A proof of Taylor’s Inequality.

We first prove the following proposition, by induction on n. Note that the proposition is similar to Taylor’s
inequality, but looks weaker.

Let T, r() denote the n-th Taylor polynomial of f(z),

Tos(z) = f(a)+ f'(a)(z —a) + %(!a)(x )

and
Ry p(x) = f(x) = T s(2),
the n-th Taylor remainder of f(z).
Proposition 1. If f(x) is n-times differentiable and f™(z) < M for all x € [a,a + d], then

F() < T @) + (= )"
for all x € [a,a+ d].

Proof. The proof is by induction on n.
Base case (n=1) Note that Tj s(z) = f(a) is a constant.
Assume f'(z) < M for all € [a,a + d]. Then integrating from a to x, we get

/wf’(t)dt < det
f(x) = fla)
f(x)
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Induction step Assume the statement of the proposition for n (inductive hypothesis), and show it for n+ 1.
In other words, we want to show that:

if f(x) is (n + 1)-times differentiable and f™*Y(z) < M for all x €
la,a + d], then

f(@) < T p(x) +

for all x € [a,a + d].

Assume f is (n + 1)-times differentiable and f"*V(z) < M for all € [a,a + d]. Consider the function
g(x) = f'(z). Then g(x) is n-times differentiable and for all x € [a, a + d] we have ¢/ (z) < M. Applying
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the inductive hypothesis to g(x) we get that

90) £ ool + 1w = )"

for all z € [a,a + d], i.e.

"(q (n—1) a
(o) < 9la) + g @)(a — )+ L3 @ - o O - 0 e
We can rewrite this now in terms of f(x) as
e (n) a
Fla) < 1)+ £ =)+ e o LS e -t T - o,

and now integrating between a and x we get

[ rwas [ (r@+r@e-os e ap e LS @it e ar) o

This yields

"y () (g
o) = @) < @ -0+ D = ap o Lo - o,
ie. M "
f(SC) STn,f(x)+ (n—i—l)'(x_a) )
as desired. O

Note that the arguments in the proposition could have been done with > —M instead of < M, showing
that:

if f(x) is n-times differentiable and f™ (x) > —mM for all z € [a, a+d),

then Y,
(@) 2 Torp(z) + ——(x—a),

n!
for all x € [a,a + d).
Combining both results, we get the full result to the right of a:

If f(z) is n-times differentiable and | f™ (z)| < M for all x € [a, a + d], then

(@) = T (@)] € 2z — ),

for all x € [a,a + d].

Finally, for z € [a — d, a], on the left of a, the argument can be repeated using (a — z) instead of (z — a),
and combining with the case = € [a,a + d], yield Taylor’s inequality.
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