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Math 371 - Shifting theorems

Erik Kjær Pedersen

November 29, 2005

Let us recall the Dirac delta function.
It is a function δ(t) which is 0 everywhere but at t = 0 it is so

large that
∫ b
a (δ(t)dt = 1 when a < 0 and b > 0.

This is of course impossible, but we can approximate by a function
which is 0 except for a short interval around 0, and so large in that
short interval that the integral over a larger interval is 1



2
We now calculate the Laplace transform∫ ∞

0
e−stδ(t − a)dt = e−sa

This is because the value of e−st at t = a is e−sa.
So while Dirac’s delta function may not quite make sense it has a
perfectly good Laplace transform.
Let us look at the example from last lecture but hit the spring with
a hammer at time t = 1 instead of applying a constant force of 1.
The equation will now be

y ′′ + y = δ(t − 1) y(0) = 0 y ′(0) = 1

Our classical method to solve this does not work but apply the
Laplace transform
We get the same thing on the left side and the Laplace transform
of the delta function on the right side
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s2Y − 1 + Y = e−s

We can now calculate the Laplace transform Y = L(y)

Y =
1

1 + s2
+

1

1 + s2
e−s

The question now becomes how to recover y from the Laplace
transform Y .
That sets the stage for the next theorem, the t-shifting theorem.
Second shift theorem
Assume we have a given function f (t), t ≥ 0.
We want to physically move the graph to the right to obtain a
shifted function:

g(t) =

{
0 for t < a

f (t − a) for t ≥ a
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What happens to the Laplace transform

Theorem

L(g) = e−asL(f )

To be able to work better with shifting, define a function, the unit
step function, by u(t) = 0 for t < 0 and u(t) = 1 for t > 0.
We now have L(u) = L(1) = 1

s
This is because the Laplace transform only depends of on the
values for t > 0.
Shifting by a, can now be described as g(t) = u(t − a)f (t − a)
We can therefore reformulate the theorem above as

Theorem

L(f (t − a)u(t − a)) = e−asL(f )
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Now we are ready to solve the problem above. We had

Y =
1

1 + s2
+

1

1 + s2
e−s

so

L(y) = Y = L(sin(t)) + L(u(t − 1) sin(t − 1))

This is because multiplying by e−s corresponds to shifting by 1.
Thus the solution is y = sin(t) + u(t − 1) sin(t − 1)
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In view of this it becomes important to move back and forth
between a function and its Laplace transform
Next we consider a typical square wave function as often used in
engineering
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y(t) =


0 for t < 1

1 for 1 < t < 2

0 for 2 < t
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It does not matter what value the function has at the jump points
1 and 2.
Let us find a good way to compute the Laplace transform avoiding
excessive work.
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We can write

y(1) = u(t − 1)− u(t − 2)

But u(t − 1) is just 1 shifted by 1 and similarly u(t − 2) is 1
shifted by 2, so the Laplace transform is

1

s
e−s − 1

s
e−2s

Let us expand this example a little
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This time the function is given as

y(t) =

{
t for t < 2

0 for 2 < t
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How do we compute the Laplace transform
We start out realizing this function can be written as

y(t) = t − tu(t − 2)

This is because u(t − 2) kills off t for t < 2 giving us t and for
t > 2 we get t − t which is 0 as we want.
Now we can rewrite this

y(t) = t − (t − 2)u(t − 2)− 2u(t − 2)

The advantage is that now y is a combination of shifted functions
and we immediately can read off the Laplace transform to be

L(y) = Y =
1

s2
− 1

s2
e−2s − 2

1

s
e−2s
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Let us finish by solving a differential equation

y ′′ − y = r(t) y(0) = 1 y ′(0) = −1

Where r(t) is the function mentioned above which is 1 for t
between 1 and 2 and 0 otherwise.
We calculate that L(y ′) = sY − 1
L(y ′′) = sL(y ′) + 1 = s2Y − s + 1
This means the equation becomes

s2Y − s + 1− Y =
1

s
e−s − 1

s
e−2s

Isolating the terms with Y we see that

s2Y − Y = s − 1 +
1

s
e−s − 1

s
e−2s
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Dividing by (s2 − 1) we get

Y =
1

s + 1
+

1

s(s2 − 1)
(e−s − e−2s)

Using that 1
s(s2−1)

= 1
2(−2

s + 1
s−1 + 1

s+1) we now get

Y =
1

s + 1
+

1

2
(
−2

s
+

1

s − 1
+

1

s + 1
)(e−s − e−2s)

Let us unravel this. The 1. term is the Laplace transform of e−t .
Forgetting the exponential functions the second term is the
Laplace transform of

1

2
(−2 + et + e−t).

The exponential terms mean that this function has to be shifted by
1 and 2 respectively and the terms have to be subtracted.
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Shifting by 1 means replacing t by t − 1 everywhere and multiply
by u(t − 1)
Similarly shifting by 2 means replacing t by t − 2 everywhere and
multiply by u(t − 2).
So the complete answer is

y = e−t+
1

2
u(t−1)(−2+et−1+e−(t−1))−1

2
u(t−2)(−2+et−2+e−(t−2))

Here is a graph of the solution.
Notice how there is a big change at t = 1, but almost no change
at t = 2.
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Let us find a formula for integration

Theorem

L(

∫ t

0
f ) =

L(f )

s

This is very easy to see from the formula for the Laplace transform
of the derivative, using that

∫ 0
0 f = 0.
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Example

Find the inverse Laplace transform of

1

s2(s + 1)

We can of course use partial fractions to write 1
s2(s+1)

as a sum of

fractions for which we know the inverse Laplace transform
But it is much easier to proceed as follows:

I L−1( 1
s+1) is e−t

I This now has to be integrated twice to get the 1
s2 factor.

I Integrating once gives −e−t + 1

I Integrating again gives e−t − 1 + t and that is the answer
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We can of course check the answer by calculating the Laplace
transform

1

s + 1
− 1

s
+

1

s2

If we have made no mistakes this should be equal to

1

s2(1 + s)


