
1. On the Atiyah—Singer index theorem 

I shall explain a little about what the Atiyah—Singer index theorem is, why it is
important, and what it is useful for.  Here is a brief statement:

Theorem (M.F. Atiyah and I.M. Singer):  Let  P(f) = 0  be a system of
differential equations.  Then

analytical index(P)  =  topological index(P) .

The word “theorem” (from the Greek “theorein”, to look at, cf. “theater”) means that
this is a mathematically proved assertion that is worthy of closer examination.  The
result was announced in 1963 and published in 1968.

2. Introduction

Modern applications of mathematics usually start out with a mathematical model for
a part of reality, and such a model is almost always described by a system of
differential equations.  To make use of the model one seeks the solutions to this
system of differential equations, but these can be almost impossible to find.  The
critical new insight of Atiyah and Singer was that it is much easier to answer a
slightly different question, namely: “How many solutions are there?”  The
Atiyah—Singer index theorem gives a good answer to this question, and the answer is
expressed in terms of the shape of the region where the model takes place.

It is a point here that it is not necessary to find the solutions of the system to get to
know how many solutions there are.  And conversely, knowing the number of
solutions can in fact make it easier to find these solutions.

A simple analogue can be to look at triangles and quadrangles in the plane.  It can be
complicated to find the angles in the corners of some of these figures, but sometime
before Euclid someone realized that the sum of the angles in all the corners is always
180 degrees for a triangle, and 360 degrees for a quadrangle.  The answer to this
question is thus easily given, and depends only in a simple way on the shape of the
figure, namely whether it has three or four vertices.

The study of functions, derivation and integration is called mathematical analysis
(from Greek “analyein”, to break up). The study of the corresponding simple
information about the shape of the region where the model takes place (was it a
triangle or a quadrangle?) is called topology (from Greek “topos”, place).  The names
of these mathematical subfields give rise to the terms analytical index and
topological index that we find in the index theorem.
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4. Applications of mathematics

In the beginning, mathematics was used to count (arithmetic), e.g. for bookkeeping,
planning and trade, or to describe shapes (geometry), e.g. for measuring a plot of land,
for cutting out fabric for a dress, or for building a bridge.  Modern applications of
mathematics are often concerned with modeling, and thereby predicting the
development over time, of a complex, composite system, such as how oil and gas
flow in porous rocks under the North Sea, how queues of text messages in a cellular
network can best be resolved, or what the weather will be like this week-end.

Since Newton and Leibniz these mathematical models have almost always been
described by a system of differential equations.  To use mathematics for the
intended application, one seeks to find the solutions of this system,  The
Atiyah—Singer index theorem is a fundamental insight that says that we can find out
how many solutions the system has essentially by just knowing some simple, flexible
pieces of information about the shape of the region being modeled.  Even if the index
theorem is a purely mathematical result, which links together analysis and topology, it
can thus be used as a tool in almost all applications of mathematics.

5. A picture of the mathematical world

The subject of mathematics can coarsely be divided into four areas: algebra, analysis,
topology and logic.  Mathematics is a diverse language that can describe, discuss and
model many different objects and problems, and the four areas tend to focus on
different aspects of these objects.  Nonetheless, there are no clear boundaries between
these areas, and mathematics does also not live in isolation from other subjects.
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We shall here emphasize analysis and topology.

6. Analysis

In analysis an object is studied by first partitioning it into small pieces, and thereafter
reassembling them (synthesis).  Emphasis is put on the limiting case when the pieces
become arbitrarily small, and simultaneously arbitrarily numerous.  Keywords:
differentiation, integration and calculus.

Area under a curve A sail?

7. Topology

In topology one studies how an object can have a shape, or a spatial aspect.  In
particular one emphasizes properties of the whole global shape, rather than the local
appearance.  If the shape is described by some notion of distance, then we usually talk
about geometry.



M.Thistlethwaite: “Symmetric knot”
G. Francis, J. Sullivan and S. Levy: “Spherical eversion”

8. Mathematical models

A mathematical model is an attempt to describe (part of) reality in mathematical
language.  One can also attempt to describe reality on ordinary language, but the
mathematical language has the advantage that one can argue and reason with it in a
completely precise and indisputable fashion.  Therefore one can pursue a chain of
thoughts in mathematical language through very many steps and still expect that the
conclusion “about reality” is correct.

A mathematical model usually takes place in some spatial domain, or region, which
we call  X .  This mathematical “space” can very well correspond both to space and
time in the physical sense.  For example, in a meteorological model a point in  X  can
correspond to a particular place in the atmosphere above the northern hemisphere at a
particular time during the coming week.  In a medical model for the electrical
impulses that regulate the heart, a point in  X  can correspond to a small part of the
body at a specific time in the course of a series of heartbeats.
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The state of the model is described by a series of numbers for each point of  X , e.g.
the temperature, air pressure, humidity, wind speed etc. at the particular place in the
atmosphere and the particular time.  Mathematically this state is described by a series
of functions  f  defined on the space  X .  In the medical model such a function can
indicate the electrical field strength in the various regions of the body at the various
times.  The colored surfaces in the image on the left show regions with the same
electrical field strength, near the beginning of a heartbeat.

9. Systems of differential equations

The physical laws that govern how the temperature, air pressure etc. (resp. the field
strength) will change are well-known as long as one is only considering a small
region in  X , i.e., only looks as a small part of the atmosphere (resp. the body), for a
short span of time.  These laws can be expressed as a collection of equations, i.e., a
system of equations.

These equations involve the functions  f  that describe the state of the model, but also
the derivatives  f'(x) = df/dx  of these functions.  These are new functions which
express how that state changes, either from one place to another, or from one time to
another.

The derived functions are also called differentials, and therefore such a collection of
equations is called a system of differential equations.  Such a system can be briefly
expressed in the form  P(f) = 0 .  A series of functions  f  on  X  that are such that all



the equations are satisfied describe a physically possible state, and are called a
solution of the system of equations.

In nearly all the manifold applications there are of mathematical modeling, one
wishes to know something about the solutions to such systems of differential
equations.

((Show an animation that illustrates the spreading of electrical impulses from the
heart.  One wishes to unwind the development, in reverse, to be able to reconstruct
what happens in the heart based on the measurements on the skin.  This would be
helpful for diagnosis.))

10. Analytical index

In practice it is usually very difficult to find precise formulas for the solutions.
Therefore it is necessary to proceed in steps towards such an answer.

The first thing to know is whether there are some solutions at all.  If not, something
must probably be changed in the model.  Thereafter one would like to know if there is
one or many solutions, and if there are many, one would like to know something
about how many there are.

The following definition is central.

Let  P(f) = 0  be a system of differential equations for a model that is described by
functions  f  on a space  X .  The analytical index of the system is an integer which
essentially is the number of solutions to this equation.  More precisely,

analytical index(P)  :=  dim ker(P) – dim coker(P) 

is equal to the number of parameters needed to describe all the solutions of the
equation, minus the number of relations there are between the expressions  P(f) .

For a concrete application this number is the first one needs to know about the
solutions to the system of differential equations.  If, for example, the analytical index
is positive, then we know that the system has interesting solutions.

At first glance it is just as difficult to find the analytical index of a system as to find
all the solutions.  But the Atiyah—Singer index theorem tells us that, no,  in fact it is
easier to find the number of solutions to the system (i.e., to compute the analytical
index) than it is to find the solutions themselves.  All one needs to know is the shape,
or topology, of the region where the model takes place.

11. The Atiyah—Singer index theorem, revisited



Here is a more precise statement of the index theorem.

Theorem (M.F. Atiyah and I.M. Singer):
Let  P(f) = 0  be an elliptic system of partial differential equations defined over a
closed, smooth, oriented n-dimensional manifold  X .  Then

analytical index(P)  =  topological index(P)

is given by the following explicit formula:

topological index(P)  :=  (-1)n < ch (s(P)) . td (TCX) , [X] > 

Here

� n  is the dimension of the space  X
� s(P)  is the symbol of the system  P
� ch  is the Chern character
� TCX  is the complexified tangent bundle of  X
� td  is the Todd class
� .  is the cup product
� [X]  is the fundamental class of  X , and
� <-,->  is the Kronecker pairing.

The ingredients in this formula are conceptually complex, but not harder to compute
than that they can be manipulated directly by a mathematician.  The expression
essentially only depends on the shape, i.e., the topology, of the space  X  over which
the equations take place.

12. A non-elementary example



M. C. Escher’s ”Ascending and Descending” 
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A wanderer goes around, up or down a staircase.  Here the spatial form  X  is a square,
while the state is the function  f  defined so that  f(x)  equals the height above the
ground at each point  x  on  X .  The differential equation  f'(x) = 0 , where  P(f) =
df/dx , has a 1-dimensional space of solutions, namely the constant functions  f(x) = C.
The topological index of  P  over the square  X  equals  0, so by the index theorem,
also the analytical index of  P  equals  0.  There is therefore precisely 1 – 0 = 1
relation between the possible expressions  f'(x) , namely that the integral of  f'(x)  over
X  equals  0.  In particular the wanderer cannot ascend all the time, because then  f'(x)
> 0  and the integral of  f'(x)  over  X  would be strictly positive.

13. Historical remarks

The Atiyah—Singer index theorem has historical predecessors, such as the
Riemann—Roch formula in algebraic geometry and the signature theorem of F.
Hirzebruch, and unifies these completely.  It therefore has great intellectual and
aesthetic value.



I.M. Gelfand conjectured ca. 1960 that the analytical index could have a purely
topological description, but it was Atiyah and Singer that discovered and proved the
correct form of this description.  In this work they made use of topological K-theory,
which was a new topological tool developed by Atiyah and Hirzebruch, inspired by a
corresponding algebro-geometric tool defined by A. Grothendieck.  The proof of the
index theorem also involves a joint contribution on topological K-theory by Atiyah
and G. Segal.

The Atiyah—Singer index theorem was a key to a very fertile flowering of the
exchange of ideas between mathematics and theoretical physics in the 1980's
and 90's:

Mathematical methods derived from the index theorem were used in physics (E.
Witten) to develop “string theory,” which is an attempt to find a common explanation
for (1) gravitation, which we understand at large scales by the theory of relativity, and
(2) the other forces, such as electro-magnetism, which we understand at small scales
by the theory of quantum mechanics.

Conversely, ideas from physics, such as the study of magnetic monopoles and short-
lived “instanton” particles (S.K. Donaldson), were used in mathematics to discover
new, exceptional properties of four-dimensional differentiable spaces.

14. Conclusion

The Atiyah—Singer index theorem is a purely mathematical result.  It tells us that a
fundamental question in analysis, namely how many solutions there are to a system of
differential equations, has a concrete answer in topology.  This insight provides a
short-cut to getting to know whether such solutions exist or not.  The theorem is
valuable, because it connects analysis and topology in a beautiful and insightful way.
It is practical, because it explains how the manifold applications there are of
mathematical analysis can make good use of the spatial, or topological, structure that
underlies the problem at hand.
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