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Abstract

We propose a new type of max-stable process that we call the Tukey max-stable process for spa-

tial extremes. It brings additional flexibility to modeling dependence structures among spatial

extremes. The statistical properties of the Tukey max-stable process are demonstrated theoreti-

cally and numerically. Simulation studies and an application to Swiss rainfall data indicate the

effectiveness of the proposed process.
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1 Introduction

Max-stable processes are widely used to model spatial extremes because they naturally arise as

the limits of pointwise maxima of rescaled stochastic processes (de Haan & Ferreira, 2006) and

therefore extend generalized extreme-value distributions to that setting; see the reviews of recent

advances in the statistical modeling of spatial extremes by Davison et al. (2012), Cooley et al.

(2012), Ribatet (2013) and Davison & Huser (2015). A useful spectral characterisation of simple

max-stable processes for which the margins are standardized to unit Fréchet distributions was

proposed by de Haan (1984), Penrose (1992) and Schlather (2002). Specifically, let {Rj}∞j=1 be

the points of a Poisson process on (0,∞) with intensity r−2dr, and let {Wj(s)}∞j=1 be indepen-

dent replicates of a nonnegative stochastic process, W (s), on Rd with continuous sample paths

satisfying E{W (s)} = 1 for all s ∈ Rd. Then,

Z(s) = maxj≥1{RjWj(s)} (1)

is a max-stable process on Rd with unit Fréchet marginal distributions; that is, pr{Z(s) < z} =

exp(−1/z) for all z > 0 and s ∈ Rd. The finite-dimensional distributions of simple max-stable

processes follow from (1) for any set of D locations, s1, . . . , sD:

pr{Z(s1) ≤ z1, . . . , Z(sD) ≤ zD} = exp{−Vs1,...,sD(z1, . . . , zD)}, z1, . . . , zD > 0, (2)

where the exponent measure

Vs1,...,sD(z1, . . . , zD) = E

[
max
i=1,...,D

{
W (si)

zi

}]
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captures all the extremal dependence information. The latter can be summarized by the extremal

coefficient function (Schlather & Tawn, 2003):

θD(s1, . . . , sD) = Vs1,...,sD(1, . . . , 1) = E[maxi=1,...,D{W (si)}] ∈ [1, D],

where the values 1 and D for θD correspond to complete dependence and independence, respec-

tively. For a pair of locations (s1, s2), under the stationarity assumption of the latent Gaussian

random fieldW (s), the bivariate extremal coefficient function θ2(s1, s2) ≡ θ(h) with h = ‖s1−s2‖.

Different choices for W (s) in (1) lead to various models for spatial max-stable processes

proposed in recent years. In a seminal unpublished University of Surrey 1990 technical re-

port, R. L. Smith proposed a Gaussian extreme-value process based on W (s) = φd(s − U ; Σ),

where φd(·; Σ) denotes the d-dimensional Gaussian probability density function with covariance

matrix Σ and U is a unit rate Poisson process on Rd. Schlather (2002) considered the extremal-

Gaussian process obtained with W (s) = (2π)1/2 max{0, ε(s)} where ε(s) is a stationary stan-

dard Gaussian process with correlation function ρΨ(h) and parameters Ψ. A generalization

called the extremal-t process (Nikoloulopoulos et al., 2009; Opitz, 2013) was defined by taking

W (s) = π1/221−ν/2[Γ{(ν + 1)/2}]−1 max{0, ε(s)}ν where Γ(·) is the gamma function and ν > 0

the degrees of freedom. The case ν = 1 reduces to the extremal-Gaussian process. The pairwise

extremal coefficient for the extremal-t process is

θt(h) = 2Tν+1

{
(ν + 1)1/2

√
1− ρΨ(h)

1 + ρΨ(h)

}
,

where Tν denotes the cumulative distribution function of a standard Student-t random variable
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with ν > 0 degrees of freedom. It is trivial to see that θt(h) ≤ θ0
t with θ0

t = 2Tν+1{(ν+1)1/2} and

that as ρΨ(h)→ 0, θt(h)→ θ0
t . The θ0

t can only approach 2, which corresponds to independence,

when ν → ∞, although this can be resolved by incorporating a compact random set element

(Schlather, 2002; Davison & Gholamrezaee, 2012; Huser & Davison, 2014). Modelling of extreme

values with asymptotically independent processes has been discussed by de Haan & Zhou (2011),

Wadsworth & Tawn (2012) and Padoan (2013).

Another popular spatial max-stable model is the so-called geometric Gaussian process for

which W (s) = exp{σε(s)− σ2/2} with some σ > 0. The resulting extremal coefficient is

θgeo(h) = 2Φ

{
σ

√
1− ρΨ(h)

2

}
, (3)

where Φ denotes the cumulative distribution function of a standard Gaussian random variable.

Similar to the extremal-t process, θgeo(h) is bounded above by θ0
geo = 2Φ

(
σ/
√

2
)
< 2 and the

upper-bound θ0
geo → 2 only if σ →∞. The geometric Gaussian process can be viewed as a special

case of the well-known Brown–Resnick process (Brown & Resnick, 1977; Kabluchko et al., 2009),

where the latent process is defined as W (s) = exp{ε̃(s) − γ(s)} with ε̃(s) being an intrinsically

stationary Gaussian process with semivariogram γ(·) and a starting location at s = 0 such that

ε̃(0) = 0 almost surely. One simple example of such ε̃(s) is the Brownian motion.

By observing that W (s) is a log-Gaussian process for the geometric Gaussian process sug-

gests new possibilities. Indeed, Tukey (1977) introduced a generalisation of the log-Gaussian
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distribution called the g-and-h distribution and defined as the distribution of

Y =
exp(g̃Z)− 1

g̃
exp

(
h̃Z2

2

)

where Z is a standard Gaussian random variable. Here, g̃ can take any real value (positive

or negative) and controls skewness whereas h̃ > 0 regulates the heaviness of the tails of the

distribution. Tukey’s g-and-h distribution is endowed with various appealing properties and has

been shown to be useful in many applications. For more detailed studies of the Tukey g-and-

h distribution, see, for example, Martinez & Iglewicz (1984), MacGillivray (1992), and Xu &

Genton (2015, 2016).

Following Tukey’s idea, we propose an extension of the geometric Gaussian process based on

a new spectral process W (s) defined as

W (s) = exp

{
a

2
ε2(s) + bε(s) +

1

2
log(1− a)− b2

2(1− a)

}
, a < 1, b ≥ 0, (4)

which satisfies E{W (s)} = 1 and where ε(s) is a stationary standard Gaussian process with

correlation function ρΨ(h). The resulting max-stable process, Z(s), generated from (1) with (4),

is referred to as the Tukey max-stable process. An additional parameter, a, is introduced here

to increase the flexibility of modeling the dependence of spatial extremes. The parameter b is

restricted to b ≥ 0 to ensure identifiability. When a = 0 and b = σ, the Tukey max-stable process

reduces to a classical geometric Gaussian process. When 0 < a < 1, the spectral process W (s)
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is uniformly bounded from below as

W (s) ≥ exp

{
1

2
log(1− a)− b2

2a(1− a)

}
, 0 < a < 1, s ∈ Rd, (5)

while in the case when a < 0, W (s) is uniformly bounded from above by

W (s) ≤ exp

{
1

2
log(1− a)− b2

2a(1− a)

}
, a < 0, s ∈ Rd. (6)

Note that W (s) in (4) is unbounded for a = 0 and is not well defined when a ≥ 1. Bounds

(5) and (6) may be of particular interests for different applications. The upper bound (6) is

particularly attractive in the sense that the simulation of the resulting max-stable process Z(s)

defined in (1) can be exact by using a simple algorithm (Schlather, 2002). To the best of our

knowledge, most, if not all, existing max-stable processes with representation (1) do not have

such a nice property. We defer a more detailed discussion to Subsection 2.4.

The remainder of the paper is organized as follows. In Section 2, we derive the finite dimen-

sional distributions of the Tukey max-stable process for D = 2 as well as its bivariate extremal

coefficient. We also describe a composite likelihood procedure for fitting purpose and an exact

simulation method. In Section 3, we report the results of Monte Carlo simulations. In Section 4,

we fit our Tukey max-stable model to rainfall data from Switzerland and compare it with other

models. We end the paper with a discussion in Section 5. The proofs of the theoretical results

are provided in an Appendix.
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2 Properties of the Tukey max-stable process

2.1 Bivariate distribution function

Although the finite-dimensional distributions of a simple max-stable process are given in (2),

the explicit form of Vs1,...,sD(z1, . . . , zD) is generally difficult to derive for D > 2 except in some

specific cases (Genton et al., 2011; Huser & Davison, 2013). The following proposition gives the

bivariate cumulative distribution function of the proposed Tukey max-stable process. We write

ρ for ρΨ(h) whenever there is no ambiguity.

Proposition 1 Let ρ be the correlation coefficient between ε(s1) and ε(s2) and Θ = (a, b,ΨT)T

be the parameter vector. Then, the bivariate cumulative distribution function of the Tukey max-

stable process is (2) with D = 2 and

Vs1,s2(z1, z2; Θ) =
1

z1

[
1−GΘ

{
log

(
z1

z2

)}]
+

1

z2

[
1−GΘ

{
log

(
z2

z1

)}]
, (7)

where

GΘ(y) =

∫ ∞
−∞

fX(t)Φ

(
y − t2√

2|t|

)
dt, (8)

with fX(·) the probability density function of X ∼ N (µ1(a, b, ρ), ϕ2(a, ρ)), ϕ2(a, ρ) = a2(1 −

ρ2)/{2(1− a)} and µ1(a, b, ρ) = b(1− a)−1{(1− ρ)(2− a+ ρa)/2}1/2.

The proof is presented in the Appendix.

Remark 1 A special case of GΘ(y) in (8) is when a → 0. We then have that ϕ(a, ρ) → 0.

Hence, X degenerates to a random variable with a point mass at X = µ1(0, b, ρ) = b{1 − ρ}1/2.
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Thus, by letting FX(·) be the cumulative distribution function of X, we have as a → 0 that (7)

reduces to the bivariate exponent measure of the geometric Gaussian max-stable process since

GΘ(y) =

∫ ∞
−∞

Φ

(
y − t2√

2|t|

)
dFX(t)→ Φ

(
y − b2(1− ρ)

b
√

2(1− ρ)1/2

)
.

Remark 2 In principle, one can generalize W (s) defined in (4) by using a higher-order polyno-

mial function of ε(s). However, it would be very difficult, if not impossible, to derive a closed

form pairwise cumulative distribution function, which makes such a choice of no practical inter-

est. Indeed, the appeal of using a quadratic function of ε(s) in (4) is that it easily combines with

the form of the Gaussian probability density function. In this sense, the proposed W (s) in (4)

is an interesting extension of the geometric Gaussian max-stable process with tractable statistical

properties.

2.2 The bivariate extremal coefficient

The second proposition gives an explicit form of the bivariate extremal coefficient of the Tukey

max-stable process.

Proposition 2 The bivariate extremal coefficient of the Tukey max-stable process is

θTK(h) = 2{1−GΘ(0)} = 2− 2 [Φ(ρaδ1) + Φ(δ1)− 2Φ2{(δ1, ρaδ1); ρa}] , (9)

where δ1 = a−1b{(1 − ρ)/(1 + ρ) + 1/(1 − a)}1/2, ρa = a[(1 − ρ2)/{(2 − a)2 − ρ2a2}]1/2 and

Φ2{(x1, x2); %} is the bivariate standard normal cumulative distribution function with correlation

coefficient % evaluated at (x1, x2).
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The proof is presented in the Appendix.

As ρΨ(h)→ 1 and hence ρa → 0, it follows that θTK(h)→ 2{1−Φ(0)} = 1. Thus the proposed

Tukey max-stable process can capture total dependence. On the other hand, as ρΨ(h)→ 0,

θTK(h)→ θ0
TK ≡ 2− 2

[
Φ(ρ0

aδ
0
1) + Φ(δ0

1)− 2Φ2{(δ0
1, ρ

0
aδ

0
1); ρ0

a}
]
,

where δ0
1 = a−1b{(2 − a)/(1 − a)}1/2 and ρ0

a = a/(2 − a). To capture complete independence

of the induced max-stable process, we need to ensure that θ0
TK = 2. A sufficient condition for

θ0
TK = 2 is to ensure that δ0

1 → ∞ by letting b/{1 − a}1/2 → ∞. For the geometric Gaussian

process, we have to let σ →∞, which is equivalent to the parameter b of the Tukey max-stable

process, so that θ0
geo, the upper-bound of θgeo(h) defined in (3), approaches 2. Thus, the newly

introduced parameter, a, “speeds up” (when a > 0) or “slows down” (when a < 0) the rate

at which θ0
geo → 2 as σ → ∞, as illustrated in the left panel of Figure 1. In Figure 1, we can

clearly see that for the Tukey max-stable process, both a and b impact the shape and range

of the extremal coefficient. Therefore, the introduction of the parameter a brings in additional

flexibility to model complicated dependence structures of spatial extremes.

2.3 Composite likelihood fitting

As for many max-stable processes, given a set of independent data, Z1, . . . ,Zn, with each Zi

consisting of observations from a spatial domain, S, the joint distribution of each Zi is not

available. The literature on fitting max-stable processes has therefore largely focused on the

composite likelihood approach (Lindsay, 1998; Cox & Reid, 2004; Padoan et al., 2010; Varin
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et al., 2011; Genton et al., 2011; Huser & Davison, 2013; Sang & Genton, 2014), particularly

the pairwise likelihood approach. Specifically, the model parameter set Θ can be estimated by

maximizing the composite log-likelihood function defined as follows:

ln(Θ) =
n∑
i=1

∑
{j<k:zj ,zk∈Zi}

log f(zj, zk; Θ), (10)

where f(zj, zk; Θ) is the bivariate density function of Zi(sj) and Zi(sk) for sj, sk ∈ S. We first

define two functions

g′Θ(t; y) =
1√
2|t|

fX(t)φ

(
y − t2√

2|t|

)
, G′Θ(y) =

∫ ∞
−∞

g′Θ(t; y) dt,
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Figure 1: Bivariate extremal coefficients of various max-stable processes with a Matérn corre-
lation function (12) (φ = 3, ν = 0.5). Left: θTK(h) for various a’s while fixing b =1.5. (Note:
a = 0 corresponds to the geometric Gaussian process with σ = 1.5.) Right: θ0

t as a function of
ν; θ0

TK for 11 values of a equispaced on [−0.9, 0.9] as a function of b; and θ0
geo as a function of σ.
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where φ(·) is the standard normal probability density function. Then, using Proposition 1, some

straightforward algebra leads to the bivariate density function of the Tukey max-stable process:

f(z1, z2; Θ) = exp{−Vs1,s2(z1, z2; Θ)}
[

1

z2
1z

2
2

{1−GΘ(v)}{1−GΘ(−v)}+
1

z2
1z2

G′Θ(v)

]
, (11)

where v = log(z1/z2) and Vs1,s2(z1, z2; Θ) is given by (7).

Although numerical integration has to be used to compute GΘ(y) and G′Θ(y), the computa-

tional cost of maximizing the composite likelihood function (10) is not high. The integration

bounds in (11) are from −∞ to ∞, but a closer examination of the integrands gΘ(t; y) and

g′Θ(t; y) reveals that it suffices to set the integration bounds to µ1(a, b, ρ) ± 10 × ϕ(a, ρ), which

can greatly reduce the computational cost due to numerical integration. The reason is that when

t is outside this interval, the value of fX(t) is so small that the integration outside this interval

is practically 0. In our simulation studies, this approximation works extremely well. Another

potential computational issue is that when y = 0, g′Θ(t; y) may not be integrable, depending

on the values of µ1(a, b, ρ) and ϕ(a, ρ). For this reason, to ensure maximal numerical stability

when computing ln(Θ), we recommend removing all pairs (zj, zk) with | log zj − log zk| < τ0 for

some τ0 > 0. Since the max-stable process Z(s) defined in (1) has a unit Fréchet marginal

distribution, which is a continuous distribution, one can expect that as long as there is no very

strong spatial dependence in the max-stable random field, the probability of having a pair with

| log z(s1)− log z(s2)| > τ0 is negligible for a sufficiently small τ0. In our simulations, we choose

τ0 = 10−6, which seems to work well. With such a choice, in almost all cases, less than 1%

of pairs were removed. In the Swiss rainfall data, no pairs of observations were removed with
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τ0 = 10−6. However, when the spatial dependence is very strong, one needs to be more cautious

about the choice of τ0.

2.4 Simulation of Tukey max-stable process

Computer simulation has been an important tool to study mathematically intractable properties

of max-stable processes (Oesting et al., 2015). The representation given in (1) provides a con-

venient way to simulate a max-stable process by taking the maximum over an infinite number

of replications from the processes Rj and Wj(s). However, in practice, only a finite number of

replications can be taken and as a result the simulated max-stable process may not be exact

(Ribatet, 2013; Oesting et al., 2012, 2015). Schlather (2002) proposed a simple approach to

obtain exact simulations of a max-stable process defined in (1) provided that the latent process

W (s) is uniformly bounded by some constant C > 0, that is sups∈Rd W (s) ≤ C almost surely.

We adopt a simpler approach outlined in Oesting et al. (2015) (Proposition 1.2.1) to simulate

exact samples from such a max-stable process over a set S ⊂ Rd as follows:

Algorithm I: Simulate a max-stable process Z(s) in (1) with sups∈Rd W (s) ≤ C.

1. Step I: Set Z(s) = 0 for all s ∈ S, E = 0 and i = 1;

2. Step II: Generate a random number ξi ∼ Exponential(1) and a random realization of

{Wi(s), s ∈ S}. Then update E = E + ξi and Z(s) by max{Z(s),Wi(s)/E};

3. Repeat Step II until infs∈S Z(s) ≤ C/E.

Most popular max-stable models constructed using representation (1), including the geometric

Gaussian process, the extremal-Gaussian process, the extremal-t process and the Brown–Resnick

process, do not meet the condition sups∈Rd W (s) ≤ C. As a remedy, Schlather (2002) proposed to
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use a large enough constant C∗ such that pr {sups∈Rd W (s) > C∗} is sufficiently small. Although

there has been some alternative proposals for obtaining exact samples from such max-stable

processes (Oesting et al., 2012, 2015; Dombry et al., 2016), Algorithm I remains attractive due

to its simplicity.

A distinctive feature of the proposed Tukey max-stable process is that when a < 0, the spec-

tral processW (s) as defined in (4) is uniformly bounded above by C = exp
{

1
2

log(1− a)− b2

2a(1−a)

}
.

Therefore, the simulation of a Tukey max-stable process with a < 0 using Algorithm I can be

exact based on the theoretical results of Schlather (2002). On the other hand, if we restrict

0 < a < 1, we can still use Algorithm I with a large value C∗ to obtain approximate samples. In

all our numerical examples, we choose C∗ = exp
{

52

2
a+ 5b+ 1

2
log(1− a)− b2

2(1−a)

}
obtained by

plugging ε(s) = 5 in (4), which works sufficiently well in almost all cases.

3 Monte Carlo simulations

We conduct a simulation study to evaluate the estimation accuracy of the pairwise likelihood

estimator obtained by maximizing (11). In each simulation run, D = 40 spatial locations were

randomly chosen from 225 grid points located on a 15×15 regular grid over the region [0, u]×[0, u],

where u is chosen as the smallest h such that θTK(h) ≥ θ0
TK − 0.01 for a given combination of

(a, b). The spatial domain is chosen in this way to ensure that the D = 40 spatial locations

are spread out over the region with a varying extremal coefficient function θTK(h). The latent
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standard Gaussian process, ε(s), in (4) has the Matérn correlation function

ρΨ(h) =
21−ν

Γ(ν)

(
h

φ

)ν
Kν

(
h

φ

)
, (12)

where ν is the smoothness parameter, φ is the range parameter, Γ(·) is the gamma function, and

Kν(·) is the modified Bessel function of the second kind of order ν. In this study, we set φ = 3,

ν = 0.3 and experiment with multiple values of a and b when generating data from the Tukey

max-stable process. The number of independent replicates of the max-stable process for the same

spatial locations varies from n = 20 to n = 100. The smoothness parameter, ν = 0.3, is assumed

to be known, a common practice, and the other parameters, a, b, φ, must be estimated. To find

the global maximum of (11), we used multiple starting points for the maximization routine. The

simulation of the Tukey max-stable process is similar to the default method for generating max-

stable processes in the R package SpatialExtremes (Ribatet et al., 2015), following Algorithm I

in Subsection 2.4.

The empirical bias and root mean-squared error based on 200 simulation runs are summarized

in Table 1, where we can see that when n increases from 20 to 100, the root mean-squared error

consistently decreases, indicating the effectiveness of the pairwise likelihood approach. However,

when n is small, we can observe a certain amount of bias for estimators of the range parameter, φ,

which decreases as n increases. Furthermore, the magnitude of the bias increases as u decreases,

which is expected since the data are concentrated in a smaller region and contain less information

about the range parameter, φ.

A second observation is that when a and b are large, there is also some appreciable biases in b̂.
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One possible explanation is that in such cases, as we can see from Figure 2, the extremal coefficient

function θTK(h) quickly reaches its upper bound θ0
TK . For example, in the case of a = 0.5 and

b = 1.5, θTK(h) stabilizes at the distance around h = 2. Recall that in this case, the 40 spatial

locations are evenly distributed in the square [0, 5.62]× [0, 5.62]. It indicates that most pairs of

locations do not carry effective information about the variation of θTK(h), which is controlled by

a and b. As a result, the pairwise likelihood function, ln(Θ), may be quite flat in the neighborhood

of the true value of Θ. However, even in such cases, the pairwise dependence structure can still be

correctly captured even though the estimate Θ̂ may be different from the true underlying value.

Table 1: Estimation accuracies of pairwise likelihoods for the Tukey max-stable process.

â b̂ φ̂
b a u n Bias (RMSE) Bias (RMSE) Bias (RMSE)
1 −0.5 7.42 20 −0.007 (0.143) 0.063 (0.257) 0.803 (2.651)

50 −0.001 (0.074) 0.013 (0.122) 0.163 (0.957)
100 −0.000 (0.055) 0.013 (0.088) 0.157 (0.659)

−0.3 7.52 20 0.023 (0.108) 0.021 (0.179) 0.585 (2.329)
50 0.015 (0.068) 0.007 (0.099) 0.210 (1.025)
100 0.003 (0.045) 0.008 (0.068) 0.113 (0.616)

0.3 7.22 20 −0.058 (0.154) 0.092 (0.245) 0.746 (2.906)
50 −0.026 (0.102) 0.049 (0.150) 0.527 (2.323)
100 −0.016 (0.064) 0.018 (0.076) 0.084 (0.802)

0.5 6.62 20 −0.085 (0.204) 0.203 (0.563) 0.945 (3.030)
50 −0.029 (0.113) 0.073 (0.178) 0.772 (2.338)
100 −0.016 (0.078) 0.045 (0.129) 0.494 (1.844)

1.5 −0.5 8.12 20 0.011 (0.370) -0.024 (0.310) 0.188 (1.454)
50 0.018 (0.115) −0.004 (0.208) 0.100 (0.972)
100 0.011 (0.100) −0.002 (0.135) 0.048 (0.611)

−0.3 8.02 20 0.022 (0.205) 0.035 (0.376) 0.712 (2.649)
50 0.023 (0.133) 0.006 (0.185) 0.324 (1.070)
100 0.004 (0.093) 0.017 (0.139) 0.215 (0.716)

0.3 6.92 20 −0.074 (0.215) 0.165 (0.462) 0.978 (3.360)
50 −0.061 (0.187) 0.124 (0.373) 0.474 (2.002)
100 −0.046 (0.153) 0.093 (0.265) 0.345 (1.799)

0.5 5.62 20 −0.055 (0.287) 0.428 (0.900) 1.253 (4.161)
50 −0.078 (0.236) 0.241 (0.660) 1.233 (3.874)
100 −0.031 (0.177) 0.135 (0.469) 1.281 (3.229)
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Figure 2: Estimation accuracy of the extremal coefficient function for the Tukey max-stable
process for n = 50.

In Figure 2, we can see that the estimated extremal coefficient, θ̂TK(h), is unbiased for θTK(h) in

the cases of (a, b) = (0.5, 1) and (a, b) = (0.5, 1.5) when n = 50, and it holds more generally for

the other combinations of a and b. This problem may be resolved by using a triplewise likelihood

of the Tukey max-stable process. For example, it was suggested by Castruccio et al. (2016) that

the bias of estimators obtained through maximizing pairwise likelihood for the Brown–Resnick

process can be eliminated by using a triplewise likelihood. Considering the similarity between

(4) and the Brown–Resnick process, whether this bias-correction phenomenon also applies to the

Tukey max-stable process is left for future research.

Finally, we want to point out that the simulation results in Table 1 assume the knowledge

of whether a < 0 or a > 0. That is, if the true value a < 0, we restrict a to be negative in our

optimization routine. We empirically observe that for a parameter vector Θ with an a < 0, there

often exist another Θ′ with an a′ > 0 that gives a pairwise likelihood `(Θ′) ≈ `(Θ). Therefore,
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considering the benefits for simulation described in Section 2.4, we would recommend using a < 0

in practice.

4 Swiss rainfall data

We apply the Tukey max-stable process to summer maximum daily rainfall data available from

the R package SpatialExtremes (Ribatet et al., 2015) for the years 1962-2008 at 79 weather

stations in the Plateau region of Switzerland. Since our focus is on modelling the dependence of

the maxima, we first fit the raw data with the generalized extreme value distribution model as

suggested by Davison et al. (2012), assuming that all data are independent and then we transform

the raw data to the unit Fréchet scale using the estimated parameters. The R code can be found

in the Appendix. We fit three max-stable models to the transformed data: the Tukey, geometric

Gaussian and extremal-t max-stable processes. For the latent standard Gaussian process, we

used the Matérn correlation function (12) with a fixed range parameter, φ = 700, following

suggestions by Davison et al. (2012). We used the composite likelihood information criterion

(Varin & Vidoni, 2005, CLIC) to compare the three fitted models. For comparison, we also fit

the Brown–Resnick process based on a fractional variogram (Brown & Resnick, 1977; Kabluchko

et al., 2009). The geometric Gaussian, extremal-t and Brown–Resnick processes were fitted using

fitmaxstab() function and the reported CLIC values were computed by the TIC() function of the

SpatialExtremes package. The CLIC values for the Tukey max-stable process were computed

following suggestions of Ribatet (2009), Section 4.2.2 and Section 5.1. For numerical stability,

we used τ = 10−6 as suggested in Section 2.3 but no pairs of observations were removed.
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From Table 2, we can see that the Tukey max-stable process with an a < 0 gives the smallest

CLIC value and the Tukey max-stable process with an a > 0 gives the second smallest value.

Both of them seem to outperform the geometric Gaussian and Brown–Resnick processes, which

is not surprising. Compared to the extremal-t process, the differences in CLIC values are much

smaller and it is hard to tell which one is better. Figure 3(a) shows the fitted extremal coefficient

functions for the five models, which are all similar to each other and approximate the empirical

extremal coefficients (Schlather & Tawn, 2003) reasonably well. For comparison, we also plot the

local polynomial regression fitting (Loess) of the empirical extremal coefficients, which seems to

be quite off.

Table 2: Estimation results for five max-stable models on the Swiss rainfall data.

Model (a, b) DoF σ2 φ (km) ν ln(Θ) CLIC
Tukey max-stable (a > 0) (0.73, 1.07) n/a n/a 700 0.39 −600,626.5 1,201,947
Tukey max-stable (a < 0) (−2.22, 10.20) n/a n/a 700 0.34 −600,595.8 1,201,884

Geometric Gaussian n/a n/a 10.89 700 0.33 −601,663.5 1,203,943
Extremal-t n/a 6.43 n/a 700 0.28 −600,689.5 1,201,997

Brown–Resnick n/a n/a n/a 20.65 0.66 −601,660.3 1,203,938

Although the extremal coefficients appear to be very similar for all five fitted models, they

may have different properties. Figure 4 depicts realizations of four fitted max-stable processes. To

make the four realizations comparable, Figure 4 was generated in the following way: 1) Generate

a realization from the Tukey max-stable process with (a, b) = (−2.22, 10.20) on a 50 × 50 fine

grid; 2) Choose an evenly spaced 17× 17 sub-grid from the 50× 50 fine grid; 3) Simulate 1, 000

realizations from the other three fitted max-stable models and find the realization that gives the

smallest average absolute difference on the chosen 17 × 17 to the realization obtained in step

1). The average absolute differences between Figure 4(b)-(d) and Figure 1(a) on these 17 × 17

18
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Figure 3: Swiss rainfall data: (a) Spatial locations of 79 weather stations; (b) Estimated extremal
coefficients.

locations are 6.75, 6.99, and 7.00, respectively. As we can see, realizations in Figure 4 have some

similar overall patterns but also with appreciable differences in sample paths.

5 Discussion

In this paper, we have proposed a new max-stable process, coined Tukey max-stable process,

that brings additional flexibility for modeling spatial extremes. We have derived its bivariate

distribution and bivariate extremal coefficient. We also proposed pairwise composite likelihood

to fit this new model. Results of Monte Carlo simulations have demonstrated the effectiveness

of the fitting procedure. We have illustrated our new model on rainfall data from Switzerland.

Despite its flexibility, this new Tukey max-stable process does have some limitations that need

to be addressed in the future. The first challenge is how to reduce the computational cost due to

the numerical integration. This is especially important if one wishes to use high-order composite
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Figure 4: Realizations of four fitted max-stable processes to the Swiss rainfall data.

likelihood to obtain more efficient estimator as in Huser & Davison (2013) and Castruccio et

al. (2016). A second challenge is to develop conditional simulation techniques for the Tukey

max-stable process. Conditional simulation is of particular importance if one wants to make

accurate predictions for spatial extremes at locations without observations, which has already

been investigated for some max-stable processes (Dombry et al., 2013). Another challenge is to

incorporate non-stationarity structures into the Tukey max-stable process. One possible route is

to combine our model with covariates along the lines proposed by Huser & Genton (2016).
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Appendix

Proof of Proposition 1: From the representation (1) and equation (2), we have

Vs1,s2(z1, z2) =
1

z1

E

[
W (s1)I

{
W (s1)

z1

>
W (s2)

z2

}]
+

1

z2

E

[
W (s2)I

{
W (s2)

z2

>
W (s1)

z1

}]
.

Using the definition of W (s) in (4), for a pair of locations s1, s2, denote ξj = ε(sj) with ε(sj) as

defined in W (sj), j = 1, 2. Some straightforward calculus gives that

E

[
W (s1)I

{
W (s1)

z1

>
W (s2)

z2

}]
=

(1− a)1/2

2π(1− ρ2)1/2

∫
A

exp

{
−1

2
(ξ − µ)TΣ−1(ξ − µ)

}
dξ1dξ2,

where the integration region A =
{

(ξ1, ξ2) :
[
a
2
(ξ1 + ξ2) + b

]
(ξ1 − ξ2) > log z1

z2

}
and

µ =

(
µ1

µ2

)
=

b

1− a

(
1

ρ

)
, Σ =

1

1− a

(
1 ρ

ρ 1− a+ ρ2a

)
.

Notice that |Σ| = (1− ρ2)/(1− a), we have that

E

[
W (s1)I

{
W (s1)

z1

>
W (s2)

z2

}]
= pr

[{a
2

(ξ1 + ξ2) + b
}

(ξ1 − ξ2) > log
z1

z2

]
,

with ξ = (ξ1, ξ2)T ∼ N(µ,Σ).

Case I: (a = 0). When a = 0,

E

[
W (s1)I

{
W (s1)

z1

>
W (s2)

z2

}]
= pr

{
ξ1 − ξ2 >

1

b
log

z1

z2

}
= 1− Φ

{
log z1

z2
− (1− ρ)b2

b
√

2(1− ρ)1/2

}
.

Case II: a 6= 0 and a < 1. Let U1 = a(ξ1 + ξ2)/2 + b and U2 = ξ1 − ξ2 with

ν1 = E(U1) =
2− a+ ρa

2(1− a)
b, σ2

1 = var(U1) =
(1 + ρ)a2

4(1− a)
(2− a+ ρa),
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ν2 = E(U2) =
1− ρ
1− a

b, σ2
2 = var(U2) =

1− ρ
1− a

(2− a− ρa),

cov(U1, U2) =
a

2
{var(ξ1)− var(ξ2)} =

a2(1− ρ2)

2(1− a)
6= 0, ρa =

|a|(1− ρ2)1/2

{(2− a)2 − ρ2a2}1/2
,

δ1 =
ν1

σ1

=
b

|a|

{
2− a+ ρa

(1 + ρ)(1− a)

}1/2

, δ2 =
ν2

σ2

= b

{
1− ρ

(1− a)(2− a− ρa)

}1/2

.

The cumulative distribution of Y = U1U2/(σ1σ2) is derived in Meeker & Escobar (2007) as

G∗Θ(y) =

∫ ∞
−∞

φ(t− δ1)Φ

{
sign(t)

y/t− δ2 − ρa(t− δ1)

(1− ρ2
a)

1/2

}
dt,

which can be simplified with the equality δ2 = ρaδ1. Define a new function

GΘ(y) = G∗Θ

(
y

σ1σ2

)
=

∫ ∞
−∞

φ(t− δ1)Φ

{
sign(t)

y/t− ϕ2(a, ρ)t√
2ϕ(a, ρ)

}
dt =

∫ ∞
−∞

fX(t)Φ

(
y − t2√

2|t|

)
dt,

where ϕ(a, ρ) = |a|
√

1−ρ2
2(1−a)

. Following the customary definitions Φ(−∞) = 0, Φ(∞) = 1 and

sign(0) = 1, the above integrand is continuous for any a < 0 and 0 < a < 1. Then, we have

E

[
W (s1)I

{
W (s1)

z1

>
W (s2)

z2

}]
= pr

(
Y > σ1σ2 log

z1

z2

)
= 1−GΘ

(
log

z1

z2

)
. (13)

Similarly, we can derive the second part of Vs1,s2(z1, z2) which, combined with (13), gives (7). �

Proof of Proposition 2: By the definition of θTK(h) = 2{1−GΘ(0)}, we have that

GΘ(0) = G∗Θ(0) =

∫ 0

−∞
φ(t− δ1)Φ

{
ρat

(1− ρ2
a)

1/2

}
dt+

∫ 0

−∞
φ(t+ δ1)Φ

{
ρat

(1− ρ2
a)

1/2

}
dt

= Φ2{(−δ1, ρaδ1);−ρa}+ Φ2{(δ1,−ρaδ1);−ρa},

where the last equation follows from the cumulative distribution function of the extended skew-t

distribution with v → ∞ (Arellano-Valle & Genton, 2010). From the properties of Φ2{(·, ·); ·},

we have GΘ(0) = Φ(ρaδ1) + Φ(δ1)− 2Φ2{(δ1, ρaδ1); ρa}, which leads to (9). �
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Swiss rainfall data: R code

In this subsection, we only provide R code for max-stable processes other than the Tukey max-

stable process. R code to fit the Tukey max-stable model is available from the authors.

###Warning: SpatialExtremes_2.0-0 and SpatialExtreme_2.0-2 produce

### slightly different CLIC values

library("SpatialExtremes")

data(rainfall); data <- rain;

##Transform the data into unit frechet distribution##

form.loc <- loc ~ lat + lon

form.scale <- scale ~ lat + lon

form.shape <- shape ~ 1

obj.fit <- fitspatgev(data, coord[,1:2], form.loc, form.scale, form.shape)

fit.para <- predict(obj.fit)

K <- dim(data)[2]; n <- dim(data)[1]; fret<-data*0

for(k in 1:K )

fret[,k] <- gev2frech(data[,k], loc=fit.para[k,3], scale=fit.para[k,4],

shape=fit.para[k,5], emp = FALSE)

#################fitting the Geometric process#####

obj.geo <- fitmaxstab(fret,coord[,1:2],cov.mod="gwhitmat",nugget=0,range=700)

TIC(obj.geo)

#################fitting the extremal-t process###

obj.ext <- fitmaxstab(fret,coord[,1:2],cov.mod="twhitmat",nugget=0,range=700)

TIC(obj.ext)

##Fit the Brown-Resnick process ###

obj.br <- fitmaxstab(fret,coord[,1:2],cov.mod="brown")

TIC(obj.br)
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