLw_’_)Srﬁk

where ¢ : R*—Int D* is a radial homeomorphism, g is the quotient map described in
Sect. 3, h, is the homeomorphism of 7.4, and | is the inclusion. We now define
h:(S"" ' x I)xS*"'>WuUS*~1, where the latter space is considered as a subspace
of S"*¥, by setting h=1h,(1x @) ¢~ L on(S" ' x I)xS* "' —§*~ 1 and h=1 on S* .
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Since the product structure k, has diameter <e (i.e. is “bounded”), h is continuous.
Since h is obviously bijective, it follows that h is a homeomorphism. This
completes the proof of 7.1.

8. The Proof that ii) Implies i) in Theorem A

This section contains the proof of the result that if n=5 then ii) implies i) in
Theorem A. It is based on Theorem B and the following observations:

Lemma 8.1. Let n25 and suppose there exists a semifree topological action of G on
$"*1 with Fix(G)=S! and S"*!'—S'/G homotopy equivalent to X(x). Then
hS*(X () X T?)+4.

We remark that since X(x) is finitely dominated, X(x) x S has the homotopy
type of a finite CW complex ; hence, X (k) x T? has a well defined simple homotopy
type. It is really the homotopy structure set of this space which is non-empty in 8.1.

Lemma 8.2. Let n=5. If hS"(X(x) x T?)+0, then there exists a homotopy structure
[ M"" 15X (k) x T? whose normal invariant lies in

Im {rn*:[X(x); G/TOP]—[X(x) x T?; G/TOP]}
where n:X(k) X T*—X(k) is projection on the first factor.

Assuming 8.1 and 8.2 the proof that i) implies ii) in Theorem A if n=5 goes as
follows: If k= — 1 [i.e. Fix(G)=#0], the result is a standard fact in surgery theory;
while if k=0, the result follows from the arguments of [7] based on [16].

Suppose now that k=>1. It follows from Theorem B that there is a semifree
action of G on $"*! with Fix(G)=S". Since n=5, by 8.1 and 8.2 there exists a
homotopy structure f: M"*!>X(x) x T?> whose normal invariant is in

Im {n*:[X(x); G/TOP]—[X(x) x T?; G/TOP]}.
But then fx1:M"*!x T*"1-X(k)x T**! is a homotopy structure y whose
normal invariant #(y) lies in
Im{7* : [X(x); G/TOP]~[X(x) x T**'; G/TOP]}.

The results of Sect. 2, however, show that there is a commutative diagram

[X(x); G/TOP]—"——L*(G)

F
hS"(X (k) x T+ 1)1 [ X (k) x T** 1 ; G/TOP]—— L* b (G x ZFTY
where y, the composite (x St)y;, . ,xk, is monomorphic. Let #(y) =n*(x). A diagram

chase now shows that A(x)=0in L,, * (G). This completes the proof that ii) implies
i) in Theorem A when n25 assuming 8.1 and 8.2.

Proof of 8.1. Cons1der theend f, : N;—R! of Sect. 6. Since n+ 126, by 6.1 the end

Nyx§'>N, LLR! has a completion F:W—R' Thus N,xS'CW and
W (N; x St ) V is a component of OW. If we embed V in IntW and thus in
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N, x S*, by using a collar it is not hard to see that the composite
Vo N, x St (gr+ 1 §1/G) x 5T 220 X (1) x S1

where h is a homotopy equivalence, is a homotopy equivalence. We shall call this
composite g.

We observe now that since V is the “ideal” boundary of the completion
F:W-R!, F|[V:V—R!isa proper map. Thus V is a manifold with two ends in the
“classical” Siebenmann [21] sense. Since these ends are obviously tame and
dimV =n+126 the manifold ¥ x S has a Siebenmann completion N with two
boundary components. Let M be one such boundary component and embed M in
V x S by using a collar as above. The composite

M-V x St25 (X(x) x §) x S?
is the desired homotopy structure on X(x) x T2

Proof of 8.2. Let h: V—X(x) x T? be a homotopy structure with arbitrary normal
invariant and_consider the map of infinite cyclic covers h:V-X(x)x S xR
Observe that V' has two tame ends. Since n+ 126, we may again apply the trick of
crossing with §* and embedding a boundary component W in ¥ x S* via a collar
to obtain the composite homotopy equivalence
WP x §' 255 X (1) x S x RY x S' X (k) x T

which we denote by g. It follows from the construction that (W, g) is a homotopy
structure X(x) X T? whose normal invariant lies in

Im{zn}:[X(x) x S*; G/TOP]-[X(x) x T?; G/TOP]}

where 7, : X(x) x S* x $*>X (k) x §* is projection on the first two factors.

If we now apply the above argument to W and the infinite cyclic cover
corresponding to the first S' factor, we obtain the desired homotopy structure
(M, f) on X(x) x T? with normal invariant in Imn*. This completes the proof of
8.2.

9. Remarks on Classification

Although given a semifree action of a group G on a sphere S"** with fixed point set
S* we produce a manifold structure on §"**— §¥/G x T* and thus a new semifree
action of G on §"** with fixed point set S*, we have made no attempt of comparing
the two actions. This would be necessary if one was to make any attempt to
classify actions. In this section we have a few remarks on these matters,

Definition 9.1. Two semifree actions of G on S"** with fixed point set are
concordant if there is a semifree action of G on S"** x [ with fixed point set ¥ x I
restricting to the given actions on $"**x0 and $"**x 1. If the action is level
preserving, i.e. preserves the te I coordinate, we say the actions are isotopic. The
actions are homeomorphic if there is a G-invariant homeomorphism of $"*"
sending one action to the other.
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If we have a semifree action on S"** with fixed point set S* and we choose some
cellular subset of S¥, C then (S"**/C, §*/C) will be homeomorphic to (S"*¥, S¥) and
there will clearly be an induced action. It is an interesting question how this new
action relates to the original action. It is fairly easy to see that this action is
isotopic to the original action since (S"** x I/C x 1, 8* x I/C x 1) is homeomorphic
to (S"**x I, 8% x I) in a level preserving way. Altogether isotopy classes of actions
are somewhat easier to handle than homeomorphism classes as one may e.g.
strengthen Theorem B as follows:

Theorem B'. If G acts semifreely on S"** with fixed point set S¥, k' then the action is
isotopic to a suspended action.

Proof. By Theorem B there is an invariant S"**~ ! meeting S* in $*~ . On the two
halves of S"** that S"**~1 splits S"** we may perform an Alexander isotopy on
each of the homeomorphisms given by the action of specific group elements.

The behaviour of topological semifree group actions near the fixed point set
seems a mystery, the problem being that a free action on S" X R¥, bounded in the
R*-factor certainly may be completed to a semifree action on S"**, but in how
many ways is unclear and seems to involve intricate point set topology. However
we think the following is a reasonable conjecture:

Consider X (k) as a polarized complex, and consider X(x) x T* (in its preferred
simple homotopy type). Then there is a 1—1 correspondence between isotopy
classes of semifree G-actions on S"** with k-invariant x and the topological
structure set S[X(x) x T¥]/~ where ~ means two structures are equivalent if they
become equal after a finite cover in the T*-factor.
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