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Abstract. As an extension of earlier work, we show that every P -local loop

space, where P is a set of primes, is homotopy equivalent to the P -localization
of a compact, smooth, parallelizable manifold. A similar result is also proved

for P -complete loop spaces.

1. Introduction

In [BKNP02], it was shown that every quasifinite loop space is homotopy equiv-
alent to a parallelizable, compact, smooth manifold. In this paper, we prove a
stronger local version of this result.

Let R be a commutative ring. We call a nilpotent space X R-finite if H∗(X;R)
is totally finitely generated as an R-module, and R-local if [Y, X] = 0 for every
H∗(−;R)-acyclic space Y . For any such R, there exists a localization functor LR :
Top → Top. For a set of primes P , call a nilpotent space X P -local (resp. P -
complete) if it is local with respect to R = Z(P ) (resp. R = Z/P :=

∏
p∈P Z/p.)

We abbreviate the corresponding localization functors by L(P ) and LP . A nilpotent
space X is P -complete if and only if X '

∏
p∈P LpX. By the universal coefficient

theorem, a finite loop space is Z(P )-finite and Z/P -finite for any set of primes P .
The main result of this paper can be cast in a local and in a complete setting:

Theorem 1.1. Let P be a collection of primes, and let X be a P -local, Z(P )-finite
loop space. Then X is homotopy equivalent to the P -localization of a compact,
smooth, parallelizable manifold.

Theorem 1.2. Let P be a collection of primes, and let X be a nilpotent P -complete
space. Assume that there exist integers {d1, . . . , dr} such that for all primes p ∈ P ,
LpX is a p-compact group with degrees di. Then X is homotopy equivalent to the
P -completion of a compact, smooth, parallelizable manifold.

Setting P = the set of all primes, we recover from Thm 1.1 the main result of
[BKNP02] that every quasifinite (i. e. Z-finite) loop space is homotopy equivalent
to a compact, smooth, parallelizable manifold.

On the other extreme, we have as a special case of Thm. 1.2:

Corollary 1.3. Every p-compact group is the p-completion of a compact, smooth,
parallelizable manifold.

A natural question to ask is whether Thm. 1.1 can be reduced to the global
setting of [BKNP02] by showing that every space satisfying the conditions of Thm.
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1.1 can be represented as the P -localization (resp. P -completion) of a quasifinite
loop space. This is in fact not the case, which is illustrated by the following theorem
[Cla63]

Theorem 1.4 (Clark). Every nontrivial quasifinite loop space X with finite funda-
mental group has H3(X;Q) 6= 0.

On the other hand, simple p-compact groups typically have trivial third coho-
mology.

Theorem 1.1 can be further strengthened.
It is sufficient to assume that X is a p-compact group after completing at every

prime p ∈ P . For P -local spaces, we have

Proposition 1.5. If X is a P -local space such that LpX is a p-compact group for
each p ∈ P , then X has a unique structure as a loop space such that all X → LpX
are loop maps.

An interesting problem not addressed in this paper is finding explicit manifold
models for simple p-compact groups in nontrivial cases (meaning neither of Lie type
nor a sphere).

2. Lifts of loop space structures

Theorem 1.2 reduces to Theorem 1.1 by the implication (2)⇒(4) in the following
lemma, together with the fact that giving a loop structure on a P -complete space
X is equivalent to giving (independently) loop structures on every LpX, p ∈ P

Lemma 2.1. Let X be a P -complete loop space with finite mod p homology for every
p ∈ P . Then the following are equivalent:

(1) X is the P -completion of a Z-finite CW complex;
(2) There exist positive integers {d1, . . . , dr} such that the p-compact group LpX

has those degrees for all p;
(3) There exist positive integers {d1, . . . , dr} such that as loop spaces,

LQX '
r∏

i=1

K(AP , 2di − 1),

where AP =
(∏

p∈P Zp

)
⊗Q is the ring of finite adeles of Z(P ). (If P is

finite, this is of course just
∏

p∈P Qp.)
(4) X is the P -completion of a Z(P )-finite, P -local loop space.

Proof. (1)⇒(2): Let X = LP F for a finite CW-complex F .

H∗(LpX;Zp)⊗Q ∼= H∗(F ;Zp)⊗Q ∼= H∗(F ;Q)⊗Qp.

This shows that H∗(LpX;Zp) ⊗ Q is an exterior algebra, and the degrees are
independent of p.
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(2)⇒(3): By [ABGP03, Thm. 2.1], LpX ' Lp

(∏r
i=1 S2di−1

)
for p > h =

maxi{di}. Thus

LQX '
∏
p≤h

LQXp × LQ

∏
p>h

r∏
i=1

LpS2di−1


'

∏
p≤h

LQLp

r∏
i=1

S2di−1 ×
r∏

i=1

LQ

∏
p>h

LpS2di−1

'
r∏

i=1

LQLP S2di−1.

Furthermore,

πkLQLP S2d−1 = Q⊗
∏
p∈P

πk(S2d−1) =

{
0; k 6= 2d− 1
AP ; k = 2d− 1.

Thus LQBX is a space with homotopy groups concentrated in even dimensions,
and hence a product of Eilenberg-Mac Lane spaces

LQBX '
r∏

i=1

K(AP , 2di).

which proves (3).
(3)⇒(4): Define BK =

∏r
i=1 K(Q, 2di), and let BK → LQBX be the product

of the maps induced by the unit ring map Q → AP . Let BF be the homotopy
pullback of BK → LQBX ← BX. It remains to show that K = ΩBK is Z(P )-
finite. Since Q and

∏
p∈P Zp generate AP , the Mayer-Vietoris sequence for the

homotopy groups of a fiber product splits, and hence

πn(BF ) ∼=
⊕

{i|2di=n}

Z(P ) ⊕
⊕
p∈P

Tor(Z, πn(BXp)).

Thus πn(F ) is finitely generated as a Z(P )-module, hence so is Hn(F ;Z(P )) for all
n. There exists a d such that Hi(F ;Zp) = Hi(X;Zp) = 0 for all p ∈ P and i ≥ d.
Since Hi(F ;Zp) ∼= Hi(F ;Z(p)) ⊗Z(p) Zp and Hi(F ;Z(p)) is finitely generated, it
follows that Hi(F ;Z(p)) = 0 for those i and all p ∈ P . Thus Hi(F ;Z(P )) = 0 for
those i as well.

(4)⇒(1): Let FP be such a P -local, Z(P )-finite space, and let Q be the com-
plementary set of primes. Choose FQ to be a Q-local, Z(Q)-finite space such that
LQFQ

∼= LQFP , and let F be the pullback of FQ → LQFP ← FP . Since F is
Z(P )-finite and Z(Q)-finite, it is Z-finite. �

Lemma 2.2. Let X be a Q-finite rational loop space, or the rationalization of a
P -complete space satisfying the equivalent conditions of Lemma 2.1 for a set of
primes P . Then it has a unique deloop, i.e. for every space Y such that ΩY ' X
we have Y ' BX. The unique loop structure on X is commutative.

Proof. If X is a Q-finite rational loop space, H∗(X;Q) is an exterior algebra on
finitely many odd-dimensional generators. Hence for any Y such that ΩY ' X,
H∗(Y ;Q) is an even polynomial algebra. Any two such rational spaces are equiv-
alent since all k-invariants necessarily vanish. The unique deloop is a product of
even-dimensional Eilenberg-Mac Lane spaces, therefore X is abelian.
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A similar argument works for rationalizations of P -complete Z/P -finite loop
spaces. In that case, X is homotopy equivalent to a product of K(AP , odd). �

Lemma 2.3. Let P be a set of primes and let X satisfy the equivalent conditions of
Lemma 2.1. Let f : Y → X be a P -completion map for a P -local space Y . Then Y
is Z(P )-finite and carries a unique loop structure such that Y → X is a loop map.

Proof. Consider the arithmetic pullback diagram

Y
f //

��

LP Y ' X

��
LQY

LQf // LQLP Y ' LQX.

The Z(P )-finiteness follows from the argument given in Prop. 2.1(3) ⇒(4). As
X → LQX is given as a loop map, loop structures on Y such that f is a loop map
are in one-to-one correspondence with loop structures on LQY such that LQf is a
loop map.

Giving a loop structure on LQY is equivalent to giving a Hopf algebra structure
on H∗(Y ;Q) extending the cohomology algebra structure. Since any loop structure
on LQY is commutative, such a Hopf algebra structure is completely determined
by the vector space of primitives in H∗(Y ;Q). Now LQf induces an isomorphism
of AP -algebras

f∗ : H∗(X;ZP )⊗Q
∼=−→ H∗(Y ;Q)⊗AP .

This is an isomorphism of Hopf algebras if and only if

f∗(P (H∗(X;ZP )⊗Q)) ∼= P (H∗(Y ;Q))⊗AP .

This shows that the only possible choice for the vector space of primitives in
H∗(Y ;Q) is (f∗P (H∗(X;ZP ) ⊗ Q)) ∩ H∗(Y ;Q), showing existence and unique-
ness of the loop space structure. �

Proof of Prop. 1.5. We have a loop structure on LpX for every p ∈ P , or equiva-
lently on the P -completion of X. We can lift this uniquely to X by Lemma 2.3,
proving the Proposition. �

3. Double 1-tori

Recall [BK72, Chapter IV] that associated to any commutative ring R and group
G, there is a notion of R-completion of G compatible with R-localization of nilpotent
spaces. We will denote by ZR the R-localization of the integers and by QR

∼= ZR⊗Q
the R-localization of the rationals. Thus ZZ/p = Zp and ZZ(p) = Z(p). The
localizations GR carry a natural profinite topology. Similarly, for R-local spaces X,
the chain complex C∗(X) naturally carries a profinite topology. If A is an abelian
group, we denote by H∗(X;A) the homology of the chain complex C∗(X)⊗̂A and
by H∗(X;A) the cohomology of the cochain complex Homcont.(C∗(X);A). We
abbreviate H∗(X) = H∗(X;ZR) and H∗(X) = H∗(X;ZR).

For an R-local finite loop space X, define the level of X to be the smallest
l such that H2l+1(X;QR) 6= 0. Note that since the cohomology ring is a finite
dimensional Hopf algebra, it is generated by odd degree exterior classes. Define the
rank of X to be the number of exterior generators in H∗(X;QR).
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In [BKNP02], the pivotal tool for studying the finiteness obstruction and the
surgery obstruction for a loop space X as well as for mixing homotopy types is

Definition 3.1. Let R be a ring and X be an R-finite, R-local, nilpotent, connected
space. We say that X admits a double 1-torus if there is a diagram of horizontal
and vertical fibrations of nilpotent spaces

LRS1

��

LRS1 //

i0

��

∗

��
LRS1 × C

i //

��

X

p0

��

p // Z

C
i1 // Y

p1 // Z

where C = Z/2 if 1
2 is not in R, and trivial otherwise, satisfying the following

additional conditions:

(1) Z is R-finite,
(2) Y is stably reducible,
(3) X → Y is orientable,
(4) π1(p0) is an isomorphism, and
(5) Y �

p1 Z induces an isomorphism π1(Y )× C ∼= π1(Z).

Such an object was called rationally splitting in [BKNP02] if it rationally splits
off a Hopf fibration. This condition needs to be relaxed for the present purposes.

Definition 3.2. A 1-torus LRS1 → X
p0−→ Y is called rationally splitting of level

l if p0 rationally has a retract of the form LQLRS1 → LQLRS2l+1 → LQLRCP l.

Thus, a rational splitting in the sense of [BKNP02] is a rational splitting of level
1.

Proposition 3.3. Given a sequence of positive integers (n0, n1, . . . , nk) where k ≥
1. Then there exists a bundle of manifolds S1 → M → N satisfying the following
conditions:

(1) N is stably parallelizable
(2) M is parallelizable
(3) Rationally the bundle is a product of the standard bundle LQS1 → LQS2n0+1 →

LQCPn0 and trivial bundles ∗ → LQS2ni+1 =−→ LQS2ni+1 for 1 ≤ i ≤ k.
(4) There exists an N0 ∈ N, depending only on the integers ni, such that

LpM '
k∏

i=0

LpS2ni+1 for all p ≥ N0.

Proof. We start out with the manifold X = CPn0 ×
∏k

i=1 S2ni+1. The Spivak
normal fibration is rationally trivial, so a multiple of the top class of ΣdX is spherical
for sufficiently large d. Making the Thom collapse map Sm → ΣdX transverse to
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X establishes a rational surgery problem

νN //

��

X ×Rd

��
N

f // X

with f of some non-zero degree on the top homology. Since X is an integral Poincaré
duality space, the only possible surgery obstruction to turning f into a homotopy
equivalence is the signature obstruction [TW79] when m = dim X is divisible by
4. However, the signature of X is zero since k ≥ 1, and Hirzebruch’s signature
theorem implies that the signature of N is also zero since its normal bundle is
trivial (condition (1)).

Since H2(N,Q) = Q there is a nonzero integral class represented by a map
N → BS1, classifying a bundle S1 →M → N . The Serre spectral sequence for this
fibration immediately shows that requirement (3) is satisfied. To see (2), that M is
parallelizable, we proceed as in [BKNP02], using the criterion of [Dup70, Sut76]. If
the dimension of M is even, the parallelizability of a stably parallelizable manifold
is determined by the vanishing of the Euler characteristic of M which is clearly
0 in this case. If the dimension is 1, 3, or 7, M is automatically parallelizable;
for all other odd dimensions, M is parallelizable if and only if its Kervaire semi-
characteristic κ(X) vanishes. It is defined as

κ(X) =
1
2

∑
i≥0

dim Hi(X;F2)

 (mod 2).

In this case dim N = m = 2l is even, and an easy rational computation shows that
the Euler characteristic of N is 0. Thus the total dimension of H∗(N ;F2) is even.
We may assume the Serre spectral sequence of S1 →M → N with Z/2-coefficients
collapses, since we otherwise could have composed N → BS1 with the degree two
map BS1 → BS1 without affecting the rational types. It thus follows from the
spectral sequence that the total dimension of H∗(M ;F2) is divisible by four, and
hence the Kervaire semi-characteristic is zero.

To prove (4), let {ei | 0 ≤ i ≤ k} denote a basis of the indecomposables of
H∗(M ;Z) modulo torsion and consider the lifting problem

k∏
i=0

S2ni+1

��

M ∏
ei

//

<<

k∏
i=0

K(Z, 2ni + 1)

where the vertical map is the Hurewicz map, whose fiber will be denoted by F . The
obstructions to this lifting problem lie in Hi+1(M ;πi(F )). The homotopy groups
πi(F ) are all finite since the dimensions 2ni + 1 are odd. If N0 = l.c.m.{#πi(F ) |
1 ≤ i ≤ dim M} then a lift exists after inverting N0. Being parallelizable, M is
in particular orientable and hence dim M = n0n1 · · ·nk; thus N0 only depends on
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the integers ni. The lift is an HFp-isomorphism for p > N0, and thus induces an
equivalence LpM →

∏
LpS2ni+1. �

Proposition 3.4. Let P = P1 ∪ P2 be a partition of a set of primes, and let G be
a simply connected P -local space such that G(P1) is a P1-local finite loop space of
level l and rank bigger than one, and G(P2) is the P2-localization of the total space
of a bundle S1 → M → N satisfying the properties of Prop. 3.3 and such that
LQM ' LQG. Assume that for each p ∈ P1, LpG has finite center, and that either
2 6∈ P1 or
(?)

L2G/Z(L2G) is not equivalent to L2 SO(3)l × L2 SO(5)ε for l ≥ 0 and ε = 0, 1.

Then G admits a rationally splitting double 1-torus of level l.

Proof. The argument is a variation, and simplification, of the proof of [BKNP02,
Prop. 5.3, Prop. 4.3, and Prop. 4.1].

Note that by [ABGP03, Thm. 2.1] and Prop. 3.3(4), there exists an N � 0
such that LpG is homotopy equivalent to a product of p−complete odd-dimensional
spheres for all p ≥ N , p ∈ P . Thus, by property (4) of Prop. 3.3, LpG is homotopy
equivalent to LpM for all but finitely many p ∈ P1. Hence we may assume without
loss of generality that P1 is finite.

Let r = rk(L(P1)G) and r′′ = max{rkp Z(LpG) | p ∈ P1} be the maximal p-rank
of the centers of the p-compact groups LpG. It was proved in [BKNP02, Lemma
5.2] that r′′ < r unless p = 2 and G has type 3k. Let T ′′ = (S1)r′′ and choose a
torus

T ′′ → LpT
′′ i′′p−→ LpG

containing the center of LpG for all p ∈ P1 [DW95]. Extend this to a maximal
torus

T = T ′ × T ′′ → LpT
′ × LpT

′′ ip=i′p·i
′′
p−−−−−→ LpG.

Let (t1, . . . , tr′) be coordinates on T ′ and (tr′+1, . . . , tr) on T ′′.
For p ∈ P1, the map (LpG)/(LpT )→ LpBT induced by the subgroup inclusion

ip induces an isomorphism

H2(LpBT ;Qp)
∼−→ H2((LpG)/(LpT );Qp).

Let qj,p denote the image of LpBtj
Choose maps g, h, defining the rational homotopy equivalence

g × h : G
∼Q−−→ LQM → LQS2l+1 × LQY,

where Y is a product of odd-dimensional spheres such that LQN ' LQCP l ×
LQY . Since [X, LQS2l+1] ∼= H2l+1(X), g also denotes a class outside the image of
H2l+1(N ;Q)→ H2l+1(M ;Q) ∼= H2l+1(G;Q). Under the map

H2l+1(G;Q) ∼−→ H2l+2(BLQG;Q)→ H2l+2(BLQLpG;Qp)
i∗p−→ H2l+2(LpBT ;Qp) ∼= (Qp[t1, . . . , tr])l+1 ,

g maps to nonzero homogeneous polynomials fp of degree l + 1 for all p ∈ P1.
For every α = (α1, . . . , αr) ∈ Zr, define S1 ∼= Sα → T by t→ α1t1 + · · ·+ αrtr,

where t is a coordinate on S1. Then Sα is a subgroup of T if and only if the set α is
coprime; moreover, ip(LpSα) ⊆ LpG intersects the center of LpG trivially if p - αj
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for some 1 ≤ j ≤ r′. For p ∈ P1, denote by qp ∈ H2((LpG)/(LpSα);Qp) the image
of the coordinate t ∈ H2(BSα;Q) under the map classifying the fibration

LpSα → LpG→ (LpG)/(LpSα).

We thus have a commutative diagram

H∗(LpBT ;Qp) //

α

��

H∗((LpG)/(LpT );Qp)

��

ti
� //

_

��

qi,p_

��
αit

� // αiqp

H∗(LpBSα;Qp) // H∗((LpG)/(LpSα);Qp).

In H2l+2(−;Qp), we also have

fp
� //

_
��

0_
��

fp(α1t, . . . , αrt)
� // 0

fp(α1, . . . , αr)tl+1 fp(α1, . . . , αr)ql+1
p .

In order for Sα to induce a splitting 1-torus on LpG for a given p ∈ P1, we need α
to satisfy the following two conditions:

(1) {α1, . . . , αr′} are coprime; and
(2) fp(α1, . . . , αr) 6= 0.

We can always arrange this by choosing α1 = 1; since fp is homogeneous of
degree l + 1, f ′p = fp(1, α2, . . . , αr) is a nonzero polynomial for all p ∈ P1. Since P1

is finite, α2, . . . , αr can be chosen in such a way that (1, α2, . . . , αr) is not a zero of
fp for any p ∈ P1.

Now condition (1) ensures that Sα meets the center of LpG trivially. Condition
(2) implies that ql+1

p = 0 and thus

H∗((LpG)/(LpSα);Qp) ∼= Qp[qp]/(ql+1
p )⊗H∗(LpG;Qp)/(g)

which implies that LpSα → LpG→ (LpG)/(LpSα) has a rational splitting of level
l + 1.

Let
S ∼= Sα → LP G =

∏
p∈P

LpG

be the map thus constructed for p ∈ P1, and the fiber inclusion S1 →M followed by
p-completion for p ∈ P2. Denote by LpG→ LpG/LpS the quotient of the subgroup
inclusion for p ∈ P1 and the p-completion of the fibration M → N for p ∈ P2. Thus
for every p ∈ P , LpS → LpG→ LpG/LpS is a rationally splitting 1-torus. Thus,

LpG //

��

LQLpG

��

∼
Lp(g×h)

// LQLpS2l+1 × LQLpY

��
LpG/LpS // LQ(LpG/LpS) ∼

hp

// LQLpCP l × LQLpY.
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The map Lp(g×h) induces a map LQLP G
∼−→ LQLP S2l+1×LQLP Y since it comes

from a map G→ LQS2l+1×LQ. Likewise, for p ∈ P2, hp is the image of a rationally
defined map. This together with the fact that P1 is finite implies that the diagram
above can be lifted to a diagram

LP G //

��

LQLP G

��

∼ // LQLpS2l+1 × LQLP Y

��
LP G/LP S // LQ(LP G/LP S) ∼ // LQLP CP l × LQLP Y.

We now address the problem of lifting this to G.
Consider the diagram

G //

��

LQG ∼ //

��

((

LQS2l+1 × LQY

��

((RRRRRR

Z0

��

∼ // LQCP l × LQY

��

LP G

((RRRRRRRR
// LQLP G

((RRRRRR
∼ // LQLP S2l+1 × LQLP Y

((RRRRRR

LP G/LP S // LQ(LP G/LP S) ∼ // LQLP CP l × LQLP Y

where the bottom two rows are the diagram constructed before, and Z0 is defined
as the pullback.Hence we can also fill in a map LQG → Z0. Let S1 → G → Z be
the pullback of this diagram. This constitutes a rationally splitting 1-torus of level
l. The only axiom that is not quite immediate is the Z(P )-finiteness of Z, but it
follows in the same way as in the proof of Prop. 2.1(3)⇒ (4).

Now if 2 ∈ P it was shown in [BKNP02, Lemma 5.2] that under the hypothesis
(?), this 1-torus can be extended to a double 1-torus, and the proof is finished. �

Corollary 3.5. Let P be any set of primes, and let G be an n-dimensional P -
local loop space of level l and rank bigger than one satisfying (?). Then there exists
a finite n-dimensional CW-complex X whose P -localization (resp. P -completion)
is homotopy equivalent to G and such that X admits a rationally splitting double
1-torus of level l.

Proof. It was shown in [BKNP02] how to reduce to the case where G has finite
fundamental group. For the reader’s convenience, we recall the argument. Choose
a map BG → L(P )(BS1)k which is an isomorphism on H2(−;Z(P )), and denote
its homotopy fiber by BG′. Then G′ has finite fundamental group. Moreover, the
map given by

L(P )(S1)k → Gk mult.−−−→ G,

representing a basis of π1(G) modulo torsion, is easily seen to be a section of
G → L(P )(S1)k, thus G ' G′ × L(P )(S1)k, although not as loop spaces. Now if

X
p−→ Y is a rationally splitting double 1-torus for G′, then X×(S1)k p×Id−−−→ Y×(S1)k

is such for G.
Thus assume that the fundamental group of X is finite. Let X be constructed by

mixing G with the manifold constructed in Proposition 3.3 at the complementary
set of primes. By Prop. 3.4, the universal cover X̃ has a rationally splitting double
1-torus of level l, and since it does not meet the center of X at any prime p ∈ P , we
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obtain a splitting double 1-torus on X. The stable reducibility condition is satisfied
since that is a p-local condition and it is satisfied at every prime. �

Proof of Thm. 1.1. Let X be as in Theorem 1.1. If X has rank 1, the structure of
p-compact groups implies that either 2 ∈ P and X ∈ {L(P )SO(3), L(P )S3} or 2 6∈ P

and X ' L(P )S2l−1 for some l. In the former case, the claim is obvious. In the
latter case, the obvious choice for the manifold model M would be the sphere S2l−1,
but if parallelizability is needed, as claimed in the theorem, then the manifold M ,
constructed by a surgery on twice the l− 1-dimensional class in Sl−1 × Sl, will do,
since its Kervaire semicharacteristic is obviously zero.

Now let X be as in Theorem 1.1 of rank ≥ 2, and let Z be constructed by
mixing as in the corollary above. By the above corollary Z admits a double 1-
torus. By [BKNP02, Prop. 3.3], Z is homotopy equivalent to a compact, stably
parallelizable, smooth manifold. This manifold is in fact parallelizable on the nose:
in even dimensions, this follows from the vanishing of the Euler characteristic of Z;
in odd dimensions, it suffices to show that the Euler-Kervaire semi-characteristic
vanishes. If 2 6∈ P , this follows from Prop. 3.3, and otherwise from the fact that
the F2-cohomology of the 2-compact group L2Z is a tensor product of truncated
polynomial algebras F2[z]/(z2k

), as in [BKNP02, Proof of the Main Theorem]. �
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