THE WALL FINITENESS OBSTRUCTION FOR A FIBRATION

ERIK KJÆR PEDERSEN AND LAWRENCE R. TAYLOR

1. We wish to study the Wall finiteness obstruction for the total space of a fibration $F \to E \to B$. Such a study was first done by V. J. Lal [5], who neglected the action of $\pi_1(B)$ on the fibre. This was noticed by D. R. Anderson [2], who produced formulae for the finiteness obstruction of E in case the fibration is a flat bundle [2, 1]. Our main theorem gives a partial calculation of the general case: If B and E are finitely dominated and $H_*(F)$ is a finitely generated **Z**-module, we compute the image of the Wall obstruction of E in $K_0(\mathbf{Z}\pi_1(B))$. In case $\pi_1(E) \to \pi_1(B)$ is monic, we may refine this to compute the actual obstruction for E in terms of information on F and B. In this case the assumption that E is finitely dominated may be replaced by F being the homotopy type of a finite complex.

We begin by establishing some terminology. Let X be a path connected space. We let $S_*(X)$ denote the singular chain complex of the universal cover of X. There is an action of $\pi_1(X)$ on $S_*(X)$ making it a free $\mathbb{Z}\pi_1 X$ module. Given a ring Λ and a ring homomorphism $\mathbb{Z}\pi_1 X \to \Lambda$, we say that X is Λ -dominated iff $S_*(X) \otimes_{\mathbb{Z}\pi_1 X} \Lambda$ is chain homotopy equivalent to a complex P_* of Λ -modules, where each P_i is a finitely generated projective Λ -module and all P_i are zero except for finitely many.

If X is Λ -dominated, we can form $\sigma(X;\Lambda) = \sum_{i=-\infty}^{\infty} (-1)^i [P_i]$ in $K_0(\Lambda)$. Although many choices were necessary to form $\sigma(X,\Lambda)$, it is easy to check that $\sigma(X;\Lambda)$ is independent of all these choices. Also one sees that $\sigma(X;\Lambda)$ is a homotopy invariant and natural with respect to homomorphisms $\Lambda \to \Lambda_1$.

We say that X is *finitely dominated* if X is $\mathbf{Z}\pi_1 X$ -dominated (where $\mathbf{Z}\pi_1 X \to \mathbf{Z}\pi_1 X$ is the identity) and $\pi_1 X$ is finitely presented. In this case we write $\sigma(X; \mathbf{Z}\pi_1 X) = \sigma(X)$.

Wall [7, 8] has proved that a CW complex is dominated by a finite CW complex iff it is finitely dominated and that it has the homotopy type of a finite CW complex iff $\sigma(X) \in K_0(\mathbb{Z}\pi_1 X)$ vanishes in $\widetilde{K}_0(\mathbb{Z}\pi_1 X)$. We call the image of $\sigma(X)$ in $\widetilde{K}_0(\mathbb{Z}\pi_1 X)$ the Wall finiteness obstruction for X.

We say that X is homologically finite if X is **Z**-dominated, where $\mathbf{Z}\pi_1 X \to \mathbf{Z}$ is the natural map. It is easy to see that this is the case iff $\sum_{i=0}^{\infty} H_i(X; \mathbf{Z})$ is a finitely generated abelian group.

To describe the action of the fundamental group on the homology of the fibre we need a functor $G(\pi)$, π a group, and a pairing $G(\pi) \times K_0(\mathbf{Z}\pi_1 X) \to K_0(\mathbf{Z}\pi)$. We let $G(\pi)$ be

Partially supported by the Danish Research Council.

Partially supported by a N. S. F. grant.

the Grothendieck group of the abelian category of $\mathbb{Z}\pi$ -modules which are finitely generated abelian groups. We show that $G(\pi)$ is a ring, and we define a pairing $G(\pi) \times K_0(\mathbb{Z}\pi) \to K_0(\mathbb{Z}\pi)$ making $K_0\mathbb{Z}\pi$) into a module over $G(\pi)$. We actually show that $G(\pi)$ is isomorphic to Swan's Grothendieck group of integral representations of π [6].

Given a Serre fibration $F \to E \xrightarrow{p} B$ with B connected and F homologically finite, we can define $\chi(p) \in G(\pi)$ as $\sum_{i=0}^{\infty} (-1)^{i} [H_{i}(F; \mathbf{Z})]$. $\chi(p)$ can be seen to be independent of a choice of basepoint for B. We have

THEOREM 1.1. Let $F \to E \to B$ be a Serre fibration with E and B connected. Suppose B is finitely dominated and F homologically finite. Then E is $\mathbf{Z}\pi_1 B$ -dominated (using the homomorphism $\mathbf{Z}\pi_1 E \to \mathbf{Z}\pi_1 B$ induced by p) and

$$\sigma(E; \mathbf{Z}\pi_1 B) = \chi(p) \cdot \sigma(B).$$

We obtain a number of corollaries: Let π denote the image of $\pi_1 E$ in $\pi_1 B$. Since $H_*(F)$ is homologically finite, π has finite index in $\pi_1 B$, and hence the restriction map Res : $K_0(\mathbf{Z}\pi_1 B) \to K_0(\mathbf{Z}\pi)$ is defined. π acts on F by taking each component to itself. Define $\chi_0(p) \in G(\pi)$ to be $\sum_{i=0}^{\infty} (-1)^i [H_i(F_0, \mathbf{Z})]$, where F_0 denotes one component of F. We then have

COROLLARY 1.2. Hypothesis as above. Then E is $\mathbf{Z}\pi$ -dominated and

 $\sigma(E;\pi) = \chi(p) \cdot \operatorname{Res} \sigma(B).$

Remarks. If $\pi_1 E \to \pi_1 B$ is injective, then E is finitely dominated and the corollary computes the Wall finiteness obstruction of E. If $\pi_1 B$ acts trivially on $H_*(F, \mathbb{Z})$ then $\chi(p)$ becomes the classical Euler characteristic of F and \cdot denotes the usual \mathbb{Z} -module structure on K_0 .

As an example. let $S^k \to E_k \to B$ be a spherical fibration with $\omega : \pi_1 B \to \mathbb{Z}_2$ denoting the first Stiefel-Whitney class. Let Θ denote the kernel of ω and let $F_* : K_0(\mathbb{Z}\pi_1 B) \to K_0(\mathbb{Z}\pi_1 B)$ be the result of restricting to Θ and then inducting up to $\mathbb{Z}\pi_1 B$. Then

COROLLARY 1.3. Assume B is finitely dominated. Then:

(1) If ω is trivial, then

$$\sigma(E_k) = \begin{cases} 0 & \text{if } k \text{ is odd,} \\ 2\sigma(B) & \text{if } k \text{ is even.} \end{cases}$$

(2) If ω is onto, then

$$\sigma(E_k) = \begin{cases} F_*\sigma(B) & \text{if } k \text{ is even,} \\ 2\sigma(B) - F_*\sigma(B) & \text{if } k \text{ is odd.} \end{cases}$$

(In case k = 0 or 1, $\sigma(E_k)$ should be replaced by $\sigma(E_k, \mathbf{Z}\pi_1 B)$.)

Proof. Case 1 follows immediately from the remarks above. To see case 2, notice that the action of $\pi_1 B$ on the homology of the fibre factors through \mathbf{Z}_2 and $\chi(p)$ is the image of $1 + (-1)^k g$ under the natural map $G(\mathbf{Z}_2) \to G(\pi_1 B)$, where g represents \mathbf{Z} with nontrivial action of \mathbf{Z}_2 . We denote this by \mathbf{Z}^t . If P is a projective $\mathbf{Z}(\pi_1 B)$ -module representing $\sigma(B)$, we need to compute $P \otimes Z^t$, where the action of $\pi_1 B$ on \mathbf{Z} is through ω . However, in $K_0(\mathbf{Z}(\pi_1 B))$ we have

$$[P \otimes \mathbf{Z}^t] = [P \otimes (\mathbf{Z}^t + \mathbf{Z})] - [P]$$
$$= [P \otimes (\mathbf{Z}[\mathbf{Z}_2])] - [P]$$
$$= F_*[P] - [P],$$

and the result follows.

This corollary gives us a general method for constructing examples of the type considered by Anderson [2].

COROLLARY 1.4. Let π be a finitely presented group, $\omega : \pi \to \mathbb{Z}_2$ a nontrivial map and Θ the kernel of ω . Assume there is an element $\alpha \in K_0(\mathbb{Z}\pi)$ such that α is in the kernel of the restriction map $K_0(\mathbb{Z}\pi) \to K_0(\mathbb{Z}\Theta)$ and such that $2\alpha \neq 0$. By Wall [7] we may find a complex B with $\pi_1 B = \pi$ and $\sigma(B) = \alpha$. Given k, it is easy to find a vector bundle of dimension k + 1 with first Stiefel-Whitney class given by ω . Let E_k denote the corresponding sphere-bundle; then

$$\sigma(E_k) \begin{cases} = 0, & k \text{ even,} \\ \neq 0, & k \text{ odd.} \end{cases}$$

As an example we may take $\pi = \mathbf{Z}_6 + \mathbf{Z}_3$. Since by Fröhlich [4], $\widetilde{K}_0(\mathbf{Z}[\mathbf{Z}_3 \oplus \mathbf{Z}_3])$ has order 3 while $\widetilde{K}_0(\mathbf{Z}(\mathbf{Z}_6 \oplus \mathbf{Z}_3))$ has order 81, any element α in ker(Res) will satisfy the conditions of the corollary.

2. In this section we define algebraic functors $G(\pi)$ and $K'_0(\mathbf{Z}\pi)$ and relate these to well-known algebraic objects, namely $G_{\mathbf{Z}}(\pi)$, Swan's Grothendieck group of integral representations, and $K_0(\mathbf{Z}\pi)$.

We define $G(\pi)$ to be the Grothendieck construction on $\mathbb{Z}\pi$ -modules that are finitely generated abelian groups, i. e., as generators we take isomorphism classes of $\mathbb{Z}\pi$ -modules that are finitely generated abelian groups, and if $0 \to A \to B \to C \to 0$ is an exact sequence of such modules we have the relation [A] + [C] = [B]. Similarly we define $K'_0(\mathbb{Z}\pi)$ to be the Grothendieck group of isomorphism classes of finitely generated $\mathbb{Z}\pi$ -modules of homological dimension ≤ 1 .

LEMMA 2.1. Let T be a $\mathbb{Z}\pi$ -module which is finite. Then there is an exact sequence of $\mathbb{Z}\pi$ -modules $0 \to F_2 \to F_1 \to T \to 0$ where F_1 and F_2 are finitely generated free abelian groups.

Proof. Since T is a finite group, $\operatorname{Aut}(T)$ is also finite. Hence π acts on T through a quotient group π' which is finite. We can find a free $\mathbb{Z}\pi'$ -module F_1 and an epimorphism $F_1 \to T$. Let F_2 be the kernel. Then F_1 and F_2 are finitely generated free abelian groups, and $0 \to F_2 \to F_1 \to T \to 0$ is an exact sequence of $\mathbb{Z}\pi'$ - and hence $\mathbb{Z}\pi$ -modules. \Box

LEMMA 2.2. The natural maps $G_{\mathbf{Z}}(\pi) \to G(\pi)$ and $K_0(\mathbf{Z}\pi) \to K'_0(\mathbf{Z}\pi)$ are isomorphisms.

Proof. $G_{\mathbf{Z}}(\pi)$ is the Grothendieck group of $\mathbf{Z}\pi$ -modules which are finitely generated free abelian groups. Let A represent an element of $G(\pi)$. Since A is an abelian group, we have a short exact sequence $0 \to T \to A \to F \to 0$ where T is torsion and F is free. This will be an exact sequence of $\mathbf{Z}\pi$ -modules. By Lemma 2.1 there is an exact sequence $0 \to F_2 \to F_1 \to T \to 0$, where F_1 and F_2 represent elements of $G_{\mathbf{Z}}(\pi)$. We thus have $[A] = [F] + [F_1] - [F_2]$ in $G(\pi)$ and we may define a map $\Sigma : G(\pi) \to G_{\mathbf{Z}}(\pi)$ by

$$\Sigma[A] = [F] + [F_1] - [F_2].$$

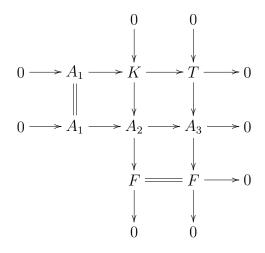
We need only see that Σ is well defined, because by the above remarks, if $I : G_{\mathbf{Z}}(\pi) \to G(\pi)$ denotes the natural map, it will be clear that $I\Sigma = id$ and $\Sigma I = id$. As for well-definedness, it is enough to show that $\Sigma[T]$ is well defined and to show that if $0 \to A_1 \to A_2 \to A_3 \to 0$ is exact, then

$$\Sigma[A_2] = \Sigma[A_1] + \Sigma[A_2]$$

Suppose we have $0 \to H_2 \to H_1 \to T \to 0$, an exact sequence of $\mathbb{Z}\pi$ -modules with H_1 and H_2 finitely generated free abelian groups. Let K be the pullback

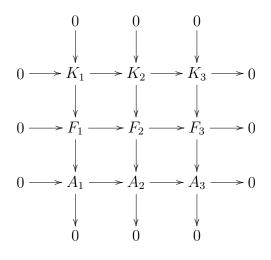
Then $0 \to H_2 \to K \to F_1 \to 0$ and $0 \to F_2 \to K \to H_1 \to 0$ are exact, and K is a finitely generated free abelian group. Hence in $G_{\mathbf{Z}}(\pi)$, $[H_1] - [H_2] = [F_1] - [F_2]$, so $\Sigma[T]$ is well defined.

We prove our equation for $0 \to A_1 \to A_2 \to A_3 \to 0$ in several steps. First suppose that A_1 and A_2 are free abelian groups. Consider



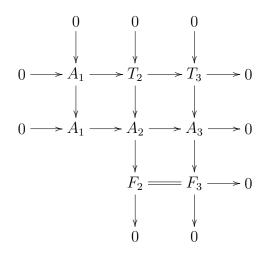
where K is the kernel of $A_2 \to F$. Then K is a finitely generated free abelian group, so in $G_{\mathbf{Z}}(\pi)$ we have $[A_2] = [K] + [F]$, so $\Sigma[A_3] = [F] + \Sigma[T] = [F] + [K] - [A_1] = [A_2] - [A_1]$, since $0 \to A_1 \to K \to T \to 0$ is exact.

The next case to consider is the case that A_1 , A_2 and A_3 are all torsion groups. As in the proof of Lemma 2.1 we may find a finite group π' so that the action of π on each A_i goes through a map $\pi \to \pi' \to \operatorname{Aut}(A_i)$. Then we can produce a diagram of $\mathbb{Z}\pi'$ -modules:



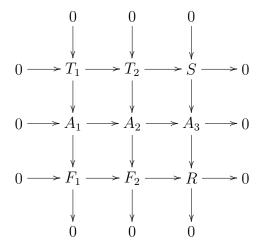
where F_i and K_i are finitely generated free abelian groups that are all $\mathbf{Z}\pi'$ - and hence $\mathbf{Z}\pi$ modules. It is now easy to check that our equation holds in $G_{\mathbf{Z}}(\pi)$.

Now suppose A_1 is a torsion group, and consider



Our equation holds for all three columns and two of the rows, so our equation holds for the last row.

In the general case, consider



Here F_1 and F_2 are free abelian groups, and S is just the quotient of T_2 by T_1 and hence is torsion. Our equation holds for all columns and two of the three rows, so it holds for the third row.

For the proof that $K_0(\mathbf{Z}\pi) \to K'_0(\mathbf{Z}\pi)$ is an isomorphism we refer the reader to Bass [3, p. 407].

Now Swan defines pairings $G_{\mathbf{Z}}(\pi) \times G_{\mathbf{Z}}(\pi) \to G_{\mathbf{Z}}(\pi)$ and $G_{\mathbf{Z}}(\pi) \times K_0(\pi) \to K_0(\mathbf{Z}\pi)$ by tensor product over the integers, the π -action in each case being just $g(a \otimes b) = ga \otimes gb$.

For all of this, see Bass [3, p. 563–565]. The tensor product over **Z** clearly defines a pairing $G(\pi) \times G(\pi)$ to $G(\pi)$, so that I becomes a map of rings.

PROPOSITION 2.3. The tensor product over \mathbf{Z} defines a pairing $G(\pi) \times K_0(\mathbf{Z}\pi) \to K'_0(\mathbf{Z}\pi)$.

Proof. Let *P* be a projective **Z**π-module and *A* a **Z**π-modules which is a finitely generated abelian group. We need to show that $A \otimes_{\mathbf{Z}} P$ is a **Z**π-module of homological dimension ≤ 1 . However, *P*, being a projective **Z**π-module, is a free abelian group (not necessarily finitely generated), so tensoring over **Z** with *P* is exact. Given the short exact sequence of **Z**π-modules $0 \to T \to A \to F \to 0$, where *T* is a torsion and *F* a free abelian group, we have that $0 \to T \otimes_{\mathbf{Z}} P \to A \otimes_{\mathbf{Z}} P \to F \otimes_{\mathbf{Z}} P \to 0$ is exact and $F \otimes_{\mathbf{Z}} P$ is projective. To show $h.d.(A \otimes_{\mathbf{Z}} P) \leq 1$ it thus suffices to show $h.d.(T \otimes_{\mathbf{Z}} P) \leq 1$. But use Lemma 2.1 to find an exact sequence $0 \to F_2 \to F_1 \to T$ with $F_i \mathbf{Z}$ π-modules that are free abelian groups. Then $0 \to F_2 \otimes_{\mathbf{Z}} P \to F_1 \otimes_{\mathbf{Z}} P \to T \otimes_{\mathbf{Z}} P \to 0$ is exact and $F_i \otimes_{\mathbf{Z}} P$ is projective, so $h.d.(T \otimes_{\mathbf{Z}} P) \leq 1$.

3. In this section we prove our main algebraic result. It says that complexes with "nice" homology must be Λ -dominated and that we can compute the Wall obstruction from the homology. A complex is Λ -dominated iff is is chain homotopy equivalent to a complex of finitely generated projective Λ -modules with only finitely many nonzero terms. Of course, X is Λ -dominated iff $S_*(X) \otimes_{\mathbf{Z}\pi_1 X} \Lambda$ is Λ -dominated. A Λ -dominated complex C_* has an invariant $\sigma(C_*) \in K_0(\Lambda)$ defined the usual way as an alternating sum, $\sigma(S_*(X) \otimes_{\mathbf{Z}\pi_1 X} \Lambda) = \sigma(X, \Lambda)$.

PROPOSITION 3.1. Let C_* be a projective chain complex over Λ with $C_* = 0$, * < 0. Suppose that $H_*(C)$ is a finitely generated Λ -module of homological dimension ≤ 1 and $H_*(C) = 0$ for * sufficiently large. Then C_* is Λ -dominated and

$$\sigma(C_*) = \Sigma(-1)^i [H_i(C)] \in K'_0(\Lambda)$$

under the natural isomorphism $K_0(\Lambda) \cong K'_0(\Lambda)$.

Proof. Consider the two short exact sequences

$$0 \to Z_i \to C_i \to B_i \to 0, 0 \to B_{i+1} \to Z_i \to H_i \to 0$$

 C_* projective just means that each C_i is projective (perhaps not finitely generated). By induction we can prove that each B_i and Z_i are projective, so $C_i \cong Z_i \oplus B_i$.

Since $H_i(C)$ is finitely generated and of homological dimension ≤ 1 , we can find finitely generated projective modules Q_{i+1} and P_i with $0 \to Q_{i+1} \to P_i \to H_i \to 0$ exact. If $H_i = 0$, choose $P_i = Q_{i+1} = 0$. Let $D_i = P_i \oplus Q_{i+1}$. It is easy to find a map $D_* \to C_*$ inducing an isomorphism in homology, and hence a chain homotopy equivalence.

Obviously C_* is Λ -dominated. To show $\sigma(C_*) = \Sigma(-1)^i[H_i(C)]$ is now a standard argument.

To get the most out of proposition 3.1 we must observe

PROPOSITION 3.2. Let $0 \to A_* \to B_* \to C_* \to 0$ be a short exact sequence of projective chain complexes over Λ . If any two of these complexes are Λ -dominated, then so is the third, and $\sigma(B_*) = \sigma(A_*) + \sigma(C_*)$.

Proof. If A_* and C_* are Λ -dominated, we can splice together the complexes for A_* and C_* to get one for B_* . The argument is elementary, and the equation follows.

If A_* and B_* are Λ -dominated, C_* is equivalent to the algebraic mapping cone of $A_* \to B_*$. Let D_* be the mapping cone. Then $0 \to B_* \to D_* \to A_{*-1} \to 0$ is exact, so D_* is Λ -dominated, and hence so is C_* . Again the equation follows. The other case is similar.

4.

Proof of Main Theorem. We get our principal geometric insight from a filtration that we put on the base space of our fibration. We then look at the induced filtration on the total space and compute using the results of Sections and .

Without loss of generality we may replace B by a homotopy equivalent CW-complex, and consider the fibration induced over this complex. Wall [7] shows, that since B is finitely dominated, B may be chosen so that there is a finite subcomplex $K \subset B$ with $H_*(\tilde{B}, \tilde{K}; \mathbb{Z}) =$ 0 except for one dimension, and there it is a finitely generated projective $\mathbb{Z}\pi_1 B = \Lambda$ -module. Here \tilde{B} and \tilde{K} denote the universal covers of B and K respectively. We let \tilde{E} denote the pullback of

and $\tilde{p}: \widetilde{E} \to \widetilde{B}$ and $\pi: \widetilde{B} \to B$ be the obvious maps.

The filtration on B is defined as follows: If K has dimension n-1, define $B_n = B$; $B_{n-1} = K$; $B_{n-2} = (n-2)$ -skeleton of K; ...; $B_0 = 0$ -skeleton of K; $B_{-1} =$ empty set.

Notice that $H_*(B_r, B_{r-1}, \mathbb{Z})$ is always 0 except in one dimension and that there is a finitely generated projective Λ -module. Here $\widetilde{B}_r = \pi^{-1}(B_r)$.

Consider the Serre spectral sequence of (E_r, E_{r-1}) where $\tilde{E}_r = \tilde{P}^{-1}(\tilde{B}_r)$. The two-term $E_{p,q}^2$ is just $H_p(\tilde{B}_r, \tilde{B}_{r-1}, H_q(F, \mathbf{Z}))$, but $H_p(\tilde{B}_r, \tilde{B}_{r-1}, \mathbf{Z})$ is 0 or free as an abelian group, so $E_{p,q}^2 = H_p(\tilde{B}_r, \tilde{B}_{r-1}) \otimes H_q(F, \mathbf{Z})$. There is an action of $\pi_1(B)$ on the Serre spectral sequence, and the action of E^2 is just the diagonal action on the tensor product, where $\pi_1(B)$ acts on $H_q(F, \mathbf{Z})$ as usual. Since $H_p(\tilde{B}_r, \tilde{B}_{r-1}) = 0$ except for one value of p, the Serre sequence collapses and we have

$$H_{r+q}(\widetilde{E}_r, \widetilde{E}_{r-1}) \cong H_r(\widetilde{B}_r, \widetilde{B}_{r-1}) \otimes H_q(F).$$

Proposition 2.3 shows that $H_r + q(\widetilde{E}_r, \widetilde{E}_{r-1})$ is a finitely generated Λ -module of homological dimension ≤ 1 . Proposition 3.1 shows that the chain complex for the pair $(\widetilde{E}_r, \widetilde{E}_{r-1})$ is Λ -dominated and $\sigma(\widetilde{E}_r, \widetilde{E}_{r-1}) = \chi(p) \cdot (-1)^r [H_r(\widetilde{B}_r, \widetilde{B}_{r-1})].$

An easy induction argument using proposition 3.2 shows that each \widetilde{E}_r is Λ -dominated and that $\sigma(\widetilde{E}_r) = \chi(p) \cdot \sigma(B_r)$. Since it is a standard fact that the singular chains of \widetilde{E} is isomorphic to $S_*(E) \otimes_{\mathbf{Z}\pi_1 E} \mathbf{Z}\pi_1 B$, we have proved out main theorem:

$$\sigma(E,\Lambda) = \chi(p) \cdot \sigma(B).$$

Proof of Corollary. Let \overline{B} be the cover of B corresponding to the subgroup $\pi \subset \pi_1 B$, where π is the image of π in $\pi_1 B$. Then we have a fibration $F_0 \to E \to \overline{B}$. Since B is finitely dominated and \overline{B} is a finite cover, \overline{B} is finitely dominated. Applying the theorem yield $\sigma(E) = \chi(p) \cdot \sigma(\overline{B})$ and $\sigma(\overline{B}) = \operatorname{Res} \sigma(B)$, as is easy to see directly from the definitions. \Box

We finally notice that if $\pi_1(B)$ acts trivially on $H_*(F)$, multiplication with $\chi(p)$ becomes the usual multiplication with $\chi(F)$, since **Z** with trivial action is the unit of $G(\pi_1 B)$ and $K_0(\mathbf{Z}\pi_1 B)$ is a unital module.

References

- D. R. Anderson, Generalized product theorems for torsion invariants with applications to flat bundles, Bull. Amer. Math. Soc. (N.S.) 78 (1972), 465–469.
- [2] _____, The obstruction to the finiteness of the total space of a flat bundle, Amer. J. Math. 95 (1973), 281–293.
- [3] H. Bass, Algebraic K-theory, Benjamin, 1968.
- [4] A. Fröhlich, On the classgroup of integral grouprings of finite abelian groups, Mathematica 16 (1969), 143–152.
- [5] V. J. Lal, The wall obstruction of a fibration, Invent. Math. 6 (1968), 67–77.
- [6] R. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 267–291.
- [7] C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 56-69.
- [8] _____, Finiteness conditions for CW-complexes II, Proc. Roy. Soc. London Ser. A 295 (1966), 129–139.

Odense, Denmark

NOTRE DAME UNIVERSITY, USA