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0. INTRODUCTION

In [8] we showed that certain H-spaces obtained by homotopy mixing are homotopy equiv-
alent to smooth, parallellizable manifolds. Unfortunately (as was added in proof) we needed
the restriction on the fundamental group =, that D(Zx) = 0. It is the purpose of this sequel
to [8] to remove this restriction, and also to generalize the main theorem considerably. I
want to thank I. Hambleton for pointing out the error in [8].

1. NOTATION. STATEMENT OF RESULTS

Throughout the paper space will mean topological space of the homotopy type of a con-
nected CW complex. For a set of primes [ and a nilpotent space X, X; denotes the localization
at [ in the sense of [5]. A space X is called quasifinite if H.(X) = ®H;(X;Z) is a finitely
generated abelian group. If H,(X) is a Z;-module X is called [-locally quasifinite if H,(X)
is finitely generated as a Z;-module.

To state our main theorem we need a couple of definitions. Let S* denote the i-sphere.

1.1. DEFINITION. A nilpotent space X admits a special 1-torus if, up to homotopy, there is
a diagram of orientable fibrations

St ——> 58— §?

T

Sl—X—>B

RN

* A A

such that

(a) A is quasifinite, B is stably reducible.

(b) Localized at 0 the diagram is homotopy equivalent to
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l lpm lm

* AO A()

We remark that since X is nilpotent and the fibrations are orientable A and B are nilpotent
so localization makes sense.

1.2. EXAMPLE. Given a bundle S* — X — A with A quasifinite stably reducible and the
bundle stably trivial then X admits a special 1-torus by dividing out the subgroup S* C S3 (see
8, lemma 3.6] ). All compact Lie groups other than SO(3)* x T' have subgroups isomorphic
to S as is seen by classification and all these Lie groups admit special 1-tori. This will be
further discussed in section 5.

We need a p-local version of definition 1.1. Let X be a nilpotent space, p a prime.

1.3. DEFINITION. X admits a p-local special 1-torus if, up to homotopy, there is a diagram
of orientable fibrations

Sy —= 5% —15,
S;HTHT
. A—A

such that

(a) A is p-locally quasifinite and B is p-locally stably reducible, i. e. there are integers
n and i and a map S;)*! — ¥'B inducing isomorphism in homology in dimensions
>n+i.

(b) as in definition 1.1

It is clear that if X admits a special 1-torus then X, admits a p-local special 1-torus.
We prove the following

1.4. THEOREM. Let X be a quasifinite H-space. Assume for every prime p that X, is
homotopy equivalent to a product C(p) x D(p) and C(p) admits a p-local special 1-torus.
Then X is homotopy equivalent to a smooth, stably parallellizable manifold.

1.5. REMARK. If H3(X) D Z the condition of the theorem is trivially satisfied for all but
finitely many primes. This is because for all but finitely many primes X, is homotopy
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equivalent to a product of localized spheres which must include the 3-sphere. We also note
that in view of example 1.2 (see section 5) this theorem is stronger than theorem 1.1 of [8].

2. SURGERY
We use the special 1-tori for the following

2.1. PROPOSITION. Let X be a quasifinite, nilpotent Poincaré complex admitting a special
1-torus. Then X is homotopy equivalent to a stably parallellizable smooth manifold.

REMARK. This result only needs condition (a) of definition 1.1 Condition (b) is needed to
ensure that the property of having a special 1-torus is a generic property.

Proof of proposition 2.1. In the diagram of orientable fibrations

§l—> 58— 52

R

Sl—=X——=B

RN

* A A

A is nilpotent and quasifinite, hence by [7] A is finitely dominated. It follows that X and B
are finitely dominated [6]. Also A and B are Poincaré Duality spaces since X is [3]. It follows
from [10] that X has 0 finiteness obstruction. Considering (B, X) a Poincaré Duality pair,
we may use the stable reduction of B and a standard transversality procedure to produce a
surgery problem

~

(M,0M) % (B,X)  ¢:vy—e
where ¢ is the trivial bundle. Let o(B) be the finiteness obstruction of B. Consider the
exact sequence
= H"Y(Zy Ko(Zm)) — L () & 1P —

where m = 7, (B) = m(X). The class of o(B), {o(B)}, is an element of H""(Z,, Ko(Z)).
It follows from [9], that the surgery obstruction of OM — X is §{c(B)}. However, since
Ais a P. D, space of dimension n — 3 we have d(A) = (—1)"3¢(A)* and by [10], o(B) =
20(A) = o(A)+(—1)"'o(A)* and hence {o(B)} = 0 in H"™(Z,; Ko(Z7)) and we are done.

3. REDUCIBILITY OF H-SPACES.

Browder and Spanier have shown that a finite H-space is stably reducible [2]. This is
one of the steps in the attempt to prove X is a manifold, since it implies that the Spivak
normal fibre space is trivial. We need to generalize the results of Browder and Spanier to a
p-local situation. This is mostly straightforward. We shall nevertheless indicate the line of
argument in this section. The aim of this section is to prove:
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3.1. THEOREM. Let D be a p-locally quast finite H-space. Then D is p-locally stably reducible.
We need a p-local edition of S-duality.

3.2. PROPOSITION. Let X be a simply connected p-locally quasifinite space. Then X admits
a p-local CW -structure, i. e. X is homotopy equivalent to a space Y with a filtration x =
Koy C K, C...CK,=Y such that K; is the mapping cone of some map f; : S;(Z) — K;_q,
n(i1) a nondecreasing function of i.

Proof. By the Hurewicz theorem we may find a finite wedge of local spheres and a map
SV S — X such that H,(f) is onto in dimensions < k, k < 2. Using the relative Hurewicz
theorem we inductively attach local cells to make H,(f) an isomorphism in higher dimensions.
Since X is p-locally quasifinite and finitely generated Z,-module have free resolutions of
length one, we eventually obtain a homotopy equivalence.

Let X and Y be p-locally quasifinite spaces. A p-local S-duality map is a map XAY — S
so that slant product

fri)) = Ho(X) — H" (V)
is an isomorphism. Here i is the generator of H"(S}).
Given a p-locally finite space X we note that the suspension XX is a simply connected
p-locally quasifinite space and thus admits a p-local CW structure by Proposition 3.2. We
may now go through exercises F1-7 page 463 in Spanier [11] to prove existence and stable

uniqueness of a p-local S-dual with the usual functorial properties. We need the concept to
complete the

Proof of Theorem 3.1. H*(D;Q) and H*(D;Z/pZ) are Hopf algebras and we may argue
as in the finite case [1] that D satisfies Poincaré Duality with Z, coefficients. We now
only need to produce a map D — S} inducing isomorphisms in dimensions > n. Then
we may use Hopf algebra arguments (as in the finite case [2]) to prove that the composite
DT AND* = (D x D)" — D — S} is a p-local S-duality map, so D" is selfdual and the dual
of D* — S will be a stable reduction.

Localized at 0 D is a product of odd dimensional spheres so if we let [ be the set of primes
different from p and form the homotopy pullback

Y ——[[ St

|

D ——=TJ[sgmtt

then Y is quasifinite, nilpotent and satisfies Poincaré Duality at all primes hence [5] and [7]
is a finitely dominated Poincaré Duality space. By Wall [12] Y has the homotopy type of
K Ue™ where K is n — 1-dimensional and we may thus produce a map ¥ — K Ue" — S™ by
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collapsing K" to a point. Localizing at p we obtain D = K, — 5 with the required property
and we are done

4. PROOF OF MAIN THEOREM.

The proof will consist of two lemmas.

4.1. LEMMA. If X is a quasifinite H-space and X, = C(p) x D(p) where C(p) admits a
p-local special 1-torus, then X, does.

Proof. Crossing the special 1-torus diagram

C(p) — T
A——A
with D(p) reduces the lemma to showing B x D(p) is p-locally stably reducible. Now D(p)

is a retract of a p-locally quasifinite H-space and is thus itself a p-locally quasifinite H-space
and thus p-locally stably reducible by theorem 3.1

4.2. LEMMA. If X is a quasifinite H-space such that each X, admits a p-local special 1-torus,
then X admits a special 1-torus.

Proof. At all but finitely many primes X is a product of spheres, so we may consider X a
homotopy pullback

where X; is a product of odd dimensional spheres and X, also admit special 1-tori. Mixing
the special 1-tori in the obvious way we obtain X which admits a special 1-torus and such
that X; = X, and Ypi = X,,; in other words X is in the genus of X. We now argue as
in [8, proposition 3.2] to show that admitting a special 1-torus is a generic property for an
H-space. The key step is the result of Zabrodsky that one obtains the whole genus of an
H-space by mixings defined by diagonal matrices and the observation in [8] that one of these
diagonal entries may be assumed to be 1.
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5. EXAMPLES.

In this section we show that compact Lie groups other than SO(3)* x T' do admit special
1-tori. This implies that our theorem 1.4 is indeed stronger than theorem 1.1 of [8].

5.1. PROPOSITION. Let G be a compact connected Lie group which is not isomorphic to
SO(3)% x T'. Then G has a subgroup isomorphic to S.

Proof. We use classification of compact Lie groups. Any compact connected Lie group is a
quotient of H x T" by a discrete central subgroup A. Here H is a simply connected compact
Lie group. Furthermore H is a product of groups in a list, see [4, p. 346]. If we can find
an S® subgroup of H that intersects A trivially we are done. There are two cases. First
assume H = (S3)*. Then A can not contain the center of (S®)* since if it does G will be
isomorphic to SO(3)* x T!. This being the case it is easy to find a subgroup isomorphic to
S3 not intersecting A. If H is not a product of S%’s it has a simple factor different from S*
and we will be done if we can find a subgroup isomorphic to S? in this factor, intersecting
the center trivially. We do this by checking the list. We have S® = SU(2) C SU(n) (n < 3)
intersecting the center trivially since the central element of SU(n) are the diagonal matrices
with the same n’th root of unity as entry. Similarly S* = SP(1) C SP(n) (n > 2) and
S3 = SU(2) € SO(4) € SO(n), (n > 5) do not contain —I which is the only central
element # [. Furthermore Fg D FE; D FEg D SU(6) D S® and since the center of Fg has
order 3, S® must intersect it trivially and Eg must intersect the center of E; (cyclic of order
2) trivially. Finally Fy D SP(3) and G5 D SU(2) and these groups have trivial center. We
are done.

5.2. REMARK. It would be nice to have a conceptual proof of Proposition 5.1. Working in
the Lie algebra it is not hard to find a subgroup isomorphic to SO(3) or S? but it is crucial
for us to be in the latter case.

5.3. PROPOSITION. Let G be a compact Lie group with S as a subgroup G O S® Then

St 8 S
o
st G G/St
|
x«—>G/SP —=G/S

15 a special 1-torus in G.

Proof. Lemma 3.4 of [8] shows that G/S? is stably parallellizable. It follows from [8, lemma
3.3] that H3(G; Q) — H?3(S?;Q) is onto. Let Gy — K(Q,3) = S3 represent an element in
H3(G; Q) hitting the generator of H3(S5%; Q) then one sees by a spectral sequence argument
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that Gy — (G/S?)o x S§ is a homology equivalence hence a homotopy equivalence and we
are done.

FINAL REMARKS. In case D(Z7) = 0 we could replace the concept special 1-torus by the
concept 1-torus (see [8]). Since admitting a 1-torus is a weaker condition than admitting a
special 1-torus, it is not entirely a loss to have both concepts.
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