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1. We wish to study the Wall finiteness obstruction for the total space of a fibration
F → E → B. Such a study was first done by V. J. Lal [5], who neglected the action of
π1(B) on the fibre. This was noticed by D. R. Anderson [2], who produced formulae for the
finiteness obstruction of E in case the fibration is a flat bundle [2, 1]. Our main theorem
gives a partial calculation of the general case: If B and E are finitely dominated and H∗(F )
is a finitely generated Z-module, we compute the image of the Wall obstruction of E in
K0(Zπ1(B)). In case π1(E) → π1(B) is monic, we may refine this to compute the actual
obstruction for E in terms of information on F and B. In this case the assumption that E
is finitely dominated may be replaced by F being the homotopy type of a finite complex.

We begin by establishing some terminology. Let X be a path connected space. We let
S∗(X) denote the singular chain complex of the universal cover of X. There is an action of
π1(X) on S∗(X) making it a free Zπ1X module. Given a ring Λ and a ring homomorphism
Zπ1X → Λ, we say that X is Λ-dominated iff S∗(X)⊗Zπ1X Λ is chain homotopy equivalent
to a complex P∗ of Λ-modules, where each Pi is a finitely generated projective Λ-module and
all Pi are zero except for finitely many.

If X is Λ-dominated, we can form σ(X; Λ) =
∑∞

i=−∞(−1)i[Pi] in K0(Λ). Although many
choices were necessary to form σ(X, Λ), it is easy to check that σ(X; Λ) is independent of all
these choices. Also one sees that σ(X; Λ) is a homotopy invariant and natural with respect
to homomorphisms Λ → Λ1.

We say that X is finitely dominated if X is Zπ1X-dominated (where Zπ1X → Zπ1X is
the identity) and π1X is finitely presented. In this case we write σ(X;Zπ1X) = σ(X).

Wall [7, 8] has proved that a CW complex is dominated by a finite CW complex iff
it is finitely dominated and that it has the homotopy type of a finite CW complex iff

σ(X) ∈ K0(Zπ1X) vanishes in K̃0(Zπ1X). We call the image of σ(X) in K̃0(Zπ1X) the
Wall finiteness obstruction for X.

We say that X is homologically finite if X is Z-dominated, where Zπ1X → Z is the natural
map. It is easy to see that this is the case iff

∑∞
i=0 Hi(X;Z) is a finitely generated abelian

group.
To describe the action of the fundamental group on the homology of the fibre we need

a functor G(π), π a group, and a pairing G(π) × K0(Zπ1X) → K0(Zπ). We let G(π) be

Partially supported by the Danish Research Council.
Partially supported by a N. S. F. grant.

1



2 ERIK KJÆR PEDERSEN AND LAWRENCE R. TAYLOR

the Grothendieck group of the abelian category of Zπ-modules which are finitely generated
abelian groups. We show that G(π) is a ring, and we define a pairing G(π) × K0(Zπ) →
K0(Zπ) making K0Zπ) into a module over G(π). We actually show that G(π) is isomorphic
to Swan’s Grothendieck group of integral representations of π [6].

Given a Serre fibration F → E
p−→ B with B connected and F homologically finite, we can

define χ(p) ∈ G(π) as
∑∞

i=0(−1)i[Hi(F ;Z)]. χ(p) can be seen to be independent of a choice
of basepoint for B. We have

Theorem 1.1. Let F → E → B be a Serre fibration with E and B connected. Suppose
B is finitely dominated and F homologically finite. Then E is Zπ1B-dominated (using the
homomorphism Zπ1E → Zπ1B induced by p) and

σ(E;Zπ1B) = χ(p) · σ(B).

We obtain a number of corollaries: Let π denote the image of π1E in π1B. Since
H∗(F ) is homologically finite, π has finite index in π1B, and hence the restriction map
Res : K0(Zπ1B) → K0(Zπ) is defined. π acts on F by taking each component to itself.
Define χ0(p) ∈ G(π) to be

∑∞
i=0(−1)i[Hi(F0,Z)], where F0 denotes one component of F . We

then have

Corollary 1.2. Hypothesis as above. Then E is Zπ-dominated and

σ(E; π) = χ(p) · Res σ(B).

Remarks. If π1E → π1B is injective, then E is finitely dominated and the corollary computes
the Wall finiteness obstruction of E. If π1B acts trivially on H∗(F,Z) then χ(p) becomes
the classical Euler characteristic of F and · denotes the usual Z-module structure on K0.

As an example. let Sk → Ek → B be a spherical fibration with ω : π1B → Z2 denoting the
first Stiefel-Whitney class. Let Θ denote the kernel of ω and let F∗ : K0(Zπ1B) → K0(Zπ1B)
be the result of restricting to Θ and then inducting up to Zπ1B. Then

Corollary 1.3. Assume B is finitely dominated. Then:

(1) If ω is trivial, then

σ(Ek) =

{
0 if k is odd,

2σ(B) if k is even.

(2) If ω is onto, then

σ(Ek) =

{
F∗σ(B) if k is even,

2σ(B)− F∗σ(B) if k is odd.

(In case k = 0 or 1, σ(Ek) should be replaced by σ(Ek,Zπ1B).)
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Proof. Case 1 follows immediately from the remarks above. To see case 2, notice that the
action of π1B on the homology of the fibre factors through Z2 and χ(p) is the image of
1 + (−1)kg under the natural map G(Z2) → G(π1B), where g represents Z with nontrivial
action of Z2. We denote this by Zt. If P is a projective Z(π1B)-module representing σ(B),
we need to compute P ⊗ Zt, where the action of π1B on Z is through ω. However, in
K0(Z(π1B)) we have

[P ⊗ Zt] = [P ⊗ (Zt + Z)]− [P ]

= [P ⊗ (Z[Z2])]− [P ]

= F∗[P ]− [P ],

and the result follows. �

This corollary gives us a general method for constructing examples of the type considered
by Anderson [2].

Corollary 1.4. Let π be a finitely presented group, ω : π → Z2 a nontrivial map and Θ
the kernel of ω. Assume there is an element α ∈ K0(Zπ) such that α is in the kernel of
the restriction map K0(Zπ) → K0(ZΘ) and such that 2α 6= 0. By Wall [7] we may find
a complex B with π1B = π and σ(B) = α. Given k, it is easy to find a vector bundle of
dimension k +1 with first Stiefel-Whitney class given by ω. Let Ek denote the corresponding
sphere-bundle; then

σ(Ek)

{
= 0, k even,

6= 0, k odd.

As an example we may take π = Z6 + Z3. Since by Fröhlich [4], K̃0(Z[Z3⊕Z3]) has order 3

while K̃0(Z(Z6 ⊕ Z3)) has order 81, any element α in ker(Res) will satisfy the conditions of
the corollary.

2. In this section we define algebraic functors G(π) and K ′
0(Zπ) and relate these to

well-known algebraic objects, namely GZ(π), Swan’s Grothendieck group of integral repre-
sentations, and K0(Zπ).

We define G(π) to be the Grothendieck construction on Zπ-modules that are finitely
generated abelian groups, i. e., as generators we take isomorphism classes of Zπ-modules
that are finitely generated abelian groups, and if 0 → A → B → C → 0 is an exact sequence
of such modules we have the relation [A] + [C] = [B]. Similarly we define K ′

0(Zπ) to be the
Grothendieck group of isomorphism classes of finitely generated Zπ-modules of homological
dimension ≤ 1.

Lemma 2.1. Let T be a Zπ-module which is finite. Then there is an exact sequence of
Zπ-modules 0 → F2 → F1 → T → 0 where F1 and F2 are finitely generated free abelian
groups.
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Proof. Since T is a finite group, Aut(T ) is also finite. Hence π acts on T through a quotient
group π′ which is finite. We can find a free Zπ′-module F1 and an epimorphism F1 → T .
Let F2 be the kernel. Then F1 and F2 are finitely generated free abelian groups, and 0 →
F2 → F1 → T → 0 is an exact sequence of Zπ′- and hence Zπ-modules. �

Lemma 2.2. The natural maps GZ(π) → G(π) and K0(Zπ) → K ′
0(Zπ) are isomorphisms.

Proof. GZ(π) is the Grothendieck group of Zπ-modules which are finitely generated free
abelian groups. Let A represent an element of G(π). Since A is an abelian group, we
have a short exact sequence 0 → T → A → F → 0 where T is torsion and F is free.
This will be an exact sequence of Zπ-modules. By Lemma 2.1 there is an exact sequence
0 → F2 → F1 → T → 0, where F1 and F2 represent elements of GZ(π). We thus have
[A] = [F ] + [F1]− [F2] in G(π) and we may define a map Σ : G(π) → GZ(π) by

Σ[A] = [F ] + [F1]− [F2].

We need only see that Σ is well defined, because by the above remarks, if I : GZ(π) → G(π)
denotes the natural map, it will be clear that IΣ = id and ΣI = id. As for well-definedness,
it is enough to show that Σ[T ] is well defined and to show that if 0 → A1 → A2 → A3 → 0
is exact, then

Σ[A2] = Σ[A1] + Σ[A2]

Suppose we have 0 → H2 → H1 → T → 0, an exact sequence of Zπ-modules with H1 and
H2 finitely generated free abelian groups. Let K be the pullback

K //

��

F1

��
H1

// T

Then 0 → H2 → K → F1 → 0 and 0 → F2 → K → H1 → 0 are exact, and K is a finitely
generated free abelian group. Hence in GZ(π), [H1] − [H2] = [F1] − [F2], so Σ[T ] is well
defined.
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We prove our equation for 0 → A1 → A2 → A3 → 0 in several steps. First suppose that
A1 and A2 are free abelian groups. Consider

0

��

0

��
0 // A1

// K //

��

T //

��

0

0 // A1
// A2

//

��

A3
//

��

0

F

��

F

��

// 0

0 0

where K is the kernel of A2 → F . Then K is a finitely generated free abelian group, so in
GZ(π) we have [A2] = [K] + [F ], so Σ[A3] = [F ] + Σ[T ] = [F ] + [K] − [A1] = [A2] − [A1],
since 0 → A1 → K → T → 0 is exact.

The next case to consider is the case that A1, A2 and A3 are all torsion groups. As in the
proof of Lemma 2.1 we may find a finite group π′ so that the action of π on each Ai goes
through a map π → π′ → Aut(Ai). Then we can produce a diagram of Zπ′-modules:

0

��

0

��

0

��
0 // K1

//

��

K2

��

// K3

��

// 0

0 // F1
//

��

F2

��

// F3

��

// 0

0 // A1
//

��

A2

��

// A3

��

// 0

0 0 0

where Fi and Ki are finitely generated free abelian groups that are all Zπ′- and hence Zπ-
modules. It is now easy to check that our equation holds in GZ(π).
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Now suppose A1 is a torsion group, and consider

0

��

0

��

0

��
0 // A1

��

// T2

��

// T3

��

// 0

0 // A1
// A2

��

// A3

��

// 0

F2

��

F3

��

// 0

0 0

Our equation holds for all three columns and two of the rows, so our equation holds for the
last row.

In the general case, consider

0

��

0

��

0

��
0 // T1

��

// T2

��

// S

��

// 0

0 // A1

��

// A2

��

// A3

��

// 0

0 // F1

��

// F2

��

// R

��

// 0

0 0 0

Here F1 and F2 are free abelian groups, and S is just the quotient of T2 by T1 and hence is
torsion. Our equation holds for all columns and two of the three rows, so it holds for the
third row.

For the proof that K0(Zπ) → K ′
0(Zπ) is an isomorphism we refer the reader to Bass [3,

p. 407].
�

Now Swan defines pairings GZ(π) × GZ(π) → GZ(π) and GZ(π) × K0(π) → K0(Zπ) by
tensor product over the integers, the π-action in each case being just g(a ⊗ b) = ga ⊗ gb.
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For all of this, see Bass [3, p. 563–565]. The tensor product over Z clearly defines a pairing
G(π)×G(π) to G(π), so that I becomes a map of rings.

Proposition 2.3. The tensor product over Z defines a pairing G(π)×K0(Zπ) → K ′
0(Zπ).

Proof. Let P be a projective Zπ-module and A a Zπ-modules which is a finitely generated
abelian group. We need to show that A ⊗Z P is a Zπ-module of homological dimension
≤ 1. However, P , being a projective Zπ-module, is a free abelian group (not necessarily
finitely generated), so tensoring over Z with P is exact. Given the short exact sequence of
Zπ-modules 0 → T → A → F → 0, where T is a torsion and F a free abelian group, we
have that 0 → T ⊗Z P → A ⊗Z P → F ⊗Z P → 0 is exact and F ⊗Z P is projective. To
show h.d.(A ⊗Z P ) ≤ 1 it thus suffices to show h.d.(T ⊗Z P ) ≤ 1. But use Lemma 2.1 to
find an exact sequence 0 → F2 → F1 → T with Fi Zπ-modules that are free abelian groups.
Then 0 → F2 ⊗Z P → F1 ⊗Z P → T ⊗Z P → 0 is exact and Fi ⊗Z P is projective, so
h.d.(T ⊗Z P ) ≤ 1. �

3. In this section we prove our main algebraic result. It says that complexes with
“nice” homology must be Λ-dominated and that we can compute the Wall obstruction from
the homology. A complex is Λ-dominated iff is is chain homotopy equivalent to a complex of
finitely generated projective Λ-modules with only finitely many nonzero terms. Of course,
X is Λ-dominated iff S∗(X) ⊗Zπ1X Λ is Λ-dominated. A Λ-dominated complex C∗ has an
invariant σ(C∗) ∈ K0(Λ) defined the usual way as an alternating sum, σ(S∗(X)⊗Zπ1X Λ) =
σ(X, Λ).

Proposition 3.1. Let C∗ be a projective chain complex over Λ with C∗ = 0, ∗ < 0.
Suppose that H∗(C) is a finitely generated Λ-module of homological dimension ≤ 1 and
H∗(C) = 0 for ∗ sufficiently large. Then C∗ is Λ-dominated and

σ(C∗) = Σ(−1)i[Hi(C)] ∈ K ′
0(Λ)

under the natural isomorphism K0(Λ) ∼= K ′
0(Λ).

Proof. Consider the two short exact sequences

0 → Zi → Ci → Bi → 0,

0 → Bi+1 → Zi → Hi → 0.

C∗ projective just means that each Ci is projective (perhaps not finitely generated). By
induction we can prove that each Bi and Zi are projective, so Ci

∼= Zi ⊕Bi.
Since Hi(C) is finitely generated and of homological dimension ≤ 1, we can find finitely

generated projective modules Qi+1 and Pi with 0 → Qi+1 → Pi → Hi → 0 exact. If Hi = 0,
choose Pi = Qi+1 = 0. Let Di = Pi ⊕ Qi+1. It is easy to find a map D∗ → C∗ inducing an
isomorphism in homology, and hence a chain homotopy equivalence.

Obviously C∗ is Λ-dominated. To show σ(C∗) = Σ(−1)i[Hi(C)] is now a standard argu-
ment. �
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To get the most out of proposition 3.1 we must observe

Proposition 3.2. Let 0 → A∗ → B∗ → C∗ → 0 be a short exact sequence of projective
chain complexes over Λ. If any two of these complexes are Λ-dominated, then so is the third,
and σ(B∗) = σ(A∗) + σ(C∗).

Proof. If A∗ and C∗ are Λ-dominated, we can splice together the complexes for A∗ and C∗
to get one for B∗. The argument is elementary, and the equation follows.

If A∗ and B∗ are Λ-dominated, C∗ is equivalent to the algebraic mapping cone of A∗ → B∗.
Let D∗ be the mapping cone. Then 0 → B∗ → D∗ → A∗−1 → 0 is exact, so D∗ is Λ-
dominated, and hence so is C∗. Again the equation follows. The other case is similar. �

4.

Proof of Main Theorem. We get our principal geometric insight from a filtration that we put
on the base space of our fibration. We then look at the induced filtration on the total space
and compute using the results of Sections and .

Without loss of generality we may replace B by a homotopy equivalent CW-complex,
and consider the fibration induced over this complex. Wall [7] shows, that since B is finitely

dominated, B may be chosen so that there is a finite subcomplex K ⊂ B with H∗(B̃, K̃;Z) =
0 except for one dimension, and there it is a finitely generated projective Zπ1B = Λ-module.

Here B̃ and K̃ denote the universal covers of B and K respectively. We let Ẽ denote the
pullback of

B̃

��
E // B

and p̃ : Ẽ → B̃ and π : B̃ → B be the obvious maps.
The filtration on B is defined as follows: If K has dimension n − 1, define Bn = B;

Bn−1 = K; Bn−2 = (n− 2)-skeleton of K; . . .; B0 = 0-skeleton of K; B−1 = empty set.

Notice that H∗(B̃r, B̃r−1,Z) is always 0 except in one dimension and that there is a finitely

generated projective Λ-module. Here B̃r = π−1(Br).

Consider the Serre spectral sequence of (Er, Er−1) where Ẽr = P̃−1(B̃r). The two-term

E2
p,q is just Hp(B̃r, B̃r−1, Hq(F,Z)), but Hp(B̃r, B̃r−1,Z) is 0 or free as an abelian group, so

E2
p,q = Hp(B̃r, B̃r−1)⊗Hq(F,Z). There is an action of π1(B) on the Serre spectral sequence,

and the action of E2 is just the diagonal action on the tensor product, where π1(B) acts

on Hq(F,Z) as usual. Since Hp(B̃r, B̃r−1) = 0 except for one value of p, the Serre sequence
collapses and we have

Hr+q(Ẽr, Ẽr−1) ∼= Hr(B̃r, B̃r−1)⊗Hq(F ).
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Proposition 2.3 shows that Hr + q(Ẽr, Ẽr−1) is a finitely generated Λ-module of homological

dimension ≤ 1. Proposition 3.1 shows that the chain complex for the pair (Ẽr, Ẽr−1) is

Λ-dominated and σ(Ẽr, Ẽr−1) = χ(p) · (−1)r[Hr(B̃r, B̃r−1)].

An easy induction argument using proposition 3.2 shows that each Ẽr is Λ-dominated

and that σ(Ẽr) = χ(p) · σ(Br). Since it is a standard fact that the singular chains of Ẽ is
isomorphic to S∗(E)⊗Zπ1E Zπ1B, we have proved out main theorem:

σ(E, Λ) = χ(p) · σ(B).

�

Proof of Corollary. Let B be the cover of B corresponding to the subgroup π ⊂ π1B, where
π is the image of π in π1B. Then we have a fibration F0 → E → B. Since B is finitely
dominated and B is a finite cover, B is finitely dominated. Applying the theorem yield
σ(E) = χ(p) · σ(B) and σ(B) = Res σ(B), as is easy to see directly from the definitions. �

We finally notice that if π1(B) acts trivially on H∗(F ), multiplication with χ(p) becomes
the usual multiplication with χ(F ), since Z with trivial action is the unit of G(π1B) and
K0(Zπ1B) is a unital module.
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