THE REALIZABILITY OF LOCAL LOOP SPACES AS
MANIFOLDS

TILMAN BAUER AND ERIK KJAR PEDERSEN

ABSTRACT. As an extension of earlier work, we show that every P-local loop
space, where P is a set of primes, is homotopy equivalent to the P-localization
of a compact, smooth, parallelizable manifold. A similar result is also proved
for P-complete loop spaces.

1. INTRODUCTION

In [BKNPO02], it was shown that every quasifinite loop space is homotopy equiv-
alent to a parallelizable, compact, smooth manifold. In this paper, we prove a
stronger local version of this result.

Let R be a commutative ring. We call a nilpotent space X R-finite if H,(X; R)
is totally finitely generated as an R-module, and R-local if [V, X] = 0 for every
H,.(—; R)-acyclic space Y. For any such R, there exists a localization functor Lg :
Top — Top. For a set of primes P, call a nilpotent space X P-local (resp. P-
complete) if it is local with respect to R = Zp) (resp. R =2Z/P =[] pZ/p.)
We abbreviate the corresponding localization functors by L(py and Lp. A nilpotent
space X is P-complete if and only if X ~ HpE p LpX. By the universal coefficient
theorem, a finite loop space is Zp)-finite and Z/P-finite for any set of primes P.

The main result of this paper can be cast in a local and in a complete setting:

THEOREM 1.1. Let P be a collection of primes, and let X be a P-local, Zpy-finite
loop space. Then X is homotopy equivalent to the P-localization of a compact,
smooth, parallelizable manifold.

THEOREM 1.2. Let P be a collection of primes, and let X be a nilpotent P-complete
space. Assume that there exist integers {dy,...,d,.} such that for all primes p € P,
L, X is a p-compact group with degrees d;. Then X is homotopy equivalent to the
P-completion of a compact, smooth, parallelizable manifold.

Setting P = the set of all primes, we recover from Thm 1.1 the main result of
[BKNPO2] that every quasifinite (i. e. Z-finite) loop space is homotopy equivalent
to a compact, smooth, parallelizable manifold.

On the other extreme, we have as a special case of Thm. 1.2:

COROLLARY 1.3. FEwvery p-compact group is the p-completion of a compact, smooth,
parallelizable manifold.

A natural question to ask is whether Thm. 1.1 can be reduced to the global
setting of [BKNP02] by showing that every space satisfying the conditions of Thm.
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1.1 can be represented as the P-localization (resp. P-completion) of a quasifinite
loop space. This is in fact not the case, which is illustrated by the following theorem
[Cla63]

THEOREM 1.4 (Clark). Every nontrivial quasifinite loop space X with finite funda-
mental group has H3(X; Q) # 0.

On the other hand, simple p-compact groups typically have trivial third coho-
mology.

Theorem 1.1 can be further strengthened.

It is sufficient to assume that X is a p-compact group after completing at every
prime p € P. For P-local spaces, we have

ProrosITION 1.5. If X is a P-local space such that L, X is a p-compact group for
each p € P, then X has a unique structure as a loop space such that all X — L, X
are loop maps.

An interesting problem not addressed in this paper is finding explicit manifold
models for simple p-compact groups in nontrivial cases (meaning neither of Lie type
nor a sphere).

2. LIFTS OF LOOP SPACE STRUCTURES

Theorem 1.2 reduces to Theorem 1.1 by the implication (2)=(4) in the following
lemma, together with the fact that giving a loop structure on a P-complete space
X is equivalent to giving (independently) loop structures on every L,X, p € P

LEMMA 2.1. Let X be a P-complete loop space with finite mod p homology for every
p € P. Then the following are equivalent:

(1) X is the P-completion of a Z-finite CW complex;

(2) There exist positive integers {dx, ..., d,} such that the p-compact group L, X
has those degrees for all p;

(3) There exist positive integers {dy,...,d.} such that as loop spaces,

LoX ~ [ K(Ap,2d; — 1),
i=1

where Ap = (HpeP Zp> ® Q is the ring of finite adeles of Z(py. (If P is

finite, this is of course just HpeP Q,.)
(4) X is the P-completion of a Zp)-finite, P-local loop space.

Proof. (1)=(2): Let X = LpF for a finite CW-complex F'.
H* (L, X;Z,) ® Q= H"(F;Z,) Q= H"(F;Q) ® Q,.

This shows that H*(L,X;Z,) ® Q is an exterior algebra, and the degrees are
independent of p.
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(2)=>(3): By [ABGP03, Thm. 2.1], L,X ~ L, ([[;_, S?*%"!) for p > h =
max;{d;}. Thus

LoX ~ [[ LeX, x Lo | [] li[Lps?di—1

p<h p>hi=1
~ [ Lol [[S** ' x [[ La [ L»S**
p<h i=1 i=1  p>h
~ HLQLPS2di71.
i=1
Furthermore,
0; k+#2d—1
T Lol Sdel _ ® T S2d71 _ )
MrQP Q pellk( ) Ap; k=2d—1.

Thus LqBX is a space with homotopy groups concentrated in even dimensions,
and hence a product of Eilenberg-Mac Lane spaces

LoBX ~ [[ K(Ap,2d;).
i=1
which proves (3).

(3)=(4): Define BK = [[\_; K(Q,2d;), and let BK — LqBX be the product
of the maps induced by the unit ring map Q — Ap. Let BF be the homotopy
pullback of BK — LqBX « BX. It remains to show that K = QBK is Zp)-
finite. Since Q and ]_[pe p Z, generate Ap, the Mayer-Vietoris sequence for the
homotopy groups of a fiber product splits, and hence

m(BF) = (P Z(p) & €D Tor(Z, 7, (BX,)).
{i|2d;=n} peP

Thus ,(F) is finitely generated as a Zpy-module, hence so is H"(F;Zpy) for all
n. There exists a d such that H(F;Z,) = H(X;Z,) =0 for all p € P and i > d.
Since H'(F; z,) = H'(F;Z)) @z, Zp and H'(F;Z,)) is finitely generated, it
follows that H'(F;Z)) = 0 for those i and all p € P. Thus H'(F;Zp)) = 0 for
those ¢ as well.

(4)=(1): Let Fp be such a P-local, Zp)-finite space, and let @ be the com-
plementary set of primes. Choose Fg to be a Q-local, Zg)-finite space such that
LqFg =2 LqFp, and let F' be the pullback of Fyg — LqoFp < Fp. Since F is
Zp)-finite and Zq)-finite, it is Z-finite. [

LEMMA 2.2. Let X be a Q-finite rational loop space, or the rationalization of a
P-complete space satisfying the equivalent conditions of Lemma 2.1 for a set of
primes P. Then it has a unique deloop, i.e. for every space Y such that QY ~ X
we have Y ~ BX. The unique loop structure on X is commutative.

Proof. If X is a Q-finite rational loop space, H*(X; Q) is an exterior algebra on
finitely many odd-dimensional generators. Hence for any Y such that QY ~ X
H*(Y; Q) is an even polynomial algebra. Any two such rational spaces are equiv-
alent since all k-invariants necessarily vanish. The unique deloop is a product of
even-dimensional Eilenberg-Mac Lane spaces, therefore X is abelian.
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A similar argument works for rationalizations of P-complete Z/P-finite loop
spaces. In that case, X is homotopy equivalent to a product of K(Ap,odd). ([

LEMMA 2.3. Let P be a set of primes and let X satisfy the equivalent conditions of
Lemma 2.1. Let f: Y — X be a P-completion map for a P-local space Y. ThenY
is Z(py-finite and carries a unique loop structure such that' Y — X is a loop map.

Proof. Consider the arithmetic pullback diagram

y— T v~ x

|

LqY 224 LoLpy ~ LoX.

The Zp)-finiteness follows from the argument given in Prop. 2.1(3) =(4). As
X — LqX is given as a loop map, loop structures on Y such that f is a loop map
are in one-to-one correspondence with loop structures on LqY such that Lq f is a
loop map.

Giving a loop structure on LqQY is equivalent to giving a Hopf algebra structure
on H*(Y; Q) extending the cohomology algebra structure. Since any loop structure
on LqY is commutative, such a Hopf algebra structure is completely determined
by the vector space of primitives in H*(Y; Q). Now Lqf induces an isomorphism
of A p-algebras

o HY(X;Zp) ©Q = HY(Y;Q) ® Ap.
This is an isomorphism of Hopf algebras if and only if
fT(P(H*(X;Zp)®Q)) = P(H*(Y;Q)) © Ap.

This shows that the only possible choice for the vector space of primitives in
H*(Y;Q) is (f*P(H*(X;Zp) ® Q)) N H*(Y;Q), showing existence and unique-
ness of the loop space structure. (I

Proof of Prop. 1.5. We have a loop structure on L, X for every p € P, or equiva-
lently on the P-completion of X. We can lift this uniquely to X by Lemma 2.3,
proving the Proposition. (I

3. DOUBLE 1-TORI

Recall [BK72, Chapter IV] that associated to any commutative ring R and group
G, there is a notion of R-completion of G compatible with R-localization of nilpotent
spaces. We will denote by Z g the R-localization of the integers and by Qr = ZrRQ
the R-localization of the rationals. Thus Zz,, = Z, and Zz(p) = Zy). The
localizations Gi carry a natural profinite topology. Similarly, for R-local spaces X,
the chain complex C,(X) naturally carries a profinite topology. If A is an abelian
group, we denote by H,(X;A) the homology of the chain complex C,(X)®A and
by H*(X;A) the cohomology of the cochain complex Hom®"" (C,(X); A). We
abbreviate H,(X) = H.(X;Zp) and H*(X) = H*(X;ZR).

For an R-local finite loop space X, define the level of X to be the smallest
I such that H**'(X;Qpg) # 0. Note that since the cohomology ring is a finite
dimensional Hopf algebra, it is generated by odd degree exterior classes. Define the
rank of X to be the number of exterior generators in H*(X; Qg).
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In [BKNPO02], the pivotal tool for studying the finiteness obstruction and the
surgery obstruction for a loop space X as well as for mixing homotopy types is

DEFINITION 3.1. Let R be aring and X be an R-finite, R-local, nilpotent, connected
space. We say that X admits a double 1-torus if there is a diagram of horizontal
and vertical fibrations of nilpotent spaces

LpS! =——— LzS! *w{
LpS'xC———>x—2 57
| |
C i y —2 7

where C = Z/2 if % is not in R, and trivial otherwise, satisfying the following
additional conditions:

(1) Z is R-finite,

) Y is stably reducible,

) X — Y is orientable,

) m1(po) is an isomorphism, and

5) Y % Z induces an isomorphism m; (Y) x C 2 71(Z).

(2
(3
(4
(

Such an object was called rationally splitting in [BKNP02] if it rationally splits
off a Hopf fibration. This condition needs to be relaxed for the present purposes.

DEFINITION 3.2. A 1-torus LzrS* — X 2% Y is called rationally splitting of level
L if po rationally has a retract of the form LqLrS' — LqLrS**! — LoLrCP".

Thus, a rational splitting in the sense of [BKNP02] is a rational splitting of level
1.

PROPOSITION 3.3. Given a sequence of positive integers (ng,ni, . ..,ng) where k >
1. Then there exists a bundle of manifolds S — M — N satisfying the following
conditions:

(1) N is stably parallelizable

(2) M is parallelizable

(3) Rationally the bundle is a product of the standard bundle LgS' — LgS*™*! —
LqCP™ and trivial bundles x — LqS* it — LgS?™i*! for 1 <i<k.

(4) There exists an Ny € N, depending only on the integers n;, such that

k
LM ~ [[ L8+ for allp > No.
=0

Proof. We start out with the manifold X = CP™ x Hle S27i+1 The Spivak
normal fibration is rationally trivial, so a multiple of the top class of £¢X is spherical
for sufficiently large d. Making the Thom collapse map S™ — Y¢X transverse to
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X establishes a rational surgery problem

VN —>= X x R?

L,

N————X

with f of some non-zero degree on the top homology. Since X is an integral Poincaré
duality space, the only possible surgery obstruction to turning f into a homotopy
equivalence is the signature obstruction [TW79] when m = dim X is divisible by
4. However, the signature of X is zero since k£ > 1, and Hirzebruch’s signature
theorem implies that the signature of N is also zero since its normal bundle is
trivial (condition (1)).

Since H?(N,Q) = Q there is a nonzero integral class represented by a map
N — BS! classifying a bundle S' — M — N. The Serre spectral sequence for this
fibration immediately shows that requirement (3) is satisfied. To see (2), that M is
parallelizable, we proceed as in [BKNP02], using the criterion of [Dup70, Sut76]. If
the dimension of M is even, the parallelizability of a stably parallelizable manifold
is determined by the vanishing of the Euler characteristic of M which is clearly
0 in this case. If the dimension is 1, 3, or 7, M is automatically parallelizable;
for all other odd dimensions, M is parallelizable if and only if its Kervaire semi-
characteristic kK(X) vanishes. It is defined as

H(X)Z% > dim Hy(X;Fs) | (mod 2).
i>0

In this case dim N = m = 2[ is even, and an easy rational computation shows that
the Euler characteristic of N is 0. Thus the total dimension of H,(N;F3) is even.
We may assume the Serre spectral sequence of S* — M — N with Z/2-coefficients
collapses, since we otherwise could have composed N — BS! with the degree two
map BS! — BS! without affecting the rational types. It thus follows from the
spectral sequence that the total dimension of H,.(M;F5) is divisible by four, and
hence the Kervaire semi-characteristic is zero.

To prove (4), let {e; | 0 < i < k} denote a basis of the indecomposables of
H*(M;Z) modulo torsion and consider the lifting problem

k
H SQni—‘rl
=0
7 l
= k
M —— ] K(Z20:+ 1)
=0

where the vertical map is the Hurewicz map, whose fiber will be denoted by F. The
obstructions to this lifting problem lie in H**!(M;m;(F)). The homotopy groups
7;(F') are all finite since the dimensions 2n; + 1 are odd. If Ny = l.e.m.{#m;(F) |
1 <4 < dim M} then a lift exists after inverting Ny. Being parallelizable, M is
in particular orientable and hence dim M = ngn; - - - ng; thus Ny only depends on
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the integers n;. The lift is an HF-isomorphism for p > Ny, and thus induces an
equivalence L,M — [[ L,S?" 1. O

PROPOSITION 3.4. Let P = Py U Py be a partition of a set of primes, and let G be
a simply connected P-local space such that Gp,y is a Pi-local finite loop space of
level | and rank bigger than one, and G p,) is the Py-localization of the total space
of a bundle S* — M — N satisfying the properties of Prop. 3.3 and such that
LM ~ LqG. Assume that for each p € Pi, L,G has finite center, and that either
2¢& P or

(%)

LyG/Z(LyG) is not equivalent to Ly SO(3)! x Ly SO(5)¢ for 1 >0 and € =0, 1.

Then G admits a rationally splitting double 1-torus of level [.

Proof. The argument is a variation, and simplification, of the proof of [BKNP02,
Prop. 5.3, Prop. 4.3, and Prop. 4.1].

Note that by [ABGP03, Thm. 2.1] and Prop. 3.3(4), there exists an N > 0
such that L,G is homotopy equivalent to a product of p—complete odd-dimensional
spheres for all p > N, p € P. Thus, by property (4) of Prop. 3.3, L,G is homotopy
equivalent to L, M for all but finitely many p € P;. Hence we may assume without
loss of generality that P; is finite.

Let r = rk(Lp,)G) and 7" = max{rk, Z(L,G) | p € P} be the maximal p-rank
of the centers of the p-compact groups L,G. It was proved in [BKNP02, Lemma
5.2] that 7/ < r unless p = 2 and G has type 3*. Let 7" = (S')"" and choose a
torus

T" = L,T" 5 L,G
containing the center of L,G for all p € P; [DW95]. Extend this to a maximal
torus
T=T xT'— LT x L,T" 22, [ G.
Let (t1,...,t~) be coordinates on 7" and (¢,/41,...,t.) on T".
For p € Py, the map (L,G)/(L,T) — L,BT induced by the subgroup inclusion
1, induces an isomorphism

HQ(LPBT§ Q) — HQ((LPG)/(LPT)§ Qp).
Let g;, denote the image of L,Bt;
Choose maps g, h, defining the rational homotopy equivalence
gxh: G2 LoM — LoS?*! x LqY,
where Y is a product of odd-dimensional spheres such that LoN ~ LQCPZ X

LQY. Since [X, LoS?T!] = H2+1(X), g also denotes a class outside the image of
H?+Y(N;Q) — H*TY(M;Q) = H¥*+1(G; Q). Under the map

H*N G Q) & H*(BLQG; Q) — H*3(BLgL,G;Q,)

LN H2l+2(LpBT; Qp) >~ (Qp[tla e at’l“DH»l 5

g maps to nonzero homogeneous polynomials f, of degree [ 41 for all p € P;.

For every a = (a,...,q,) € Z", define S* = S, — T by t — aity + - + at,,
where ¢ is a coordinate on S'. Then S, is a subgroup of T if and only if the set « is
coprime; moreover, i,(LyS) € L,G intersects the center of L,G trivially if p { ¢
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for some 1 < j <r/. For p € P, denote by g, € H*((L,G)/(LpSa); Qp) the image
of the coordinate t € H?(BS,; Q) under the map classifying the fibration
LpSa = LpG — (LpG) /(LpSa).
We thus have a commutative diagram

H* (LpBT; Qp) - H*((L;DG)/(LPT); Qp)
ti p————=>{ip

L]

ot ——— Qigp
H*(L,BSa;Qp) —= H*((LpG)/(LpSa); Qp)-

In H?*2(—;Q,), we also have

It 0
v ]
ﬁ

fplagt, ... apt) ———

folar, ..., a )ttt fp(al,...,ar)qé“.

In order for S, to induce a splitting 1-torus on L,G for a given p € P;, we need «
to satisfy the following two conditions:

(1) {a,...,a} are coprime; and
(2) fploq,...,an) #0.

We can always arrange this by choosing oy = 1; since f, is homogeneous of
degree [ +1, f, = fy(1,a2,...,a;) is a nonzero polynomial for all p € P;. Since Py
is finite, ag, ..., @, can be chosen in such a way that (1, as, ..., «,) is not a zero of
fp for any p € P;.

Now condition (1) ensures that S, meets the center of L,G trivially. Condition
(2) implies that g5 = 0 and thus

H*((LpG)/(LpSa); Qp) = Qplay)/(4,") @ H* (LpG: Qp)/(9)

which implies that L,S, — L,G — (L,G)/(L,S,) has a rational splitting of level
[+1.

Let

S8, — LpG =[] L,G
peP

be the map thus constructed for p € Py, and the fiber inclusion S' — M followed by
p-completion for p € P». Denote by L,G — L,G/L,S the quotient of the subgroup
inclusion for p € P; and the p-completion of the fibration M — N for p € P5. Thus
for every p € P, L,S — L,G — L,G/L,S is a rationally splitting 1-torus. Thus,

LpG _— LQLPG L—N> LQLPSQH_l X LQLpY

| |

L,G/LyS — Lq(LyG/LyS) ——> LqL,CP' x LoL,Y.
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The map L, (g x k) induces a map LqLpG — LqLpS?*tx LqLpY since it comes
from a map G — LqS?*1 x Lq. Likewise, for p € P, h,, is the image of a rationally
defined map. This together with the fact that P is finite implies that the diagram
above can be lifted to a diagram

LPG LQLPG = LQLPSQZ+1 X LQLPY

| | |

LpG/LpS — Lq(LpG/LpS) —> LoLpCP! x LqLpY.

We now address the problem of lifting this to G.
Consider the diagram

G LQG . = LQSQl+1 X LQY
RN ~ ‘ \
ZO \L LQCPl X LQY
LpG LQLPG — = |- LQLPSQl+1 X LQLPY

T~ T~ T~

LPG/LPS LQ(LPG/LPS) — = LQLPCPl X LQLPY

where the bottom two rows are the diagram constructed before, and Zj is defined
as the pullback.Hence we can also fill in a map LoG — Zy. Let S' — G — Z be
the pullback of this diagram. This constitutes a rationally splitting 1-torus of level
[. The only axiom that is not quite immediate is the Zp)-finiteness of Z, but it
follows in the same way as in the proof of Prop. 2.1(3)= (4).

Now if 2 € P it was shown in [BKNP02, Lemma 5.2] that under the hypothesis
(%), this 1-torus can be extended to a double 1-torus, and the proof is finished. O

COROLLARY 3.5. Let P be any set of primes, and let G be an n-dimensional P-
local loop space of level I and rank bigger than one satisfying (x). Then there exists
a finite n-dimensional CW-complex X whose P-localization (resp. P-completion)
is homotopy equivalent to G and such that X admits a rationally splitting double
1-torus of level [.

Proof. It was shown in [BKNP02] how to reduce to the case where G has finite
fundamental group. For the reader’s convenience, we recall the argument. Choose
a map BG — L(p)(BS")* which is an isomorphism on H?(—;Zp)), and denote
its homotopy fiber by BG’. Then G’ has finite fundamental group. Moreover, the
map given by

Ly (81" = GF = G,
representing a basis of 71 (G) modulo torsion, is easily seen to be a section of
G — L(p)(Sl)’“7 thus G ~ G’ x L(p)(Sl)k, although not as loop spaces. Now if

X 2 Y is a rationally splitting double 1-torus for G/, then X x (S1)F 219,y (S1)k
is such for G.

Thus assume that the fundamental group of X is finite. Let X be constructed by
mixing G with the manifold constructed in Proposition 3.3 at the complementary
set of primes. By Prop. 3.4, the universal cover X has a rationally splitting double
1-torus of level [, and since it does not meet the center of X at any prime p € P, we
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obtain a splitting double 1-torus on X. The stable reducibility condition is satisfied
since that is a p-local condition and it is satisfied at every prime. [

Proof of Thm. 1.1. Let X be as in Theorem 1.1. If X has rank 1, the structure of
p-compact groups implies that either 2 € P and X € {L(p)SO(3),L(p)S*} or2 & P
and X ~ I p)S2l_1 for some [. In the former case, the claim is obvious. In the
latter case, the obvious choice for the manifold model M would be the sphere S~ 1,
but if parallelizability is needed, as claimed in the theorem, then the manifold M,
constructed by a surgery on twice the [ — 1-dimensional class in S*~! x S, will do,
since its Kervaire semicharacteristic is obviously zero.

Now let X be as in Theorem 1.1 of rank > 2, and let Z be constructed by
mixing as in the corollary above. By the above corollary Z admits a double 1-
torus. By [BKNP02, Prop. 3.3], Z is homotopy equivalent to a compact, stably
parallelizable, smooth manifold. This manifold is in fact parallelizable on the nose:
in even dimensions, this follows from the vanishing of the Euler characteristic of Z;
in odd dimensions, it suffices to show that the Euler-Kervaire semi-characteristic
vanishes. If 2 ¢ P, this follows from Prop. 3.3, and otherwise from the fact that
the Fs-cohomology of the 2-compact group LoZ is a tensor product of truncated
polynomial algebras Fy[z]/ (zzk), as in [BKNPO02, Proof of the Main Theorem]. O
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