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Following tom Dieck and Löffler [4] we consider the following situation:

A: Let G = H0 ×H1 be a product of two finite groups acting orientably on the standard
sphere X = Sn(0)+n(1)+1 with the following properties:

i) The isotropy subgroups are 1, H0 and H1.
ii) The fixed point set XHi is a locally flatly embedded manifold homeomorphic to

an n(i)-dimensional sphere.
We denote the linking number XH0 with XH1 by k. Note that it follows from [5] that
(X −XH0 −XH1)/G is finitely dominated. We denote the finiteness obstruction by
σ

Obviously H0 and H1 at least have to be periodic groups for situation A to have any chance
to arise. That however is not our concern here. In [4] it is shown that for Hi odd cyclic
groups , the only obstruction to realize situation A smoothly is the finiteness obstruction σ,
which of course must be 0 in the smooth of PL case. This finiteness obstruction in turn, is
identified with the Swan homomorphism applied to k, see [4]

In the topological case however, there is no a priori reason that σ should be 0. Also one
does not have the same immediate identification of the finiteness obstruction with the Swan
homomorphism applied to the linking number. The purpose of this note is to discuss these
questions.

The author wants to thank the Sonderforschungsbereich at Göttingen University for a
very pleasant year there.

With assumptions as in A we prove the following:

Theorem 1. If K−1Z[H0] = K−1Z[H1] = 0 then the finiteness obstruction σ lies in j0∗K̃0Z[H0]⊕
j1∗K̃0Z[H1], where ji is the natural inclusion of Hi in G

Theorem 2. If H0 and H1 are nilpotent groups, then σ ∈ D(Z[G]).

Theorem 3. If σ = 0, then σ may be identified with the Swan homomorphism applied to
the linking number.

Remark. We do not think the assumption in Theorem 2 that H0 and H1 are nilpotent is
necessary. This is the subject of further work.
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Main application. If H0 = H1 = Cp, a cyclic group of odd prime order, then σ = 0 and
hence by theorem 3 must be the Swan homomorphism applied to k, and that must be 0.
This however is exactly the condition that ensures the existence of smooth actions [4], so
one may realize no more linking numbers topologically than smoothly in this situation.

Proof. Let pi i = 0, 1 denote the projection of G = H0×H1 on Hi. Then pi sends D(Cp×Cp)
to D(Cp) which is 0. Since K−1(Cp) = 0 [2], by theorem 2, σ ∈ D(Cp×Cp), hence pi∗(σ) = 0.
By Theorem 1 we know that σ can be written in the form σ = j0∗(σ0) + j1∗(σ1).

Applying pi∗ to this equation it follows that σ0 = 0 and σ1 = 0 hence σ = 0. We may thus
apply theorem 3 to conclude that the Swan homomorphism of k must vanish. �

We now turn to the proofs of theorems 1,2 and 3:

proof of theorem 1 and 3. In the terminology of Quinn [8, 9], the action considered is ANR,
that is, the fixed point sets of the various subgroups are ANR’s. Hence the mapping cylinder
obstruction theory of Quinn applies. We may thus try to construct equivariant mapping
cylinder neighborhoods of the fixed sets XH0 and XH1 . Notice that if we succeed, then
(X − XH0 − XH1)/G has collared ends, so is homotopy equivalent to a compact manifold
with boundary, which of course is homotopy equivalent to a finite complex.

We consider (X − XH0 − XH1)/G an open manifold with two ends. One end is param-
eterized by XH0 and has H0 as locally constant fundamental group, the other end by XH1

with H1 as locally constant fundamental group. Since the argument is symmetric, consider
the end parameterized by XH0 .

To build an equivariant mapping cylinder neighborhood, we encounter obstructions in
H lf

i (XH0/H1; K−iZ[H0]). When i > 1 the coefficients are 0 by Carter [3] and when i = 1

by assumption. We are left with the obstruction in H lf
0 (XH0/H1; K̃0Z[H0]). If we however

replace XH0/H1 by XH0/H1 − ∗ this group vanishes too. Therefore, if we consider the end
restricted to XH0/H1 − ∗ we encounter no obstruction to build an equivariant mapping
cylinder neighborhood. In a neighborhood of ∗, the point we took out, we taper down the
mapping cylinder neighborhood to the point (see [1] for details of this construction). It is
now clear that (X − XH0 − XH1)/G is homotopy equivalent to a manifold with boundary,
and rather than an end parameterized by XH0 , we have an end parameterized by a point
and fundamental group H0. Treating the other end similarly we find (X −XH0 −XH1)/G
homotopy equivalent to an open manifold with two pieces of boundary, and two tame ends,
one with fundamental group H0, the other with fundamental group H1. By Siebenmann’s
sum formulae, the finiteness obstruction is the sum of the finiteness obstructions of the

two ends, thus finishing the proof of theorem 1. To prove theorem 3 note that j0∗K̃0Z[H0]

and j1∗K̃0Z[H1] intersect trivially in K̃0(Z[H0 × H1]), so the vanishing of the finiteness
obstruction implies that both end obstruction vanish. Thus we may indeed complete the
program of building equivariant mapping cylinder neighborhoods of the two ends. Thus
(X −XH0 −XH1) is equivariantly homotopy equivalent to a compact manifold W with two
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pieces of boundary, δ+W and δ−W , on which G acts freely. The homology H∗(W, δ−W ) is
by excision isomorphic to H∗(X − XH1 , XH0) which is 0 in all dimensions except ∗ = n,
where it is Z/kZ, k the linking number of XH0 and XH1 . Since k is relatively prime to p,
the finiteness obstruction is equal to the Swan homomorphism applied to k. This ends the
proof of theorem 3.

proof of theorem 2. It suffices to prove that (X −XH0 −XH1)/G is a nilpotent space, since
the finiteness obstruction then must lie in N(G) (see [6] for definition) which by Mislin and
Varadarajan [7], see also [6] is included in D(Z[G]).

By assumption G is nilpotent, so we must check that G acts nilpotently on the homology of
X−XH0−XH1 , or equivalently that it acts trivially on cohomology. The cohomology however
is very simple. Algebra generators are detected by the inclusions X−XH0−XH1 ⊆ X−XH0

and X − XH0 − XH1 ⊆ X − XH1 . But in X − XH0 we have the invariant subspace XH1

on which both H0 and H1 act homologically trivial, so G acts trivially on a multiple of the
generator and thus on the generator itself. The other generator is treated similarly. This
implies that (X −XH0 −XH1)/G is nilpotent and we are done. �
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