
Appendix to Chapter 2

In this appendix to chapter 2, we introduce the gcd in an alternative form to the textbook. It
closely resembles Proposition 6.29 in Section 6.4. This approach is mathematically equivalent
to the approach in the textbook.

Proposition 2.37. Let m,n ∈ Z. If m · n = 1 then either m = n = 1 or m = n = −1.

The following proposition follows easily from Propositions 1.20 and 1.25.iii.

Proposition 2.38. Let m,n ∈ Z. The following are equivalent:

i) m|n

ii) m|(−n)

iii) (−m)|n

iv) (−m)|(−n)

Due to this proposition, discussion about divisibility, can be, and often is, restricted to
the set

N0 = N ∪ {0} = {0, 1, 2, 3, 4, . . . }

of non-negative integers. Moreover, using Prop. 2.11, one can easily show that if m,n ∈ N0,
and m|n, then the integer j such that n = j ·m, can be chosen to be an element of N0.

Recall that a “partial order” is a binary relation which is reflexive, transitive, and anti-
symmetric. The following proposition tells us that divisibility, restricted to the set N0 is a
partial order.

Proposition 2.39. Let m,n, p ∈ N0.

i) m|m, (reflexive)

ii) If m|n and n|p then m|p, (transitive)

iii) If m|n and n|m then m = n. (anti-symmetric)

Proof. (iii) Assume m,n ∈ N0, m|n, and n|m. There are integers j, k ∈ N0 such that

n = j ·m and m = k · n, (1)

from where we get n = j · k · n. Consider two cases: either n = 0 and from (1) and Prop.
1.14 we get m = 0; or n 6= 0, and from Axioms 1.3 and 1.5, we get j · k = 1. Using now
Prop. 2.37 we have j = k = 1, which in combination with (1) yield m = n.

Given m,n ∈ N0, a “common divisor” of m and n is an integer k ∈ N0 such that k|m
and k|n. We say that k is a “greatest common divisor” of m and n, if it is a common divisor
and any common divisor of m and n is also a divisor of k.



To write it in symbols, k is a greatest common divisor of m and n means:

• k|m,

• k|n,

• (∀j ∈ N0)(j|m, j|n⇒ j|k).

From anti-symmetry in Prop. 2.39.iii, we get

Corollary 2.40. Let m,n ∈ N0. If m and n have a greatest common divisor, then it is
unique.

Because of Corollary 2.40 we start using the definite article “the” with greatest common
divisor, when it exists, and the greatest common divisor of m and n will be denoted by
gcd(m,n).

We now show some cases when the gcd exists.

Proposition 2.41. For any m,n ∈ N0,

i) 1|m and m|0,

ii) gcd(m,m) = m,

iii) If m|n then gcd(m.n) = m.

iv) gcd(1,m) = 1, and gcd(m, 0) = m.

v) If gcd(m,n) exists, then so does gcd(n,m), and they are equal.

Proof. (iii) From Propositions 2.39.i and 2.41.i, we have 1 is a common divisor of 1 and m.
Suppose j ∈ N0 is also common divisor of 1 and m. There exist, k ∈ N0 such that 1 = k · j,
and from Prop. 2.37 we get j = 1, so j|1, showing that gcd(1,m) = 1.
To see that gcd(m, 0) = m, note that m is a common divisor of m and 0 (Props. 2.39.i
and 2.41.i), and if j ∈ N0 is a common divisor of m and 0, then it is a divisor of m.

It turns out that gcd(m,n) always exists for any m,n ∈ N0, but the proof of this fact
has to wait until Chapter 6. We already have from Prop. 2.41.iii, that gcd(0, 0) = 0. In
Prop. 6.29 it will be shown that when either m 6= 0 or n 6= 0, the smallest element of the set

S = {k ∈ N|k = mx + ny forsome x, y ∈ Z}

is the gcd(m,n).
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