
SMOOTHING H-SPACES II

ERIK KJÆR PEDERSEN

0. Introduction

In [8] we showed that certain H-spaces obtained by homotopy mixing are homotopy equiv-
alent to smooth, parallellizable manifolds. Unfortunately (as was added in proof) we needed
the restriction on the fundamental group π, that D(Zπ) = 0. It is the purpose of this sequel
to [8] to remove this restriction, and also to generalize the main theorem considerably. I
want to thank I. Hambleton for pointing out the error in [8].

1. Notation. Statement of results

Throughout the paper space will mean topological space of the homotopy type of a con-
nected CW complex. For a set of primes l and a nilpotent space X, Xl denotes the localization
at l in the sense of [5]. A space X is called quasifinite if H∗(X) = ⊕Hi(X;Z) is a finitely
generated abelian group. If H∗(X) is a Zl-module X is called l-locally quasifinite if H∗(X)
is finitely generated as a Zl-module.

To state our main theorem we need a couple of definitions. Let Si denote the i-sphere.

1.1. Definition. A nilpotent space X admits a special 1-torus if, up to homotopy, there is
a diagram of orientable fibrations

S1

��

// S3

��

// S2

��
S1 //

��

X //

��

B

��
∗ // A // A

such that

(a) A is quasifinite, B is stably reducible.
(b) Localized at 0 the diagram is homotopy equivalent to
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S1
0

��

// S3
0

��

// S2
0

��
S1

0
//

��

A0 × S3
0

//

pr1

��

A0 × S2
0

pr1

��
∗ // A0

// A0

We remark that since X is nilpotent and the fibrations are orientable A and B are nilpotent
so localization makes sense.

1.2. Example. Given a bundle S3 → X → A with A quasifinite stably reducible and the
bundle stably trivial then X admits a special 1-torus by dividing out the subgroup S1 ⊂ S3 (see
[8, lemma 3.6] ). All compact Lie groups other than SO(3)k × T l have subgroups isomorphic
to S3 as is seen by classification and all these Lie groups admit special 1-tori. This will be
further discussed in section 5.

We need a p-local version of definition 1.1. Let X be a nilpotent space, p a prime.

1.3. Definition. X admits a p-local special 1-torus if, up to homotopy, there is a diagram
of orientable fibrations

S1
p

��

// S3
p

��

// S2
p

��
S1

p
//

��

X //

��

B

��
∗ // A // A

such that

(a) A is p-locally quasifinite and B is p-locally stably reducible, i. e. there are integers
n and i and a map Sn+1

p → ΣiB inducing isomorphism in homology in dimensions
≥ n + i.

(b) as in definition 1.1

It is clear that if X admits a special 1-torus then Xp admits a p-local special 1-torus.
We prove the following

1.4. Theorem. Let X be a quasifinite H-space. Assume for every prime p that Xp is
homotopy equivalent to a product C(p) × D(p) and C(p) admits a p-local special 1-torus.
Then X is homotopy equivalent to a smooth, stably parallellizable manifold.

1.5. Remark. If H3(X) ⊃ Z the condition of the theorem is trivially satisfied for all but
finitely many primes. This is because for all but finitely many primes Xp is homotopy
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equivalent to a product of localized spheres which must include the 3-sphere. We also note
that in view of example 1.2 (see section 5) this theorem is stronger than theorem 1.1 of [8].

2. Surgery

We use the special 1-tori for the following

2.1. Proposition. Let X be a quasifinite, nilpotent Poincaré complex admitting a special
1-torus. Then X is homotopy equivalent to a stably parallellizable smooth manifold.

Remark. This result only needs condition (a) of definition 1.1 Condition (b) is needed to
ensure that the property of having a special 1-torus is a generic property.

Proof of proposition 2.1. In the diagram of orientable fibrations

S1

��

// S3

��

// S2

��
S1 //

��

X //

��

B

��
∗ // A // A

A is nilpotent and quasifinite, hence by [7] A is finitely dominated. It follows that X and B
are finitely dominated [6]. Also A and B are Poincaré Duality spaces since X is [3]. It follows
from [10] that X has 0 finiteness obstruction. Considering (B, X) a Poincaré Duality pair,
we may use the stable reduction of B and a standard transversality procedure to produce a
surgery problem

(M, ∂M)
φ−→ (B, X) φ̂ : νM → ε

where ε is the trivial bundle. Let σ(B) be the finiteness obstruction of B. Consider the
exact sequence

. . . → Hn+1(Z2; K̃0(Zπ)) → Lh
n(π)

δ−→ Lp
n →

where π = π1(B) = π1(X). The class of σ(B), {σ(B)}, is an element of Hn+1(Z2, K̃0(Zπ)).
It follows from [9], that the surgery obstruction of ∂M → X is δ{σ(B)}. However, since
A is a P. D, space of dimension n − 3 we have σ(A) = (−1)n−3σ(A)∗ and by [10], σ(B) =

2σ(A) = σ(A)+(−1)n+1σ(A)∗ and hence {σ(B)} = 0 in Hn+1(Z2; K̃0(Zπ)) and we are done.

3. Reducibility of H-spaces.

Browder and Spanier have shown that a finite H-space is stably reducible [2]. This is
one of the steps in the attempt to prove X is a manifold, since it implies that the Spivak
normal fibre space is trivial. We need to generalize the results of Browder and Spanier to a
p-local situation. This is mostly straightforward. We shall nevertheless indicate the line of
argument in this section. The aim of this section is to prove:
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3.1. Theorem. Let D be a p-locally quasi finite H-space. Then D is p-locally stably reducible.

We need a p-local edition of S-duality.

3.2. Proposition. Let X be a simply connected p-locally quasifinite space. Then X admits
a p-local CW-structure, i. e. X is homotopy equivalent to a space Y with a filtration ∗ =

K0 ⊂ K1 ⊂ . . . ⊂ Kn = Y such that Ki is the mapping cone of some map fi : S
n(i)
p → Ki−1,

n(i) a nondecreasing function of i.

Proof. By the Hurewicz theorem we may find a finite wedge of local spheres and a map
f

∨
Sk

p → X such that H∗(f) is onto in dimensions ≤ k, k ≤ 2. Using the relative Hurewicz
theorem we inductively attach local cells to make H∗(f) an isomorphism in higher dimensions.
Since X is p-locally quasifinite and finitely generated Zp-module have free resolutions of
length one, we eventually obtain a homotopy equivalence.

Let X and Y be p-locally quasifinite spaces. A p-local S-duality map is a map X∧Y → Sn
p

so that slant product

f ∗(i)/− : H̃∗(X) → H̃n−∗(Y )

is an isomorphism. Here i is the generator of Hn(Sn
p ).

Given a p-locally finite space X we note that the suspension ΣX is a simply connected
p-locally quasifinite space and thus admits a p-local CW structure by Proposition 3.2. We
may now go through exercises F1-7 page 463 in Spanier [11] to prove existence and stable
uniqueness of a p-local S-dual with the usual functorial properties. We need the concept to
complete the

Proof of Theorem 3.1. H∗(D;Q) and H∗(D;Z/pZ) are Hopf algebras and we may argue
as in the finite case [1] that D satisfies Poincaré Duality with Zp coefficients. We now
only need to produce a map D → Sn

p inducing isomorphisms in dimensions ≥ n. Then
we may use Hopf algebra arguments (as in the finite case [2]) to prove that the composite
D+ ∧D+ = (D×D)+ → D → Sn

p is a p-local S-duality map, so D+ is selfdual and the dual
of D+ → Sn

p will be a stable reduction.
Localized at 0 D is a product of odd dimensional spheres so if we let l be the set of primes

different from p and form the homotopy pullback

Y

��

// ∏ S2ni+1
l

��

D // ∏ S2ni+1
0

then Y is quasifinite, nilpotent and satisfies Poincaré Duality at all primes hence [5] and [7]
is a finitely dominated Poincaré Duality space. By Wall [12] Y has the homotopy type of
K ∪ en where K is n− 1-dimensional and we may thus produce a map Y → K ∪ en → Sn by
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collapsing K to a point. Localizing at p we obtain D ∼= Kp → Sn
p with the required property

and we are done

4. Proof of main Theorem.

The proof will consist of two lemmas.

4.1. Lemma. If X is a quasifinite H-space and Xp = C(p) × D(p) where C(p) admits a
p-local special 1-torus, then Xp does.

Proof. Crossing the special 1-torus diagram

C(p) //

��

B

��
A // A

with D(p) reduces the lemma to showing B ×D(p) is p-locally stably reducible. Now D(p)
is a retract of a p-locally quasifinite H-space and is thus itself a p-locally quasifinite H-space
and thus p-locally stably reducible by theorem 3.1

4.2. Lemma. If X is a quasifinite H-space such that each Xp admits a p-local special 1-torus,
then X admits a special 1-torus.

Proof. At all but finitely many primes X is a product of spheres, so we may consider X a
homotopy pullback

X

vvmmmmmmmmmmmmmmmmm

}}zz
zz

zz
zz

##FF
FF

FF
FF

FF

))SSSSSSSSSSSSSSSSSSS

Xl

((QQQQQQQQQQQQQQQQQ Xp1

!!CC
CC

CC
CC

· · · · · ·

||xxxxxxxxx
Xpk

uukkkkkkkkkkkkkkkkkkk

X0

where Xl is a product of odd dimensional spheres and Xpi
also admit special 1-tori. Mixing

the special 1-tori in the obvious way we obtain X which admits a special 1-torus and such
that X l

∼= Xl and Xpi
∼= Xpi

; in other words X is in the genus of X. We now argue as
in [8, proposition 3.2] to show that admitting a special 1-torus is a generic property for an
H-space. The key step is the result of Zabrodsky that one obtains the whole genus of an
H-space by mixings defined by diagonal matrices and the observation in [8] that one of these
diagonal entries may be assumed to be 1.
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5. Examples.

In this section we show that compact Lie groups other than SO(3)k×T l do admit special
1-tori. This implies that our theorem 1.4 is indeed stronger than theorem 1.1 of [8].

5.1. Proposition. Let G be a compact connected Lie group which is not isomorphic to
SO(3)k × T l. Then G has a subgroup isomorphic to S3.

Proof. We use classification of compact Lie groups. Any compact connected Lie group is a
quotient of H ×T l by a discrete central subgroup A. Here H is a simply connected compact
Lie group. Furthermore H is a product of groups in a list, see [4, p. 346]. If we can find
an S3 subgroup of H that intersects A trivially we are done. There are two cases. First
assume H = (S3)k. Then A can not contain the center of (S3)k since if it does G will be
isomorphic to SO(3)k × T l. This being the case it is easy to find a subgroup isomorphic to
S3 not intersecting A. If H is not a product of S3’s it has a simple factor different from S3

and we will be done if we can find a subgroup isomorphic to S3 in this factor, intersecting
the center trivially. We do this by checking the list. We have S3 = SU(2) ⊂ SU(n) (n ≤ 3)
intersecting the center trivially since the central element of SU(n) are the diagonal matrices
with the same n’th root of unity as entry. Similarly S3 = SP (1) ⊂ SP (n) (n ≥ 2) and
S3 = SU(2) ⊂ SO(4) ⊂ SO(n), (n ≥ 5) do not contain −I which is the only central
element 6= I. Furthermore E8 ⊃ E7 ⊃ E6 ⊃ SU(6) ⊃ S3 and since the center of E6 has
order 3, S3 must intersect it trivially and E6 must intersect the center of E7 (cyclic of order
2) trivially. Finally F4 ⊃ SP (3) and G2 ⊃ SU(2) and these groups have trivial center. We
are done.

5.2. Remark. It would be nice to have a conceptual proof of Proposition 5.1. Working in
the Lie algebra it is not hard to find a subgroup isomorphic to SO(3) or S3 but it is crucial
for us to be in the latter case.

5.3. Proposition. Let G be a compact Lie group with S3 as a subgroup G ⊃ S3 Then

S1

��

// S3 //

��

S2

��

S1 //

��

G //

��

G/S1

��
∗ // G/S3 // G/S3

is a special 1-torus in G.

Proof. Lemma 3.4 of [8] shows that G/S1 is stably parallellizable. It follows from [8, lemma
3.3] that H3(G;Q) → H3(S3;Q) is onto. Let G0 → K(Q, 3) = S3

0 represent an element in
H3(G;Q) hitting the generator of H3(S3;Q) then one sees by a spectral sequence argument
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that G0 → (G/S3)0 × S3
0 is a homology equivalence hence a homotopy equivalence and we

are done.

Final Remarks. In case D(Zπ) = 0 we could replace the concept special 1-torus by the
concept 1-torus (see [8]). Since admitting a 1-torus is a weaker condition than admitting a
special 1-torus, it is not entirely a loss to have both concepts.
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[3] D. Gottlieb, Poincaré duality and fibrations, Proc. Amer. Math. Soc. 76 (1979), 148–150.
[4] S. Helgason, Differential Geometry and Symmetric Spaces, Pure and Applied Mathematics, vol. 12,

Academic Press, New York, 1962.
[5] P. Hilton, G. Mislin, and J. Roitberg, Localization of Nilpotent Groups ands Spaces, North Holland

Mathematics studies, vol. 15, North - Holland Publishing co., Amsterdam - New York, 1975.
[6] V. J. Lal, The wall obstruction of a fibration, Invent. Math. 6 (1968), 67–77.
[7] G. Mislin, Finitely dominated nilpotent spaces, Ann. of Math. (2) 103 (1976), 547–556.
[8] E. K. Pedersen, Smoothing H-spaces, Math. Scand. 43 (1978), 185–196.
[9] E. K. Pedersen and A. A. Ranicki, Projective surgery theory, Topology 19 (1980), 239–254.

[10] E. K. Pedersen and L. Taylor, The Wall finiteness obstruction for a fibration, Amer. J. Math. 100
(1978), 887–896.

[11] E. Spanier, Algebraic topology, McGraw-Hill Inc., New York, 1966.
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