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10.1 Galois Group and Separability

Definition 10.1.1. Let E/F be a field extension. The group of automor-
phisms of this extension, i.e. the automorphism of E that fix F is denoted
by AutF (E) or by Gal(E : F ), and is called the Galois grou of the extension
E/F .1

Note that any automorphism of E fixes 1 and therefore it fixes the prime
subfield of E. If char(E) = 0 then Aut(E) = AutQ(E). If char(E) = p, then
Aut(E) = AutZp(E).

Examples 10.1.1. 1. AutF (F ) = {1F}.

2. AutR(C) = {1C, ⌧}, where ⌧ is complex conjugation, i.e. for a, b 2 R,
we have ⌧(a+ bi) = a� bi.

3. AutQ(Q( 3
p

2 )) = {1}, since Q( 3
p

2 ) ✓ R, and the only real root of x3
�2

is 3
p

2 .

1Some authors reserve the name Galois group for extensions which are Galois exten-
sions. See Definition 10.2.1.
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4. We have already seen that Aut(Q( 3
p

2 ,!)) ⇡ D3. Since any automor-
phism of F fixes its prime subfield, we have AutQ(Q( 3

p

2 ,!)) ⇡ D3

The following proposition is a special case of Lemma 5.3.24, by taking
F̂ = F , K̂ = K, and ' = IF .

Proposition 10.1.1 Let E and K be extensions of F . Let ↵ 2 E be algebraic

over F , and � 2 K be a root of minF (↵). There is a homomorphism ' :
F (↵) ! K, that fixes F and such that '(↵) = �.

The following lemma is a partial converse of the previous proposition.

Lemma 10.1.2 Let E/F be an extension and u 2 E algebraic over F . For

each ' 2 AutF (E), '(u) is a root of minF (u) in E.

Proof. Let p = minF (u) be the minimal polynomial of u over F , let n =
deg(p) and let ↵1, . . . ,↵k be the distinct roots of p in E, with ↵1 = u. Then
k  n = [F (u) : F ]. If we write p = anxn + · · · + a1x + a0 then for any
' 2 AutF (E), if we apply ' to the equation

anu
n + · · ·+ a1u+ a0 = 0,

we get
an'(u)

n + · · ·+ a1'(u) + a0 = 0,

so, '(u) is also a root of p.

Proposition 10.1.3 Let E = F (u) be a simple finite extension of F . Then

|AutF (E)|  [E : F ]. (10.1)

Proof. By Proposition 5.3.1, u is algebraic over F . Let p = minF (u), and let
↵1, . . . ,↵k be the distinct roots of p in E, with ↵1 = u. By Lemma 10.1.2,
for any ' 2 AutF (E), '(u) = ↵i for some i = 1, . . . , k, i.e. '(u) is a root
of p. By Lemma 5.3.24, for each i = 1, . . . , k, there is an automorphism of
E/F that maps u to ↵i, and therefore |AutF (E)| = k  n = [E : F ].

Note that in order to get equality in Proposition 10.2.1 it is necessary
and su�cient that p has all its roots in E, and that p has no multiple roots.
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separable

separable

separable

inseparable

Scholium 10.1.4 Let E = F (u) be a finite simple extension. |AutF (E)| =
[E : F ] i↵ f = minF (u) has no multiple roots, and E is the splitting field of

p.

In Examples 10.1.1 we have |AutF (F )| = 1 = [F : F ], |AutR(C)| = 2 =
[C : R], |AutQ(Q( 3

p

2 ))| = 1 < 3 = [Q( 3
p

2 ) : Q], and |AutQ(Q( 3
p

2 ,!))| =
6 = [Q( 3

p

2 ,!)) : Q].

04/13/2016

Definition 10.1.2. An irreducible polynomial p 2 F [x] is said to be separa-
ble over F , if it has no multiple roots. A polynomial f 2 F [x] is separable over
F it each of its irreducible factors is separable over F . For an extension E/F
and u 2 E, we say that u is separable over F if its minimal polynomial
minF (u) is separable over F , and we say that E is separable over F if every
element of E is separable over F . When a polynomial, an extension, or an
element is not separable over F , we say that it is inseparable over F .

Proposition 10.1.5 An irreducible polynomial p 2 F [x] is separable i↵ p0 6=
0.

Proof. Assume p0 6= 0. Since p is irreducible and deg(p0) < deg(p) no root of
p can be a root of p0. By Proposition 5.4.2, p has no multiple roots, hence it
is separable.
Conversely, assume p has no multiple roots, then for any root u of p we must
have p0(u) 6= 0, and therefore p0 6= 0.

Corollary 10.1.6 In characteristic 0, all polynomials, all elements and all

algebraic extensions are separable.

Corollary 10.1.7 Let char(F ) = p, and p 2 F [x] be irreducible. Then p is

not separable i↵ p is of the form g(xp) for some g 2 F [x].

Proof.

Proposition 10.1.8 The finite field Fpn is separable over Zp.

Proof. Note that the polynomial f = xpn
� x is separable since it has no

multiple roots. Any element of u 2 Fpn is a root of f , so minZp(u) is a factor
of f , hence separable.
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rational

functions

field of

rational

functions

Proposition 10.1.9 Let K/E/F be an extension tower. If K is separable

over F then K is separable over E and E is separable over F .

Proof.

The converse of Proposition 10.1.9, is true, but we will not prove it.

Proposition 10.1.10 Every algebraic extension of a finite field is separable.

From Proposition 10.1.10, and Corollary 10.1.6, we see that the only
way to find an inseparable extension, is by looking at infinite fields of prime
characteristic. We now define one such field.

Board presentations Problem Set 904/14/2016

Definition 10.1.3. Let F be a field, and F [x] the ring of polynomials with
coe�cients in F . Since F [x] is an integral domain, it has a field of quotients.
We denote by F (x) the field of quotients of F [x]. Each element in F (x) is
of the from f

g
with f, g 2 F [x], and g 6= 0. The elements of F (x) are called

rational functions over F , and we call F (x) the field of rational functions over
F .

Every polynomial is a rational function, and every rational function is a
quotient of two polynomials. Sometimes we will use a variable other than x
for the rational functions, so that we can consider polynomials on x over a
field of rational functions.

Lemma 10.1.11 Let 0 6= h 2 F (x) be a rational function over F . The

integer deg(f)� deg(g) where h = f
g
, with 0 6= f, g 2 F [x] is well-defined.

Proof. Use the fact that for non-zero polynomials, the degree of a product is
the sum of the degrees.

Definition 10.1.4. For 0 6= h 2 F (x) a rational function over F , we denote
by deg(h) the integer deg(f)� deg(g) where h = f

g
, with 0 6= f, g 2 F [x].

Example 10.1.2. Let F = Z2(t) be the field of rational functions on the
variable t. Consider the polynomial x2

� t 2 F [x]. Note that for any 0 6=

h = f
g
2 F , we have deg(h2) = deg(f

2

g2
) = deg(f 2) � deg(g2) = 2 deg(f) �
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2 deg(g) = 2(deg(f) � deg(g)) = 2 deg(h) is an even integer. In order to
have h as a root of x2

� t we would neet h2
� t = 0, i.e. h2 = t, but this is

impossible since the left hand side has even degree, and the right hand side
has degree 1. Being quadratic, with no roots in F , the polynomial x2

� t
is irreducible over F . Let ↵ be a root of this polynomial in some extension
E of F . We have ↵2 = t, and therefore (x � ↵)2 = x2

� ↵2 = x2
� t. The

irreducible polynomial x2
� t has ↵ as a root of multiplicity 2, hence it is

inseparable. The element ↵ is inseparable over F , and the extension E is
inseparable over F . have that

Theorem 10.1.12 [Primitive Element Theorem] If E/F is a finite,

separable extension, then it is a simple extension, that is, there is u 2 E
such that E = F (u).

Corollary 10.1.13 Every finite extension in characteristic 0 is simple.

Test 204/15/2016

04/18/2016

Proof of Primitive Element Theorem. We consider two cases, depending on
whether F is finite or not. If F is finite of characteristic p, then E is also
finite of characteristic p. By Proposition 10.1.8 E is separable over Zp, and
by Proposition 10.1.9 E is separable over F .

F(�, �)

F(�)

F

Now, consider the case when F is infinite. By Proposition 5.3.20,
E = F (↵1, . . . ,↵n) for some ↵1, . . . ,↵n 2 E, algebraic over F . Using
induction, it su�ces to show that if F (�, �) is a finite separable ex-
tension of F , then it is a simple extension of F . Let p = minF (�),
and q = minF (�). Let K be a spliting field of p · q that contains
F (�, �). Let � = �1, . . . , �m be the distinct roots of p in K, and

� = �1, . . . , �n the distinct roots of q in K. Since � is separable over F we
have q = (x � �1) · · · (x � �n). There are finitely many elements ���i

���j
with

i = 1, . . . ,m and j = 1, . . . , n. Since F is infinite, choose a 2 F di↵erent
from all those quotients, and let � = � � a�. Clearly F (u)  F (�, �). We
want to show the other inclusion. Consider the tower F (�, �)/F (�)/F . Let
r = minF (�)(�). We have r is a factor of q, since q(�) = 0, so the roots of
r are some of �1, . . . , �n. Consider now f = p(� + ax) 2 F (�)[x]. We have
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f(�) = p(�+a�) = p(�) = 0, so r is a factor of f , and every root of r is a root
of f . For any i = 1, . . . ,m, and j = 2, . . . , n, we have a(� � �j) 6= (� � �i),
so � + a�j = (↵ � a�) + a�j = � � a(� � �j) 6= � � (� � �i) = �i, and
therefore f(�j) = p(� + a�j) 6= 0. Among �1, . . . , �n the only root of f
is �1 = �, and therefore r = x � �, which yields degF (�)(�) = 1, and
� 2 F (�). Since � = �+ a�, we also get � 2 F (�), completing the proof that
F (�, �)  F (�).

Example 10.1.3. For ! = cis(2⇡/3) we have minQ(!) = x2 + x + 1, since
!3 = 1 and x3

� 1 = (x � 1)(x2 + x + 1). The roots of x2 + x + 1 are !
and !2, both of which are in Q(!), so we have two automorphisms of Q(!),
which depend on where they map ! to. There is the identity I : ! 7! ! and
⌧ : ! 7! !2. Clearly, ⌧ 2 : ! 7! !4 = ! is the identity, and AutQ(Q(!)) =
{I, ⌧} is the cyclic group of order 2.

We generalize this example in the following proposition.

Proposition 10.1.14 Let p be a prime number, and let ⇠p = cis(2⇡/p). Then
minQ(⇠p) = xp�1 + xp�2 + · · ·+ x+ 1, and AutQ(Q(⇠p)) ⇡ Cp�1.

Proof. ⇠p satisfies ⇠pp = 1, so it is a root of xp
� 1. This polynomial factors as

xp
� 1 = (x� 1)(xp�1 + xp�2 + · · ·+ x+ 1),

and since ⇠p 6= 1, it is a root of 'p(x) := xp�1 + xp�2 + · · ·+ x+1. We want04/20/2016

to show that 'p(x) is irreducible over Q. Note that (x+1)p�1 = x ·'(x+1),
and we have

(xp + 1)� 1 =

 
pX

i=0

✓
p

i

◆
xi

!
� 1 (10.2)

=
pX

i=1

✓
p

i

◆
xi (10.3)

= x ·

pX

i=1

✓
p

i

◆
xi�1, (10.4)

(10.5)
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so, cancelling the common factor x, we get

'p(x) =
pX

i=1

✓
p

i

◆
xi�1 (10.6)

=
p�1X

i=0

✓
p

i+ 1

◆
xi (10.7)

(10.8)

We know that for i = 1, . . . , p � 1 the binomial coe�cient
�
p
i

�
is divisible

by p, and the constant term,
�
p
1

�
= p is not divisible by p2. By Propo-

sition 4.1.24[Eisenstein Criterion], we get that '(x + 1) is irreducible over
Q. Since any factorization of '(x) yields a factorization of '(x + 1), and
viceversa, it follows that '(x) is also irreducible over Q.

Proposition 10.1.15 Let p be a prime number, n � 1, and E = Fpn. The

automorphism group AutFp(Fpn) is cyclic of order n, generated by the Frobe-

nius automorphism �p.

Proof. Since E is finite and the Frobenius endomorphism �p : E ! E is
injective and fixes the prime subfield, we have �p 2 AutFp(Fpn). The elements
of E all satisfy xpn = x, i.e �n

p (x) = x, so �n
p = IE. Since E/Rp is a

simple extension, for a primitive element u 2 E of this extension, n is the
smallest integer such that upn = u, so it is also the smallest integer such
that �n

p = IE, and �p has order n. But Proposition 10.1.3 tells us that
|AutFp(Fpn)|  [E : Fp] = n. Therefore AutFp(Fpn) is cyclic of orde n,
generated by the Frobenius automorphism �p.

04/21/2016

Theorem 10.1.16 Let E = F (u1, . . . , un) be a finite extension of F . Let

mi = minF (ui) and ri = deg(mi). For �, ⌧ 2 AutF (E)

1. �(ui) is a root of mi for each i = 1, . . . , n.

2. � = ⌧ i↵ �(ui) = ⌧(ui) for each i = 1, . . . , n.

3. � is uniquely determined by the choice of �(u1), . . . , �(un).

Version 2016.5.9
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4. |AutF (E)|  r1 · r2 · · · rn.

Proof. 1. This follows from Lemma 10.1.2.

2. ()) is obvious.
(() Let � = ⌧�1

� �. Note that � 2 AutF (E), and � fixes every
element of F and each ui, since �(ui) = ⌧�1�(ui) = ⌧�1⌧(ui) = ui. It
follows that the subfield of E, fixed by �, E� contains F (u1, . . . , un, and
therefore E� = E. But this tells us that � = IE, and therefore � = ⌧ .

3. Follows from part (2).

4. For each � 2 AutF (E) and each i = 1, . . . , n, there are at most ri
choices for �(ui). Use now part (3).

Q(
p

2 ,
p

3 )

Q(
p

2 )

nnnnnn

Q(
p

3 )

PPPPPP

Q

QQQQQQQQQ
mmmmmmmmm

Example 10.1.4. Consider the extensionQ(
p

2 ,
p

3 )/Q.
The minimal polynomials are x2

� 2 and x2
� 3, with

roots ±

p

2 and ±

p

3 , respectively. For
p

2 there are
two choices, and for

p

3 there are also two choices,
for a total of 4 potential automorphisms. So we
get that |AutQ(Q(

p

2 ,
p

3 ))|  4. (Note also, that
[Q(

p

2 ,
p

3 ) : Q] = 4) The potential automorphisms are given by

I :
p

2 7!

p

2 �1 :
p

2 7!

p

2
p

3 7!

p

3
p

3 7! �

p

3

�2 :
p

2 7! �

p

2 �3 :
p

2 7! �

p

2
p

3 7!

p

3
p

3 7! �

p

3

Since Q(
p

2 ) is the splitting field of x2
� 2 over Q, and Q(

p

2 ,
p

3 ) is the
splitting field of x2

� 3 over Q(
p

2 ), Corollary 5.3.25, tells us that the there
are automorphisms doing the above. Moreover, notice that �1, �2, �3 have
order 2. Therefore, AutQ(Q(

p

2 ,
p

3 )) is the Klein 4-group.

Example 10.1.5. The extension Q( 4
p

2 )/Q has degree 4, since minQ(
4
p

2 ) =
x4

� 2 (use Eisenstein’ criterion to check irreducibility). However, only
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two of the four roots, namely ±

4
p

2 are in the extension, and therefore
|AutQ(Q( 4

p

2 ))|  2. Corollary 5.3.25, guarantees the existence of both auto-
morphisms, ( 4

p

2 7!

4
p

2 ), and ( 4
p

2 7! �

4
p

2 ). Thus, we have AutQ(Q( 4
p

2 ))
is cyclic of order 2.
The splitting field of x4

� 2 2 Q[x] is Q( 4
p

2 , i), which has degree 8 over Q.
In this case, there are four choices of where to map 4

p

2 , i.e. ±

4
p

2 ,±i 4
p

2 .
There are two choices of where to map i, i.e. ±i. For a total of 8 potential
automorphism of this extension. Therefore, |AutQ(Q( 4

p

2 , i))|  8. We will
see, that in this case equality holds.

Recall that an action of a group G on a set X consists of a function
G ⇥ X ! X, where the image of (�, u) is written as u�, or � · u, or �(u),
satisfying

1. 1(u) = u,

2. �(⌧(u)) = (�⌧)(u).

A group action of G on X induces a group homomorphism

⇥ : G ! SX

� 7!

✓
X ! X
u 7! �(u)

◆

Corollary 10.1.17 In the setting of Theorem 10.1.16, let

X = {u 2 E|mi(u) = 0 for some i = 1, . . . , n}

i.e. the set of roots in E of all mi(x), and let G = AutF (E). The group G
acts on the set X, and each � 2 G induces a permutation of X.

Proof. Part 1 of Theorem 10.1.16, allows us to define the map

G⇥X ! X

(�, u) 7! �(u)

Clearly, this map is a group action. For each � 2 G, the restriction �|X :
X ! X is a permutation of X.

Version 2016.5.9
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transitive

faithful

Definition 10.1.5. Let G be a group acting on a set X. We say that the
action is transitive, if for all u, v 2 X there is � 2 G, such that �(u) = v. We
say that the action is faithful if the induced homomorphism ⇥ : G ! SX is
injective.

From Theorem 10.1.16.2 we immediately get.

Corollary 10.1.18 In the setting of Corollary 10.1.17, the action of G =
AutF (E) on the set X of roots, is faithful. In other words, G is isomorphic

to a subgroup of SX .

04/22/2016

Proposition 10.1.19 Let E/F be a finite extension, such that E is the split-

ting field of a non-constant monic polynomial f 2 F [x]. Let G = AutF (E),
and X the set of roots of f in E.

1. If f is irreducible over F , then G acts transitively on X.

2. If G acts transitively on X, then f is a power of an irreducible polyno-

mial over F , i.e. f has a single irreducible factor.

3. If f has no repeated irreducible factor, and G acts transitively on X,

then f is irreducible.

4. If f has no multiple roots, and G acts transitively on X, then f is

irreducible.

Proof. 1. Given u, v 2 X, two roots of f , Proposition 10.1.1 tells us that
there is � 2 AutF (E) such that �(u) = v.

2. We prove the contrapositive. Suppose f has at least two distinct irre-
ducible factors g and h. Let u is a root of g and v is a root of h. WLOG
we may assume both g and h are monic, so that minF (u) = g 6= h =
minF (v). Since the minimal polynomial is unique, it follows that v is
not a root of g, and by Lemma 10.1.2, there is no � 2 AutF (E) such
that �(u) = v.

3. Follwos immediately from (2).

Version 2016.5.9
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4. Follwos immediately from (3).

E K̂

F (↵)

'̃

=={{{{{{{{{{{{

F
' // F̂

↵̂

↵
:

==z
z

z
z

Lemma 10.1.20 Let F and F̂ be fields, and ' : F ! F̂ a homo-

morphism. Let f 2 F [x] be an irreducible polynomial, and denote by

f̂ its image '(f) 2 F̂ [x]. If ↵ is a root of f in some extension E of

F , K̂ an extension of F̂ , and '̃ : F (↵) ! K̂ a homomorphism that

extends ', then ↵̂ = '̃(↵) is a root of f̂(x).

Proof. f̂(↵̂) = '(f)('̃(↵)) = '̃(f)('̃(↵)) = '̃(f(↵)) = '̃(0) = 0

Corollary 10.1.21 Let F and F̂ be fields, and ' : F ! F̂ a homo-

morphism. Let E be an extension of F , and u 2 E algebraic over

F , and K̂ an extension of F̂ . The number of homomorphism '̃ : F (u) ! K̂
which extend ' is at most degF (u).

Proof. Any homomorphism '̃ : F (u) ! K̂ that extends ' is completely
determined by the value fo '̃(u). Take f = minF (u) in the lemma. Since
degF̂ (f̂) = degF (f) = degF (u), the polynomial f̂ has at most this many
distinct roots, so there are at most degF (u) choices for '̃(u).

Scholium 10.1.22 Let F and F̂ be fields, and ' : F ! F̂ a homomorphism.

Let E be an extension of F , and u 2 E algebraic over F , and K̂ an extension

of F̂ . Let f = minF (u), and f̂ = '(F ). The number of homomorphism

'̃ : F (u) ! K̂ which extend ' is the number of distinct roots of f̂ in K̂.

04/25/2016

10.2 The Fundamental Theorem of Galois The-

ory

The following proposition generalizes Proposition 10.1.3, by removing the
hypothesis of simple extension. To prove it we refine the argument used to
prove Theorem 10.1.16.4.

Proposition 10.2.1 Let E/F be a finite extension. Then

|AutF (E)|  [E : F ]. (10.9)
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Proof. Choose u1, . . . , un 2 E, recursively such that ui /2 F (u1, . . . , ui�1).
Let mi = minF (u1,...,ui�1)(ui), and ri = deg(mi). We have [F (u1, . . . , ui) :
F (u1, . . . , ui�1)] = degF (u1,...,ui�1)(ui) = ri, and the multiplicative property of
tower extensions yields

[E : F ] = r1 · r2 · · · rn.

Let � 2 AutF (E), and let �i be the restriction of � to F (u1, . . . , ui). Note
that �0 is the inclusion mape ◆F : F ! E, and �n = � Since all �i :
F (u1, . . . , ui) ! E agree with �, we get that �i : F (u1, . . . , ui) ! E extends
�i�1 : F (u1, . . . , ui�1) ! E. By Corollary 10.1.21 there are at most ri ways
to do this extension. As � is built from �0 = ◆F , step by step, we end up
with at most r1 · r2 · · · rn possible �n = � 2 AutE(F ).

To see that Proposition 10.2.1 is indeed more general than Proposi-
tion 10.1.3, we need an example of a finite extension that is not simple.
The Primitive Element Theorem (10.1.12) tells us that any finite separable
extension is simple, so we need to look at inseparable extensions. Exam-
ple 10.1.2 gives us an example of a finite inseparable extension. However,
that extension is simple. But we can extend the idea of that example, to
create the example we need.

Example 10.2.1. Let R = F2[s, t] be the ring of polynomials in two variables
s and t over F2. As R is an integral domain (it is, in fact, a UFD) it embeds
in its field of quotients, that we denote F2(s, t), and call the field of rational
functions in the two variables s and t. Let f = x2

�s, g = x2
� t 2 F [x]. The

same argument used in Example 10.1.2, shows that f and g are irreducible
over F . Let ↵ be a root of f and � a root of g. We can write ↵ =

p

s
and � =

p

t . F (↵) is spanned by {1,↵} over F , so for any u 2 F (↵),
u = a + b↵ for some a, b 2 F . We have u2 = a2 + b2↵2 = a2 + b2s, and
therefore degt(u

2) is even. Thus, u2
6= t, and � /2 F (↵). It follows that

[F (↵, �) : F (↵)] = 2 and [F (↵, �) : F ]=4, with basis {1,↵, �,↵�}. Take
v 2 F (↵, �). We can write v = a + b↵ + c� + d↵�, with a, b, c, d 2 F . It
follows that v2 = a2 + b2↵2 + c2�2 + d2↵2�2 = a2 + b2s + c2t + d2st 2 F .
So, we have degF (v)  2, and therefore we cannot have F (↵, �) = F (v). In
other words, F (↵, �) is not a simple extension of F .

Theorem 10.2.2 [Dedekind-Artin Theorem] Let E be a field, G a finite

subgroup of Aut(E). Let EG be the subfield of E fixed by G. Then E/EG is

a finite extension and [E : EG] = |G|. Moreover, AutEG(E) = G.
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Proof. Let F = EG. We have G  AutF (E), so if E/F is finite, Propo-
sition 10.2.1 yields |G|  |AutF (E)|  [E : F ]. It remains to show that
E/F is indeed finite, and [E : F ]  |G|. Let n = |G|. By way of contra-
diction, assume [E : F ] > n. There are u0, u1, . . . , un 2 E, distinct, such
that I = {u0, u1, . . . , un} is independent over F . Let G = {�1, . . . , �n} with
�1 = 1E. Consider the n⇥ (n+ 1) matrix M = (�i(uj)), with coe�cients in
E.

M =

2

6664

u0 u1 . . . un

�2(u0) �2(u1) . . . �2(un)
...

...
...

�n(u0) �n(u1) . . . �n(un)

3

7775

and the system of equations M ·X = 0.

u0x0+ u1x1+ · · · +unxn = 0
�2(u0)x0+ �2(u1)x1+ · · · +�2(un)xn = 0

...
...

...
...

�n(u0)x0+ �n(u1)x1+ · · · +�n(un)xn = 0

(10.10)

Since there are more variables than equations, the system has a non-trivial
solution ↵̄ = (↵0,↵1, . . . ,↵n) 2 En. Picke ↵̄ non-trivial, with the smallest
number, (r+1) > 0, of non-zero entries. Reorder the elements of I (if needed)
so that ↵̄ = (↵0,↵1, . . . ,↵r, 0, . . . , 0), and ↵0,↵1, . . . ,↵r 6= 0. Since the set of
solutions of (10.10) is a linear space over E, we may also choose ↵̄, so that
↵0 = 1. The first of the equations in (10.10) yields

u0↵0 + · · ·+ ur↵r = 0,

and by the independence of the set I we must have that at least one of
↵0, . . . ,↵r, say ↵k, is not in F . By definition of F , this means that there is
⌧ 2 G such that ⌧(↵k) 6= ↵k. The fact that ↵̄ is a solution of (10.10) means
that for each i = 1 . . . n,

�i(u0)↵0 + �i(u1)↵1 + · · ·+ �i(ur)↵r = 0. (10.11)
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Let �j = ⌧(↵j), and �j = ↵j � �j. Note that �0 = ⌧(↵0) = ⌧(1) = 1 = ↵0, so
�0 = 0. Also, �k = ↵k � �k = ↵k � ⌧(↵k) 6= 0. Let �l = ⌧�i. Applying ⌧ to
Equation (10.11) yields

�l(u0)�0 + �l(u1)�1 + · · ·+ �l(ur)�r = 0, (10.12)

As �i ranges over G, �l also ranges over all of G. So, for each i = 1, . . . n,

�i(u0)�0 + �i(u1)�1 + · · ·+ �i(ur)�r = 0, (10.13)

and subtracting (10.13) from (10.11), we get

�i(u0)�0 + �i(u1)�1 + · · ·+ �i(ur)�r = 0. (10.14)

Since �0 = 0 and �k 6= 0, this is a non-trivial solution to (10.10) with less
than r + 1 non-zero entries, contradicting the choice of ↵̄.

10.2.1 Galois Extensions

The following proposition connects three important properties that a finite
extension may have. For the meaning of the terms G⇤ and F ⇤⇤, see Defini-
tion 10.2.2 below.

Proposition 10.2.3 Let E/F be a finite extension, and G = AutF (E).
TFAE:

1. G⇤ = F , i.e. F ⇤⇤ = F

2. [E : F ] = |G|

3. E is the splitting field of a separable polynomial over F .

4. E is the splitting field of an irreducible separable polynomial over F .

The proof appears below, after some examples, and the appropriate def-
initions.

Definition 10.2.1. Let E/F be a finite extension. We say that E/F is a
(finite) Galois extension if it satisfies the properties in Proposition 10.2.3. The
group AutF (E) is called the Galois group of the extension.
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Examples 10.2.2. 1. The Dedkind-Artin theorem tells us that for G a
finite subgroup of Aut(E), the extension E/EG is a Galois extension,
with Galois group G.

2. Let E = Q(
p

2 ,
p

3 ). Example 5.3.6 shows that the extension E/Q
is a Galois extension, with Galois group isomorphic to K4, the Klein
4-group.

3. Let E = Q( 4
p

2 ). Example 10.1.5 shows that E/Q is not a Galois
extension, as [E : Q] = 4, but |AutQ(E)| = 2.

4. On the other hand, Q( 4
p

2 , i) is the splitting field of x4
� 2 over Q, and

this polynomial is separable. Thus, Q( 4
p

2 , i)/Q is a Galois extension,
and therefore AutQ(Q( 4

p

2 , i)) has order 8. Note that an automorphism
� 2 AutQ(E) is completely determined by where it maps 4

p

2 and i.
By Lemma 10.1.2, 4

p

2 has to be mapped to a root of its minimal
polynomial x4

� 2. For this, there are 4 possibilities ± 4
p

2 ,±i 4
p

2 . On
the other hand, i has to be mapped to one of the roots of its minimal
polynomial x2 + 1, and these are ±i. Combining these possibilities,
yields 8 potential automorphims of E/Q, but since there are exactly 8
such automorphism, all possibilities yield an automorphims.

I : 4
p

2 7!

4
p

2 �1 :
4
p

2 7!

4
p

2
i 7! i i 7! �i

�2 :
4
p

2 7! �

4
p

2 �3 :
4
p

2 7! �

4
p

2
i 7! i i 7! �i

�4 :
4
p

2 7! i 4
p

2 �5 :
4
p

2 7! i 4
p

2
i 7! i i 7! �i

�6 :
4
p

2 7! �i 4
p

2 �7 :
4
p

2 7! �i 4
p

2
i 7! i i 7! �i

Note that �1, �2, �3, �5, and �7 have order 2, and �2
4 = �2 = �2

6,
so �4 and �6 have order 4. Moreover, �1�4 = �7, and �4�1 = �5, so
AutQ(Q( 4

p

2 , i)) is a non-abelian group of order 8, with 2 elements of
order 4. It follows that AutQ(Q( 4

p

2 , i)) ⇡ D4.
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5. Propositio 10.1.15 shows that Fpn/Fp is a Galois extension. Its Galois
group is cyclic of order n, generated by the Frobenius automorphism.

6. Proposition 10.1.14 shows that the extension Q(⇠p)/Q is a Galois ex-
tension, with Galois group cyclic of order p� 1.

7. In Examples 5.3.7 and 10.1.1.3, we have seen that the extensionQ( 3
p

2 ,!)/Q
is the splitting field of x3

� 2 over Q. It has degree 6, and Galois group
isomorphic to D3. On the other hand, the extension Q( 3

p

2 )/Q has
degree 3, but AutQ(Q( 3

p

2 ) is trivial, so this extension is not Galois.
Q( 3

p

2 ) cannot be the splitting field of any polynomial over Q.

10.2.2 Galois Connection

Recall that given a group G, the subgroup lattice of G as the set

Sub(G) := {H|H  G}

of all subgroups of G, ordered by inclusion. This is an example of a partially

ordered set, poset for short, since the binary relation of inclusion is reflexive,
transivite, and anti-symmetric. It is called a lattice as it has the following two
properties. Given H1, H2 2 Sub(G), there is a greatest lower bound of H1

and H2 in Sub(G), given by H1 \H2, which we call the meet of H1 and H2.
And a least upper bound of H1 and H2 in Sub(G), given by H1 _ H2, the
join of H1 and H2, which is the subgroup generated by the union H1 [H2.

H1 ^H2 := H1 \H2 H1 _H2 := hH[H2i.

Given a field extension E/F , we define is a similar way, the intermediate

field lattice of the extension E/F , as the set

SubF (E) := {L|F  L  E}

of all subfields L of E that contain F . It is ordered by inclusion, and for
any L1, L2 2 SubF (E), there is a greatest lower bound in SubF (E) given by
L1\L2, and a least upper bound given by L1_L2, the subfield of E generated
by the union L[L2.

L1 ^ L2 := L1 \ L2 L1 _ L2 := hL1 [ L2i.
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Definition 10.2.2. Let E be a field and G a subgroup of Aut(E). Let
F = EG, the subfield of E fixed by G. We define two maps between Sub(G),
the subgroup lattice of G, and SubF (E), the intermediate field lattice of
the extension E/F as follows. The maps go in one in each direction, and
both maps are denoted by ⇤. The context will tell which is which. For
H 2 Sub(G), let

H⇤ = EH = {a 2 E|�(a) = a, for all � 2 H}.

For L 2 SubF (E), let

L⇤ = {� 2 G|�(a) = a, for all a 2 L}.

Just like we showed in Corollary 5.4.4, that EH , the subfield fixed by H, is
indeed a subfield of E, it is easy to show that L⇤ is a subgroup of G. It is
called the fixer subgroup of L. (see Exercise 10.2.1 below)
The pair of posets (SubF (E), Sub(G) together with the maps just defined,
is called a Galois Connection, as it satisfies the properties in Lemma 10.2.4
below.

Exercise 10.2.1. Let E be a field, G a finite subgroup of Aut(E), F = EG,
and L 2 AutF (E). Show that L⇤ = AutL(E), and it is a subgroup of G.

Lemma 10.2.4 Let E be a field, G a subgroup of Aut(E), and F = EG. For

any H,H1, H2 2 Sub(G), and any L,L1, L2 2 SubF (E)

1. If H1  H2 then H⇤
2  H⇤

1 . (
⇤
is order reversing)

2. If L1  L2 then L⇤
2  L⇤

1. (
⇤
is order reversing)

3. H  H⇤⇤
(1 

⇤⇤
)

4. L  L⇤⇤
(1 

⇤⇤
)

Exercise 10.2.2. Prove Lemma 10.2.4.

Corollary 10.2.5 Let E be a field, G a subgroup of Aut(E), and F = EG.

For any H 2 Sub(G), and any L 2 SubF (E)

1. H⇤⇤⇤ = H⇤
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2. L⇤⇤⇤ = L⇤

Proof.

We often refer to the properties in Corollary 10.2.5 as the “3 = 1” prop-
erty.

Note that in Theorem 10.2.2 we have F = G⇤ and G⇤⇤ = G.

05/02/2016

Proof of Proposition 10.2.3.

We have E/F a finite extension, and G = AutF (E) = F ⇤.

(1))(2) Assume F = G⇤ = EG. By the Dedekind-Artin Theorem, |G| =
[E : EG] = [E : F ].

(2))(1) Assume [E : F ] = |G|. Note that F ⇤⇤ = G⇤ = EG. Since F  F ⇤⇤,
we have [E : F ] = [E : F ⇤⇤][F ⇤⇤ : F ] = [E : EG][F ⇤⇤ : F ]. By assumption [E :
F ] = |G|, and by the Dedekind-Artin Theorem [E : EG] = |G|. Therefore
[F ⇤⇤ : F ] = 1, and F ⇤⇤ = F , as desired.

(1))(4) Assume EG = F . We first prove the following claim.
Claim 1: E/F is separable.
Write G = {1, �2, . . . , �n}. Let u 2 E, and consider the elements

u, �2(u), . . . , �n(u) (10.15)

in E. This list may contain repetitions. Let u, u2, . . . , ur be the distinct
elements in (10.15). Consider the polynomial

f = (x� u)(x� u2) · · · (x� ur).

Each ⌧ 2 G permutes the list (10.15), and therefore it also permutes the
elements u, u2, . . . , ur. It follows that when we apply ⌧ to f , its coe�cients
are unchanged. In other words, the coe�cients of f are in EG = F , and
f 2 F [x]. Since f has no multiple roots, it follows that minF (u), which is a
factor of f , is separable, and splits in E. The element u is separable over F .
Since u 2 E was arbitrary, we have E/F is separable.
By the Primitive Element Theorem, there is u 2 E such that E = F (u).
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Since minF (u) splits in E, E is the splitting field of minF (u), an irreducible
separable polynomial.

(4))(3) is clear.

(3))(2) Assume E is the splitting field of aseparable polynomial f 2 F [x].
We prove, by induction on n = [E : F ] the following claim.
Claim 2: Given ' : F ! E, there are [E : F ] di↵erent extensions of a
homomorphism ' to '̂ : E ! E.
The statement is clear when [E : F ] = 1. Let n > 1. Let u 2 E � F be
a root of f and m = minF (u). Since m is an irreducible factor of f , it is
separable, and it splits in E. By Scholium 10.1.22, there are r = deg(m)
di↵erent extensions of ' to '̃ : F (u) ! E that extend '. The extension
E/F (u) has degree [E : F (u)] = n/r < n, and E is the splitting field of
the separable polynomial f 2 F (u)[x]. By induction, there are n/r di↵erent
extensions of '̃ to '̂ : E ! E. Therefore there are r · (n/r) = n di↵erent
extensions of ' to ˆvarphi : E ! E.
Apply now the claim to the inclusion map i : F ! E, to get n homomorphism
'̂ : E ! E that fix the elements of F . Each of these is injective, and F -
linear. Since E is finite dimensional over F , each '̂ is a bijection, hence an
element of AutF (E). In other words, we have AutF (E) = [E : F ].

Definition 10.2.3. A finite extension E/F is said to be a normal extension,
if E is the splitting field of a polynommial f 2 F [x].

Corollary 10.2.6 Let E/F be a finite extension. E/F is a Galois extension

i↵ it is normal and separable.

Proof. ()) Assume E/F is Galois. The fact that E/F is separable is a
scholium to Proposition 10.2.3. By Part (10.2.3.3) of the proposition, E is
the splitting field of a polynomial over F , i.e. E/F is normal.
(() Assume E/F is normal and separable. By normality, let f 2 F [x] be
such that E is the splitting field of f . Let q 2 F [x] be a monic irreducible
factor of f , and let u 2 E be a root of q. Then q = minF (u), and by
separability q is separable over F .

05/04/2016

Given a field tower E/L/F , some properties of the big extension E/F
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imply the same properties for the two step extensions, E/L and L/F . That
is the case for the properties:

Finite See Corollary 5.3.14, the Multiplicative Property of Extension De-
grees.

Algebraic See Corollary 5.3.21.

Separable See Proposition 10.1.9.

However, this is not the case for normal extensions. For example, in the
tower Q( 3

p

2 ,!)/Q( 3
p

2 )/Q, the big extension Q( 3
p

2 ,!)/Q is normal, the
splitting field of x3

� 2 2 Q[x]. However, Q( 3
p

2 )/Q is not normal (see
Example 10.2.2.7).

We do get, however, the following lemma, whose proof is immediate.

Lemma 10.2.7 Let E/L/F be a field tower. If E/F is normal, then E/L
is normal.

Combining this lemma with Proposition 10.1.9 and Corollary 10.2.6, we
get:

Proposition 10.2.8 Let E/L/F be a field tower. If E/F is a Galois exten-

sion, then E/L is also Galois.

Proposition 10.2.9 Let E/F be a finite Galois extension. If f 2 F [x] is
irreducible and has a root in E, then it splits in E, and is separable.

E
'̂ // E

L

'

??~~~~~~~~~~~

F

i

GG✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

Proof. Let u 2 E be a root of f , and let L = F (u). Let r =
deg(f). By Scholium 10.1.22, the number of ways of extensing the
inclusion map i : F ! E to a homomorphism ' : F (u) ! E is the
number s of distinct roots of f in E. By Propositions 10.2.8, E/L
is also a Galois extension, so by the second Claim in the proof of
Proposition 10.2.3, there are [E : L] ways to extend each ' : L ! E
to a homomorphism '̂ : E ! E. The same claim, applied to the
Galois extension E/F , yields [E : F ] ways of extending the inclusion

map to a homomorphism '̂ : E ! E. We, thus have

[E : F ] = s · [E : L]  r · [E : L] = [L : F ] · [E : L] = [E : F ]
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and therefore s = r, i.e. f has r distinct roots in E; it splits in E, and is
separable.

10.2.3 The Fundamental Theorem

We now have all the elements needed to state and prove the Fundamental
Theorem of Galois Theory. As indicated earlier, we have limited our attention
to the finite extension case. We should point out, however, that there is
a slightly weaker, and more complicated version that holds for arbitrary
extensions, finite or infinite, but we will not cover it here.

Before stating and proving the Fundamental Theorem, let’s take a look
at the following example. Recall from Examples 5.3.7 and 10.1.1.4, that
E = Q( 3

p

2 ,!) is the splitting field of x3
�2 2 Q[x], and GalQ(E) ⇡ D3 ⇡ S3.

Some of the intermediate fields of this extension appear in the following
diagram. The numbers indicate the degree of each extension. Double lines
denote normal extensions.

Q( 3
p

2 ,!)

Q( 3
p

2 )

2

iiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiii
Q(! 3

p

2 )

2
rrrrrrrrrrrr

rrrrrrrrrrrr

Q(!2 3
p

2 )

2

Q(!)

3

PPPPPPPPPPPPPPPP

PPPPPPPPPPPPPPPP

Q
3

UUUUUUUUUUUUUUUUUUUUUUUUUUUU
3

LLLLLLLLLLLLLL

3
2

mmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmm

On the other hand, we have that the lattice of subgroups of S3 looks like:
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S3

h(2 3)i

3

jjjjjjjjjjjjjjjjjjjjjjjj
h(1 3)i

3

tttttttttttt
h(1 2)i

3

h(1 2 3)i

2

QQQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQQQ

{1}

2

TTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTT
2

IIIIIIIIIII

IIIIIIIIIII
2

3

mmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmm

where double lines denote normal subgroups, and the numbers next to the
edges denote the index.

Notice the remarkable similarity between these two lattices. The Funda-
mental Theorem of Galois Theory tells us, among other things, that this is
not a coincidence. That such similarity holds for any Galois Extension, and
we will make precise the sense in which these lattices are similar. Something
else that we will get from the FTGT is that in the first lattice there are no
other intermediate fields, something we have not established yet, and not at
all obvious.

Theorem 10.2.10 [The Fundamental Theorem of Galois Theory] Let

E/F be a (finite) Galois extension, with Galois group G = GalF (E).

1. The maps

⇤ : SubF (E) ! Sub(G)
L 7! L⇤ = AutL(E)

⇤ : Sub(G) ! SubF (E)
H 7! H⇤ = EH

are inverse of each other, and hence bijective.

2. The maps

⇤
are order reversing, i.e. for intermediate subfields L1 and

L2,

L1  L2 ) L⇤
2  L⇤

1

and for subgroups H1, H2  G,

H1  H2 ) H⇤
2  H⇤

1

05/05/2016
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3. The maps

⇤
preserve index, i.e. for intermediate subfields L1  L2,

[L2 : L1] = [L⇤
1 : L

⇤
2]

and for subgroups H1  H2  G,

[H2 : H1] = [H⇤
1 : H⇤

2 ]

4. The maps

⇤
preserve normality, i.e. for intermediate subfields L1 

L2, L2/L1 is a normal extension i↵ L⇤
2 is a normal subgroup of L⇤

1.

Moreover, when L2/L1 is a normal extension, we have

GalL1(L2) ⇡
L⇤
1

L⇤
2

Proof. 1. We need to show that L⇤⇤ = L and H⇤⇤ = H, for any L 2 SubF (E)
and any H 2 Sub(G). From Lemma 10.2.4 we already know that L  L⇤⇤

and H  H⇤⇤.
Let L 2 SubF (E). By Propositions 10.2.8 and 10.1.9, E/L is normal and
separable. By Corollary 10.2.6 E/L is Galois, and Proposition 10.2.3 yields
L⇤⇤ = L.
Let H 2 Sub(G). From Corollary 10.2.5, the “3 = 1” property, we have
H⇤ = H⇤⇤⇤. By the Dedeking-Artin Theorem,

|H| = [E : EH ] = [E : H⇤] = [E : H⇤⇤⇤] = [E : EH⇤⇤ ] = |H⇤⇤
|.

Therefore, H = H⇤⇤.

2. This was proved in Lemma 10.2.4.

3. Let L 2 SubF (E). Since E/L is Galois, by Proposition 10.2.3,
[E : L] = |AutL(E)| = |L ⇤ |. Now, if L1, L2 2 SubF (E) are such that L1 

L2, then, using the multiplicative property of extension degrees,

[L2 : L1] =
[E : L1]

[E : L2]
=

|L⇤
1|

|L⇤
2|

= [L⇤
1 : L

⇤
2].

Let H 2 Sub(G). By the Dedekind-Artin Theorem, |H| = [E : EH ]. Now, if
H1, H2 2 Sub(G) are such that H1  H2, then

[H2 : H1] =
|H2|

|H1|
=

[E : EH2 ]

[E : EH1 ]
= [EH1 : EH2 ] = [H⇤

1 : H⇤
2 ].
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4. Note first that it su�ce to consider the case when L1 = F .
Let L 2 SubF (E). We want to show that L is a normal extension of F i↵ L⇤

is a normal subgroup of F ⇤ = G. Since L/F is a finite, separable extension,
by the Primitive Element Theorem, there is u 2 L such that L = F (u). Since
any � 2 G fixes F , we have � 2 L⇤ i↵ � fixes L, i↵ �(u) = u.
Assume L/F is a normal extension. By Proposition 10.2.9, minF (u) splits
in L. Let � 2 L⇤ and ⌧ 2 G. We want to show ⌧�1�⌧ 2 L⇤. By Propo-
sition 10.1.1 ⌧(u) is a root of minF (u), and therefore ⌧(u) 2 L. Therefore
�(⌧(u)) = ⌧(u), and ⌧�1�⌧(u) = u. So, ⌧�1�⌧ 2 L⇤.
Conversely, assume L⇤ is a normal subgroup of G.
Claim: minF (u) splits in L. Suppose otherwise, i.e. there is a root v 2 E of
minF (u) such that v /2 L. By Proposition 10.1.1 there is a homomorphism
' : F (u) ! E such that '(u) = v. By Corollary 5.3.25, ' can be extended
to an automorphism ⌧ : E ! E, that is, ⌧ 2 AutF (E), such that ⌧(u) = v.
Since v /2 L = L⇤⇤, there is � 2 L⇤ such that �(v) 6= v. Since L⇤ E G, we
have ⌧�1�⌧ 2 L⇤. If follows that

u = ⌧�1�⌧(u) = ⌧�1�(v), and ⌧(u) = �(v) 6= v,

a contradiction.
Since minF (u) splits in L and L = F (u), L is the splitting field of minF (u),
and L/F is a normal extension.
To prove the second part of the statement, namely, that

GalF (L) ⇡
F ⇤

L⇤ =
G

L⇤ , (10.16)

note that for any ⌧ 2 G, ⌧(u) is a root of minF (u), hence an element of
L. The restriction ⌧ |L maps L to L, fixing F . This tells us that ⌧ |L is an
injective F -linear transformation from the finite dimensional vector space L
to itself. It follows that ⌧ |L is bijective, and ⌧ |L 2 AutF (L). The restriction
map

⇢ : AutF (E) ! AutF (L)
⌧ 7! ⌧ |L

is a group homomorphism, and ker(⇢) = AutL(E). It is easy to show that ⇢
is surjective (see Exercise 10.2.3 below). By the First Isomorphism Theorem,
we get (10.16).

Exercise 10.2.3. Show that the restriction map ⇢ in the proof of Theo-
rem 10.2.10 is a group epimorphism.
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10.2.4 Examples

1. If E is a finite field E = Fpn . By Proposition ??, E is separable over
F = Fp. In the proof of Theorem 5.4.5 we showed that E is the splitting
field of xpn

� x 2 Fp[x], so E/F is a normal extension. It is a Galois
extension. The subfields of E are all the finite fields of the form Fpd as
d ranges over the divisors of n. It follows that the lattice of subfields
of E is isomorphic to the lattice of divisors of n. On the other hand,
the Galois group G = GalF (E) is cyclic of order n. The subgroups of
G are cyclic groups of order d where d ranges over the divisors of n.
As G is abelian, all subgrops of G are normal. On the other hand, all
subfields of E are normal over Fp.

2. Let E = Q(
p

2 ,
p

3 ) and F = Q. In Example 10.1.4 we have seen that
E is the splitting field of (x2

�2)(x2
�3), so E/F is a Galois extension.

We also showed that GalF (E) is the Klein 4-group V = {I, �1, �2, �3},
where

I :
p

2 7!

p

2 �1 :
p

2 7!

p

2
p

3 7!

p

3
p

3 7! �

p

3

�2 :
p

2 7! �

p

2 �3 :
p

2 7! �

p

2
p

3 7!

p

3
p

3 7! �

p

3

The lattice of subgroups of V is

V

h�1i

vvvvv
h�3i h�2i

HHHHH

{I}

GGGG
xxxx

so the diagram of subfields of E on page 50 is missing one subfield.
Q(

p

2 ) is the subfield fixed by h�1i, and Q(
p

3 ) is the subfield fixed
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by h�2i. We are missing the subfield fixed by h�3i. It is easy to see
that �3(

p

6 ) =
p

6 , and it follows that the subfield fixed by hsigma3i
is precisely Q(

p

6 ). Moreover, the Fundamental Theorem of Galois
Theory tells us that there are no other subfields of E. Hese is the
lattice of subfields.

Q(
p

2 ,
p

3 )

Q(
p

2 )

nnnnnn

Q(
p

6 ) Q(
p

3 )

PPPPPP

Q

QQQQQQQQQ
mmmmmmmmm

3. From Example 10.2.2.4, on page 57, we have that E = Q( 4
p

2 , i), the
splitting field of x4

� 2 over Q has Galois group

G = D4 = {I, �1, �2, �3, �4, �5, �6, �7}.

If we denote the roots of x4
� 2 as follows:

↵1 =
4
p

2 , ↵2 = i 4
p

2 , ↵3 = �

4
p

2 , ↵4 = �i 4
p

2 ,
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then the elements of G are permutations of {�1, �2, �3, �4}.

I : 4
p

2 7!

4
p

2 �1 :
4
p

2 7!

4
p

2
i 7! i i 7! �i

✏ (↵2 ↵4)

�2 :
4
p

2 7! �

4
p

2 �3 :
4
p

2 7! �

4
p

2
i 7! i i 7! �i

(↵1 ↵3)(↵2 ↵4) (↵1 ↵3)

�4 :
4
p

2 7! i 4
p

2 �5 :
4
p

2 7! i 4
p

2
i 7! i i 7! �i

(↵1 ↵2 ↵3 ↵4) (↵1 ↵2)(↵3 ↵4)

�6 :
4
p

2 7! �i 4
p

2 �7 :
4
p

2 7! �i 4
p

2
i 7! i i 7! �i

(↵1 ↵4 ↵3 ↵2) (↵1 ↵4)(↵2 ↵3)

The lattice of subgroups of G is

D4

h�1, �2i

kkkkkkkkkkkkkkkkkkkk
h�4i h�2, �7i

SSSSSSSSSSSSSSSSSSSS

h�1i h�3i

GGGGGGGGGGG

h�2i

RRRRRRRRRRRRRRRRRRR

lllllllllllllllllll
h�5i

wwwwwwwwwww
h�7i

{I}

RRRRRRRRRRRRRRRRRRRRR

DDDDDDDDDD

zzzzzzzzzz

lllllllllllllllllllll
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The fixed subfields are:

E�1 = Q(↵1) E�3 = Q(↵2)
E�5 = Q(↵1 + ↵2) E�2 = Q(

p

2 , i)
E�7 = Q(↵1 + ↵4) E�4 = Q(i)

Eh�1,�2i = Q(↵2
1) = Q(

p

2 ) Eh�2,�7i = Q(↵1↵2) = Q(i
p

2 )

and the lattice of subfields is:

E

iiiiiiiiiiiiiiiiiiiiiiiii

sssssssssssss

NNNNNNNNNNNNNNN

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Q(↵1) Q(↵2)

vvvvvvvvvvv
Q(

p

2 , i)

jjjjjjjjjjjjjjjjjjjjj

VVVVVVVVVVVVVVVVVVVVVVVVVVVV Q(↵1 + ↵2)

NNNNNNNNNNNNNN
Q(↵1 + ↵4)

Q(
p

2 )

TTTTTTTTTTTTTTTTTTTTTTTTT Q(i) Q(i
p

2 )

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Q

05/11/2016

4. Let E be the splitting field of f = x5
� 20x + 6 2 Q[x]. It is a Galois

extension of Q. Let G = GalQ(E) = AutQ(E). Using the Eisenstein
Criterion one shows that f is irreducible over Q, and using the Interme-
diate Value Theorem from Calculus, one can show that it has exactly
3 real roots, call them ↵1,↵2,↵3. The two non-real roots are conjugate
of each other. Call them ↵4,↵5 = ↵4. Complex conjugation ⌧ : C ! C,
given by a+ bi 7! a� bi, fixes the coe�cients of f , and therefore it per-
mutes its roots. Restricting ⌧ to E yields an automorphism of E that
fixes Q, i.e. ⌧ 2 G. Since ⌧ fixes all real numbers, as a permutation of
the roots, we can write it ⌧ = (↵4 ↵5).
Since f is irreducible over Q, the extension Q(↵1) has degree 5 over
Q. By the multiplicative property of extension degrees, we get that 5
divides [E : Q] = |G|  S5. The only elements in S5 of order 5 are
5-cycles, so by Caucy’s Theorem G contains a 5-cycle, call it ⇢. It is
easy to see that ⇢ and ⌧ generate all of S5, and therefore G ⇡ S5.
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