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Abstract

In this paper we give a new perspective on the Cauchy integral and transform and Hardy spaces for Dirac-
type operators on manifolds with corners of codimension two. Instead of considering Banach or Hilbert
spaces, we use polyhomogeneous functions on a geometrically “blown-up” version of the manifold called
the total boundary blow-up introduced by Mazzeo and Melrose [R.R. Mazzeo, R.B. Melrose, Analytic
surgery and the eta invariant, Geom. Funct. Anal. 5 (1) (1995) 14–75]. These polyhomogeneous functions
are smooth everywhere on the original manifold except at the corners where they have a “Taylor series”
(with possible log terms) in polar coordinates. The main application of our analysis is a complete Fredholm
theory for boundary value problems of Dirac operators on manifolds with corners of codimension two.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Boundary value problems for Dirac operators on manifolds with smooth boundary have a
complete systematic Fredholm theory [15,20,107] developed by Calderón and Seeley. Now take
a Dirac operator on a smooth manifold (e.g. R

n) and restrict the Dirac operator to a manifold with
corners inside the manifold (e.g. a polyhedral region in Rn; cf. Section 2.1). For the restricted
Dirac operator there is no complete Fredholm theory, rather each situation is handled via ad hoc
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methods (cf. [30,41,58,72,80,84,97,101,102] and many more references in the sequel). One goal
of this paper is to develop a complete Fredholm theory (see Theorem 2.5) on polyhomogeneous
functions when the corners are of codimension two. This Fredholm theory is developed through
the Cauchy integral and transform.

The Cauchy integral (= the Poisson operator) and the Cauchy transform (= the Calderón
projector) have impacted many areas of science such as analytic function theory [56], physics
[60], Fourier analysis [64], several complex variables [94], representation theory [40] and of
course boundary value problems [12] to name a few areas. These singular integral operators are
defined on function spaces associated to boundaries of manifolds and it is well known that when
the boundary is smooth, these operators preserve smooth functions; however, when the boundary
is not smooth, smooth functions are not preserved. For this reason, when the boundary is not
smooth, the space of smooth functions is always completed to Banach spaces (Besov, Hölder,
Sobolev, etc.) where many tools are available to facilitate the analysis of the Cauchy integral and
transform [17,40,81,82]. In this paper we propose a geometric alternative (Theorems 2.1 and 2.2):
We analyze the Cauchy integral and transform not on functions on the original manifold but on
“smooth” (polyhomogeneous) functions on a geometrically “blown-up” version of the manifold
called the total boundary blow-up introduced by Mazzeo and Melrose [71]. As remarked above,
we apply our analysis of the Cauchy integral and transform to develop a complete Fredholm
theory for boundary value problems of Dirac operators on manifolds with corners of codimension
two (Theorem 2.5)—we determine exactly when a boundary value problem is “elliptic,” that is,
Fredholm. To precisely state our results, we recall the prerequisite material as it was developed,
much of which we later generalize to the context in which we work.

1.1. Complex analysis and the Cauchy integral

We begin our introduction with a review of some well-known properties of the Cauchy integral
(see [110] for more history). Let X ⊆ C≡ R

2 be a smooth two-dimensional compact manifold
with boundary in the complex plane where we orient the boundary in the usual counterclockwise
manner. Then by Cauchy’s integral formula [12,27] we know that if f is a holomorphic function
on X, then

f (x)= i

2π

∫
∂X

f (y)

x − y
dy for all x ∈ X̊ (the interior of X).

The right-hand side of this equality defines a continuous map

K :C∞(∂X)→ C∞(X)

called the Cauchy integral or Poisson operator

(Kϕ)(x) := i

2π

∫
∂X

ϕ(y)

x − y
dy for all ϕ ∈ C∞(∂X),

where (Kϕ)(x) is defined on ∂X by continuity from the interior of X. For generalization later
on, we rewrite K in the following way
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Kϕ = i

2π

∫
∂X

ϕ(y)

x − y
dy = i

2π

∫
∂X

ϕ(y)

x − y

dy

ds
ds(y)

= i

2π

∫
∂X

ϕ(y)

x − y
T (y)ds(y)= 1

2π

∫
∂X

ϕ(y)

x − y
N(y)ds(y), (1.1)

where s denotes the arclength parameter, T is the unit tangent vector to ∂X and N = iT is the
inward unit normal. By Cauchy’s integral formula we know that if f is holomorphic on X, then
f =K(f |∂X), which says that K reproduces holomorphic functions from their boundary values.
Thus, K can be called a “reproducing kernel.” From this it follows that

ranK= ker
(
∂ :C∞(X)→ C∞(X)

)= holomorphic functions on X.

The “local implies global” property of K (local properties of f on ∂X determines f on all of X)
is a precursor to many of the topics covered in global analysis.

There is another way to write K that will be important in the sequel. Consider the Cauchy–
Riemann operator

∂ := ∂x1 + i∂x2 :C∞
(
R

2)→ C∞
(
R

2). (1.2)

Although this operator is not invertible, it does have an inverse on compactly supported functions:

∂ −1u := 1

2π

∫
R2

u(y)

x − y
dy for all u ∈ C∞c

(
R

2
)
.

Then with this definition, we have ∂ ◦ ∂ −1 = ∂ −1 ◦ ∂ = Id on C∞c (R2). Then the last expression
in (1.1) shows that

Kϕ = ∂ −1(δ∂XNϕ) for all ϕ ∈ C∞(∂X), (1.3)

where δ∂X is the delta function concentrated on ∂X and where the image of ∂−1 is initially
restricted to X̊ and then extended to ∂X by continuity. This formula can be used to generalize
the Cauchy integral operator to any differential operator with an inverse on compactly supported
functions.

An operator closely related to the Cauchy integral operator is the Cauchy transform or
Calderón projector

C :C∞(∂X)→ C∞(∂X)

defined as

Cϕ := (Kϕ)|∂X for all ϕ ∈ C∞(∂X).

If we define the Hardy or Cauchy-data space of ∂ over X by

H(∂) := {
φ|∂X

∣∣ φ ∈ C∞(X), ∂φ = 0
}
,
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then it is well known (and easy to prove) that C has the following properties: C2 = C, C = Id
on H(∂), and ranC =H(∂). Here are the main properties of the Cauchy integral operator and
Cauchy transform:

K :C∞(∂X)→ C∞(X), ranK= ker
(
∂ :C∞(X)→ C∞(X)

)
and

C :C∞(∂X)→ C∞(∂X), C2 = C, C = Id on H(∂), ranC =H(∂).

1.2. Dirac-type operators

Let (M,g) be a smooth Riemannian manifold (not necessarily compact) without boundary
and let E,F be vector bundles over M . A Dirac-type operator

D :C∞(M,E)→ C∞(M,F)

is an elliptic first-order differential operator mapping sections of E to sections of F such that
σ(D∗D)= g where σ denotes principal symbol. Some of the main examples include the original
(Riemannian version of the) Dirac operator of P.A.M. Dirac [34], the Hodge–Dirac operator on
differential forms [31], the Darboux–Dirac operator on anti-holomorphic differential forms [52],
and of course the spin and spinC Dirac operators [8,46]; see Section 3.1 for more examples. An
example that is a “hot” topic nowadays is Clifford analysis, which we shall cover in Section 3.2.

For a Dirac-type operator D on a (not necessarily compact) smooth Riemannian manifold M ,
motivated by the Cauchy–Riemann operator described earlier we shall assume that D has an
inverse D−1 on compactly supported sections. Thus, our working assumptions are

(I) D :C∞(M,E)→ C∞(M,F) is of Dirac-type (1.4)

and there is an operator

(II) D−1 :C∞c (M,F )→ C∞(M,E) with

D ◦D−1 = Id on C∞c (M,F ) and D−1 ◦D = Id on C∞c (M,E). (1.5)

In practice, we shall be working on a neighborhood of a compact manifold X ⊆M with boundary
(or even corners) inside of M ; then an arbitrary Dirac-type operator can be made invertible on a
neighborhood of X via the invertible double construction of Wojciechowski [15,114]. Thus, the
assumption (1.5) is not restrictive.

Let X be a compact manifold with smooth boundary in M with dimX = dimM . In analogy
with (1.3), we define the Cauchy integral or Poisson operator by

Kϕ =D−1(δ∂XGϕ) for all ϕ ∈ C∞(∂X,E), (1.6)

where δ∂X is the delta function of the boundary, G :E → F is the principal symbol of D eval-
uated on the inward pointing unit normal vector field to ∂X, and where the image of D−1 is
initially restricted to X̊ and then extended to ∂X by continuity.
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In fact, a deep result of Calderón and Seeley [20,107] states that

K :C∞(∂X,E)→ C∞(X,E) and ranK= ker
(
D :C∞(X,E)→ C∞(X,F )

)
. (1.7)

The Cauchy transform or Calderón projector is the operator

C :C∞(∂X,E)→ C∞(∂X,E)

defined by

Cϕ := (Kϕ)|∂X for all ϕ ∈ C∞(∂X,E). (1.8)

If we define the Hardy or Cauchy-data space of D over X by

H(D) := {
φ|∂X

∣∣ φ ∈ C∞(X,E), Dφ = 0
}
,

then by works of Calderón and Seeley [20,107], the following properties hold:

C :C∞(∂X,E)→ C∞(∂X,E),

C2 = C, C = Id on H(D), ranC =H(D). (1.9)

There is a complete Fredholm theory for boundary value problems involving the Calderón pro-
jector: If P is any pseudodifferential projection on C∞(∂X,E), define

DP :=D : dom(DP )→ C∞(X,F ),

where

dom(DP ) := {
φ ∈ C∞(X,E)

∣∣P(φ|∂X)= 0
}
,

then the following elegant Fredholm criterion holds [15]:

DP is Fredholm if and only if PC :H(D)→ ranP is Fredholm, in which case
indDP = ind

(
PC :H(D)→ ranP

)
. (1.10)

2. Goal of this paper and statement of main results

The goal of this paper is to extend the results (1.7), (1.9), and (1.10) for Dirac-type operators
on manifolds with boundary to the case when X has corners.

2.1. Manifolds with corners

Specifically, we are interested in the case of a manifold with corners of codimension two
X ⊆M . This means that if n= dimM , then X is locally diffeomorphic to either R

n (the interior
points), [0,1)× R

n−1 (near the boundary but away from the corners), or [0,1)2 × R
n−2 (near

the corners). See Fig. 1 for a couple of examples. It turns out that the results (1.7), (1.9), and
(1.10) are not true when the smoothness of X is relaxed. Indeed, define C∞(X) := C∞(M)|X
and C∞(∂X) := C∞(M)|∂X , and consider, for example, the case of X ⊆ R

2 (a “tear drop” of
angle 0 < θ0 < 2π ) given in Fig. 2.
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Fig. 1. Examples of manifolds with corners of codimension two; the left-hand manifold in R2 and the right-hand man-
ifold in R

3. The right manifold is a solid “flattened sphere” in R
3. Around the edge, this manifold is diffeomorphic to

[0,1)2 × S1.

Fig. 2. A manifold with a corner in the plane.

Example 1. If (Kϕ)(x) := i
2π

∫
∂X

ϕ(y)
x−y

dy, then K :C∞(∂X)→ C∞(X) if and only if θ0 = π ;
that is, if and only if ∂X is smooth.

Sufficiency is just Calderón–Seeley and to prove necessity, consider ϕ(x1, x2) = x1, which
is a perfectly infinitely differentiable function. Then modulo a smooth function, for x ∈ X̊ (the
interior of X) in terms of polar coordinates we can express (Kϕ)(x) as an integral over the rays
y = ρ, y = ρeiθ0 for 0 � ρ � 1:

∫
∂X

y1

x − y
dy ≡

1∫
0

ρ

x − ρ
dρ −

1∫
0

ρ cos θ0

x − ρeiθ0
eiθ0 dρ.

The integrals on the right can be evaluated explicitly using the partial fractions formula a
x−a

=
x

x−a
− 1, and we find that modulo a smooth function at x = 0,

Kϕ =
∫
∂X

y1

x − y
dy ≡ (

1− cos θ0e
−iθ0

)
x log(−x), (2.1)

where log(−x) is the principal logarithm defined on X; note that if x ∈ X̊, then−x has argument
in (−π,π). In particular, in general we have a logarithmic singularity at x = 0. Of course, the
only angle for which this singularity vanishes is θ0 = π ; in this case, the sector is not really a
sector, it is flat at the origin and hence ∂X is actually smooth.

This simple example shows that in the general case, in order for the results of Calderón and
Seeley (1.7), (1.9) to be valid, one needs to use spaces which are strictly larger than C∞; in other
words, C∞ is too small. Common choices of function spaces include the familiar Banach spaces:
Lp spaces, Hölder spaces, Besov spaces, and Sobolev spaces, where the formulas (1.7), (1.9) do
hold in appropriate spaces. We remark that the proofs of boundedness are nontrivial because in
the presence of corners, the operators K and C are not pseudodifferential but at best are singular
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integral operators [111] (when the boundary is C1 some C∞ techniques can still be employed
[38,96], but when the boundary is Lipschitz as in our case, the C∞ techniques breakdown).
The fact that the standard Cauchy transform in the plane is bounded on Lp(∂X) was proved by
Coifman, McIntosh, and Meyer [26] (cf. [25]) generalizing a result of Calderón [21]. This was
later generalized by Murray [87] and then by McIntosh [74] to the Clifford–Dirac case in R

n+1,
which has many applications to the growing field of Clifford analysis; see for example [14,54,
61–63]. Finally, the Clifford–Dirac case was later generalized to the full Dirac operator case on
a Riemannian manifold by Mitrea [69,83,84]. See also [1–6,9,49,65,112] and the books [17,41,
55,81,82,93] for related results and more references. The methods used to prove boundedness
on these Banach spaces work for Lipschitz domains and use, amongst other methods, singular
harmonic measures (e.g. the Carleson measure), elliptic estimates, the Calderón rotation method
(or commutator method), variational principles, a priori estimates, Clifford or Haar wavelets
systems, and Littlewood–Paley theory.

2.2. A geometric “smooth function” approach via blow-up

The goal of this paper is to develop a “smooth” theory for the Poisson operator and Calderón
projector on a manifold with corners. There are two obstructions to this goal: (1) We have to de-
fine what “smooth” means because we already know that (1.7), (1.9) fail if “smooth” is meant in
the usual sense; (2) None of the techniques mentioned earlier (singular harmonic measures, etc.)
that work for Banach spaces can be used for “smooth” functions so the standard approaches
cannot be applied.

The idea of “smoothness” comes from a closer analysis of Example 1, in particular, the for-
mula (2.1). Observe that if we introduce polar coordinates x1 = r cos θ and x2 = r sin θ in (2.1),
then modulo a smooth function, for ϕ(x1, x2)= x1, we can write

Kϕ =
∫
∂X

ϕ(y)

x − y
dy ≡ f (θ)r log(r)+ rg(θ), (2.2)

where f,g ∈ C∞([0, θ0]) (there are formulas for f,g but these are not important). Geometrically,
the introduction of polar coordinates radially “blows-up” the corner as seen in Fig. 3; see Melrose
[78,79] for the general notion. The manifold obtained by using polar coordinates near the original
corner instead of the original rectangular coordinates is called the total boundary blow-up of X,
denoted by Xtb, and was introduced by Mazzeo and Melrose in [71].

In view of (2.2) we shall define “smoothness” as functions that are smooth on the interior
of X, smooth up to the boundary hypersurfaces of X away from the corners, and which near the
corners look like (2.2) in polar coordinates. To make this precise, for a general manifold X with
corners of codimension two, we first form the new manifold Xtb by introducing polar coordinates
near the corners of X; see Fig. 4 for a couple of examples. Thus, if Y ⊆X is a corner, then writing

Fig. 3. “Blowing-up” the corner (introducing polar coordinates) forms the manifold Xtb.
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Fig. 4. Two examples (a polygonal region in the plane and a solid squashed sphere) showing Xtb, the total boundary
blow-up, which is obtained by blowing up the corners.

X ∼= [0,1)x1 × [0,1)x2 × Y (2.3)

near Y , introducing polar coordinates x1 = r cos θ and x2 = r sin θ , we have

Xtb ∼= [0, ε)r ×
[

0,
π

2

]
θ

× Y, ε > 0. (2.4)

(Note that ∼= in (2.3) means “diffeomorphic to” not “isometric to”; in other words, the hypersur-
faces intersecting that Y do not have to intersect at 90◦, they can intersect at any angle, but any
angle in R

2 is diffeomorphic to the standard upper right quadrant.)
For each corner Y in X, let IY ⊆ C × N0 be a discrete subset with N0 = {0,1,2, . . .}; see

Sections 4 and 5.3 and the definitions (5.9), (4.16) for thorough discussions of the properties
of such a set, called an index set (the bar over IY means that this index set is “completed” in
a certain sense). Let I = {IY | Y is a corner of X}. We define the polyhomogeneous space of
functions AI(Xtb) as the set of all functions φ that are C∞ on the interior of X, C∞ up to
the interior of every boundary hypersurface of X, and if Y ⊆ X is a corner of X, then in polar
coordinates, (r, θ, y) near the corner as in (2.4), we have

φ ∼
∑

(α,k)∈IY

rα(log r)kψα,k(θ, y), (2.5)

where ψα,k(θ, y) ∈ C∞([0, π
2 ] × Y). The meaning of “∼” basically means that for any N ∈N,

φ =
∑

(α,k)∈IY ,
α�N

rα(log r)kψα,k(θ, y)+ rNφN(r, θ, y), (2.6)

where φN(r, θ, y) is continuous in r ∈ [0, ε) and smooth in (θ, y) ∈ [0, π
2 ] × Y ; see Section 4

for a precise definition. We define AI(∂X) := (AI(Xtb))|∂X , where |∂X means restriction to the

interior of each boundary hypersurface of X; this makes perfect sense since elements inAI(Xtb)

are C∞ (in particular, continuous) up to the interior each boundary hypersurface of X. The spaces

AI(Xtb) and AI(∂X) have natural topologies explained easiest by convergence properties; for
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example, if {φj } is a sequence in AI(Xtb), then φj → φ ∈AI(Xtb) means that φj → φ in the
C∞ topology away from the blown-up corners and near the blown-up corners, the coefficients
of φj in the expansion (2.6) (for any N ) converge to the corresponding coefficients of φ; see

Section 5.3 for the precise topology on AI .
Such “polyhomogeneous functions” or “functions of asymptotic type” have occurred in a va-

riety of contexts involving manifolds with singularities; see for example, Callias [22], Kondrat’ev
[57], Maz’ja and Plamenevskiı̆ [70], Mazzeo [72,73], Melrose and Mendoza [80], Rempel and
Schulze [92], Schulze [100–102], and references therein. Recall our assumptions:

(I) D :C∞(M,E)→ C∞(M,F) is of Dirac-type

over a smooth Riemannian manifold M and (which can always be achieved on a neighborhood
of any compact manifold with corners in M) there is an operator (II)

(II) D−1 :C∞c (M,F )→ C∞(M,E) with

D ◦D−1 = Id on C∞c (M,F ) and D−1 ◦D = Id on C∞c (M,E).

Writing the Dirac operator in polar coordinates near any corner of the manifold with corners X

one can show that

D :AI(Xtb,E)→AI−1(Xtb,F ).

As a side note, in Theorem 5.4 we prove that this map is surjective for any I > −1, where
I > −1 just means that all the powers α in (2.4) are strictly larger than −1. In the following
theorem we extend the Calderón–Seeley result (1.7) to corners.

Theorem 2.1. Let X be a compact manifold with corners of codimension two in M with dimX =
dimM and fix any index family I >−1. Then the Poisson operator defined by (1.6) extends to a
continuous linear map

K :AI(∂X,E)→AI(Xtb,E)

such that

ranK= ker
(
D :AI(Xtb,E)→AI−1(Xtb,F )

)
.

Furthermore, K reproduces harmonic functions as seen in Theorem 2.4 below.

The condition I > −1 guarantees that if ϕ ∈ AI(∂X,E), then ϕ ∈ L1(∂X,E), so Kϕ is at
least defined as an L1 function [69,83,84]; the point of the theorem is that Kϕ has the same
structure as ϕ itself. Define the Cauchy–Hardy space by

HI(D) := {
φ|∂X

∣∣ φ ∈AI(Xtb,E), Dφ = 0
}
,

where φ|∂X really means to restrict φ to the interior of each boundary hypersurface of X. We
now extend the Calderón–Seeley result (1.9) to corners.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

P. Loya / J. Differential Equations 239 (2007) 132–195 141

Theorem 2.2. Let X be a compact manifold with corners of codimension two in M with dimX =
dimM and fix any index family I > −1. Then the Calderón projector given by (1.8) defines a
continuous linear projector

C :AI(∂X,E)→AI(∂X,E)

whose range is exactly the Cauchy–Hardy space HI(D). In other words,

C2 = C, C = Id on HI(D), and ranC =HI(D).

For the specific example M = R
n+1, E = F = C(Rn), the Clifford algebra, and D the

Clifford–Dirac operator considered in Section 3.2, the scalar part of

K :AI
(
∂X,C

(
R

n
))→AI

(
Xtb,C

(
R

n
))

is exactly the double-layer potential operator for the Laplacian on Xtb and the scalar part of

2C − Id :AI
(
∂X,C

(
R

n
))→AI

(
∂X,C

(
R

n
))

is exactly the singular double-layer potential for the Laplacian on Xtb; see Eq. (3.4) (cf. [26,82]).
Therefore, Theorem 2.2 immediately implies the following.

Corollary 2.3. Let X ⊆ R
n+1 be a compact manifold with corners of codimension two with

dimX = n+ 1 and fix any index family I >−1. Then the double-layer potential defines a con-

tinuous linear map from AI(∂X,C(Rn)) to AI(Xtb,C(Rn)) and the singular double-layer

potential operator defines a continuous linear map on AI(∂X,C(Rn)).

In a future paper we hope to use this corollary to prove existence of solutions on polyhomoge-
neous spaces to the Dirichlet and Neumann problems of the Laplacian on a manifold with corners
of codimension two. This of course has already been done on Banach spaces, see for example
the work of Dahlberg [29], Jerison and Kenig [50], Verchota [113]. See [75,82], for proofs of the
existence of solutions to Laplace’s equation on Banach spaces using Clifford analysis techniques.

Before discussing Fredholm properties of Dirac operators, we generalize Cauchy’s theorem
to polyhomogeneous spaces on manifolds with corners. Let Mtb denote the manifold obtained
by blowing up the corners of X in M , then blowing up the hypersurfaces of X in M as seen in
Fig. 5. In the following theorem, K denotes the “full” Poisson operator, which means we initially
restrict the image of D−1 in Eq. (1.6) to M \ ∂X.

Theorem 2.4. For I >−1, the Poisson operator defines a continuous linear map

K :AI(∂X,E)→AI(Mtb,E).

Moreover, if Dφ = 0, then Cauchy’s formula holds

(Kϕ)(x)=
{

φ(x), x ∈Xtb,

0, x ∈Mtb \Xtb.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

142 P. Loya / J. Differential Equations 239 (2007) 132–195

Fig. 5. Blowing up the corners then blowing up the edges forms Mtb. Here, Mtb is given by the R
2\ the “hallways ∪

bubbles” and consists of two connected components. Note that the bounded component is diffeomorphic to Xtb.

Note that in Theorem 2.1, we were really talking about the restriction of the “full” Poisson
operator to the subset Xtb ⊆Mtb.

2.3. A complete Fredholm theory

It is well known (see the discussion by Mitrea [84, p. 209]) that there does not exist a general
notion of regular elliptic problem for a Dirac operator on a manifold with corners but instead
each specific problem must be dealt with via ad hoc methods; cf. also the books [30,41,58,101,
102]. However, using the results in this paper, we can give a complete and general notion of
regular elliptic BVP on polyhomogeneous spaces.

Let P be a (not necessarily continuous) projection on AI(∂X,E); that is, P is a linear map

on AI(∂X,E) with P2 =P . Consider the operator

DP :=D : dom(DP )→AI−1(Xtb,F ), (2.7)

where

dom(DP ) := {
φ ∈AI(Xtb,E)

∣∣ P(φ|∂X)= 0
}
.

In the following theorem we give a complete characterization of boundary value problems (2.7)
that are Fredholm.

Theorem 2.5 (Complete Fredholm theory). For I > −1 and an arbitrary projection P on

AI(∂X,E), the operator

DP : dom(DP )→AI−1(Xtb,F )
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is Fredholm; that is, has a finite-dimensional kernel and cokernel, if and only if the operator

PC :HI(D)→ ranP

is Fredholm, in which case

indDP = ind
(
PC :HI(D)→ ranP

)
.

In fact, DP and PC have isomorphic kernels and cokernels.

Remark 2.6. Therefore, for a projection P on AI(∂X,E) defining a boundary value problem
DP for the Dirac operator D, it makes sense to define this boundary value problem to be elliptic
if and only if PC :HI(D)→ ranP is Fredholm.

Finally, we remark that in a future paper, we hope to discuss the pseudodifferential nature
of the Cauchy integral and transform as an element of a Boutet de Monvel [16] type calculus.
See [42,51,53,59,98,103,104] for more on the Boutet de Monvel calculus on manifolds with
boundary and other singular manifolds. In our case, the Boutet de Monvel calculus is related to
pseudodifferential calculi on manifolds with edges; see the works of Schulze and collaborators
[59,89,97,99,106], especially without the transmission condition [105]; more specifically, the
calculus is defined on the union of the hypersurfaces of a manifold with corners with special
compatibility conditions between the hypersurfaces.

The rest of this paper is structured as follows. We begin in Section 3 by discussing and pro-
viding examples of Dirac-type operators. Next, in Section 4 we give the necessary background
on manifolds with corners, blow-ups, and polyhomogeneous spaces. We also study the mapping
properties of various transforms (Fourier, Laplace, etc.) on polyhomogeneous spaces. The main
results in this paper rely heavily on the mapping properties of pseudodifferential operators on
polyhomogeneous spaces. We study such mapping properties in Sections 5 and 6. In Section 7
we apply the results of the previous sections to prove our main results on the Cauchy integral and
transform. Finally, in Section 8 we prove Theorem 2.5 on Fredholm boundary value problems
for Dirac operators on polyhomogeneous spaces.

3. Dirac operators, Clifford algebras, and Clifford analysis

This section serves as background to Dirac operators. We especially focus on the Clifford–
Dirac operator since this operator demands little prerequisites to define (unlike, for example, the
spin Dirac operator [8,46]) and this operator plays a large rôle in the increasingly important and
growing field of Clifford analysis [95].

3.1. Dirac operators

For vector bundles E and F over a Riemannian manifold M , a first-order differential operator

D :C∞(M,E)→ C∞(M,F)

is said to be of Dirac-type if D is elliptic and the principal symbol of D∗D is the metric. Here
are some common Dirac-type operators.
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(1) The Cauchy–Riemann operator. The most elementary Dirac operator is the Cauchy–Riemann
operator ∂ = ∂x1 + i∂x2 already discussed in the introduction.

(2) The Hodge–Dirac operator [31]. If d∗ is the formal adjoint of the exterior derivative
d :C∞(M,Λ)→ C∞(M,Λ) acting on smooth forms on M , then D := d + d∗ is a Dirac-
type operator.

(3) The ∂-operator. If M is a complex manifold and ∂∗ is the formal adjoint of the Cauchy–
Riemann operator ∂ :C∞(M,Λ0,k)→ C∞(M,Λ0,k+1) acting on smooth 0, k forms on M ,
then D := ∂ + ∂∗ is a Dirac-type operator. This operator plays a key rôle in the Riemann–
Roch–Hirzebruch theorem [13].

(4) The quaternionic Dirac operator. Let H denote the quaternions; thus, if i, j, k denote the
imaginary units of H, then i2 = j2 = k2 = ijk =−1, ij = k, jk = i, ki = j , and multiplica-
tion is anticommutative. The operator, studied by Fueter [39],

D = ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
:C∞

(
R

4,H
)→ C∞

(
R

4,H
)

is a Dirac-type operator. Here, the inner product on H is aa with a denoting the conjugate
of a. Then

D∗ = − ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
,

so D∗D =−∑3
=0 ∂2

x
=� and therefore D is indeed a Dirac-type operator.

(5) The octonionic Dirac operator. Here, O, the octonions or Cayley algebra, is the only nonas-
sociative division algebra with real scalars and is showing much promise as a framework for
studying the fundamental particles [10,35,36,44,91]. An element of this algebra is a sum

ξ = a0 + a1i + a2j + a3k+ a4k+ a5j+ a6i+ a7,

where each basis element by definition squares to −1. Therefore, O has seven imaginary
units. Multiplication of these imaginary units is governed by Fig. 6. Here, each straight line
and the middle circle (joining three imaginary units) is to be thought of as a circle with the
orientation of the line governed by the arrow on the line. Thus, the octonionic imaginary
units are grouped into seven quaternionic subalgebras given by the lines and the middle
circle. For example, the bottom line represents the multiplication (i)k = j, k (j) = i,

Fig. 6. A pictorial of the octonions adapted from Dray and Manogue [36].
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and (j)(i)= k and their anticommutators. Conjugation of ξ , ξ , is the element defined by
switching the sign of each imaginary unit. The norm of an octonian ξ is defined by

|ξ |2 := ξξ = a2
0 + a2

1 + · · · + a2
7 .

One of the several types of Dirac operators associated to the octonions is the operator

D :C∞
(
R

8,O
)→ C∞

(
R

8,O
)

defined by the formula

D := ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ · · · + 

∂

∂x7
,

which is easily checked to be of Dirac-type.

3.2. The Clifford–Dirac operator

The Clifford algebra on Euclidean space and its corresponding Dirac operator are higher-
dimensional analogs of the complex numbers and the Cauchy–Riemann operator; see [33] for
a detailed account. For n � 1, recall that C(Rn), introduced in 1878 by Clifford [23], is the
R-algebra generated by n + 1 independent vectors 1, e1, . . . , en with 1 ∈ R the multiplicative
identity, governed by the rules

eiej + ej ei =−2δij for all i, j = 1, . . . , n. (3.1)

If e0 := 1, then we can consider R
n+1 ⊆ C(Rn) as the span of {e0, e1, . . . , en}, and if we put

eI := ei1ei2 · · · eik for any increasing list 1 � i1 < i2 < · · ·< ik � n, then e0 together with all the
eI ’s form a basis of C(Rn). Thus, any element a ∈ C(Rn) can be written in the form

a =
∑
|I |�0

aI eI , (3.2)

where |I | = i1 + · · · + ik . In particular, C(Rn) is 2n-dimensional. Note that if n = 1, then the
identity (3.1) is just e2

1 =−1. Hence, identifying e1 with the complex number i, C(R1) is simply
the complex numbers C. Similarly, C(R2)≡H.

We define the Dirac operator (cf. [18,86])

D :C∞
(
R

n+1,C
(
R

n
))→ C∞

(
R

n+1,C
(
R

n
))

by the formula

D :=
n∑

j=0

ej

∂

∂xj

.
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Here, C∞(Rn+1,C(Rn)) is the set of all smooth Clifford algebra-valued functions φ : Rn+1 →
C(Rn), where smooth means that we have φ(x)=∑

|I |�0 φI (x)eI with φI : Rn+1 →R smooth
for each I . Then

Dφ =
n∑

j=0

∑
|I |�0

∂φI

∂xj

ej eI .

There is another Dirac operator defined by D′φ =∑n
j=0

∑
|I |�0

∂φI

∂xj
eI ej (which is usually de-

noted by φD with φ on the left of D), but we focus on D although everything stated below for
D has an analogous statement for D′.

If n = 1, and we identify e1 with i, then D = ∂ = ∂x0 + i∂x1 , hence for general n, the op-
erator D is a higher-dimensional analog of the Cauchy–Riemann operator. A function φ is
(left-)monogenic ifDφ = 0 and the field of Clifford analysis is the study of monogenic functions.
Thus, Clifford analysis is a higher-dimensional analog of complex analysis. In fact, all the famil-
iar theorems from complex analysis: Cauchy’s theorem, Morera’s theorem, Liouville’s theorem,
Weierstrass’ theorem on uniform convergence, the maximum modulus principle, the mean-value
theorem, and so forth, have analogs in Clifford analysis [17,19,40,90]. Much of modern-day Clif-
ford analysis was developed, amongst others, by Delanghe [32], Eichhorn [37], Iftimie [48], and
Hestenes [45]; see Ryan [95] for a recent survey, and Clifford analysis has impacted many areas
of mathematics; see for example [115] for an application of Clifford analysis to analyze the full
water wave equation.

To define the formal adjoint D∗ we need an inner product on C(Rn). Given a ∈ C(Rn)

written as in (3.2) we define the scalar part of a as Sc(a) := a0, the coefficient of e0 in (3.2) and
we define the Clifford conjugate of a as the element

a :=
∑
|I |�0

aI eI , where eI := (−1)keik eik−1 · · · e2e1, e0 = e0.

Note that eI eI = 1 and it is easy to check that for any a, b ∈ C(Rn), we have ab = ba. We
define an inner product on C(Rn) by

〈a, b〉 := Sc(ab)=
∑
|I |�0

aI bI , for all a, b ∈ C(Rn).

Then, for φ,ψ ∈ C∞c (Rn+1,C(Rn)), we define

〈φ,ψ〉 :=
∫ 〈

φ(x),ψ(x)
〉
dx =

∫
Sc

(
φ(x)ψ(x)

)
dx = Sc

(∫
φ(x)ψ(x)dx

)
.

A straightforward computation shows that

D∗ = −D =−
n∑

j=0

ej

∂

∂xj

=− ∂

∂x0
+

n∑
j=1

ej

∂

∂xj

.
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Of course, this formula generalizes the identity (∂x0 + i∂x1)
∗ = −∂x0 + i∂x1 for the Cauchy–

Riemann operator. One then easily finds that

D∗D =DD∗ = −
n∑

j=0

∂2

∂x2
j

=�.

Hence, D is a Dirac-type operator.
We now define the Cauchy integral and transforms in this setting. First, it is well known that

the fundamental solution of the Laplacian � is the operator

Eφ =
∫

E(x − y)φ(y) dy, E(x) :=
{− 1

2π
log |x|, if n= 1,

− 1
σn

1
|x|n−1 , if n > 1,

where σn = 2π(n+1)/2/�((n+ 1)/2) is the area of S
n, and which satisfies E� = �E = Id on

Schwartz functions. It is then straightforward to check that if

e(x) :=D∗E(x)= 1

σn

x

|x|n+1

with x = x0 − e1x1 − · · · − enxn, then on Schwartz functions, we have

D−1φ =
∫

e(x − y)φ(y) dy = 1

σn

∫
Rn+1

x − y

|x − y|n+1
φ(y)dy, (3.3)

in the sense that D ◦D−1φ =D−1 ◦Dφ = φ for all Schwartz functions φ. Note that when n= 1,
this formulas reduces to

D−1φ = 1

2π

∫
1

x − y
φ(y)dy0 dy1.

In terms of the complex number w = y0 + iy1, we have dw ∧ dw =−2i dy0 ∧ dy1, therefore

∂−1φ(z)= 1

4πi

∫
φ(w)

w− z
dw ∧ dw,

the well-known formula from elementary complex analysis. Note: Usually there is a factor of 1/2
in the definition of ∂ , namely, ∂ is usually defined as 1

2 (∂x0 + i∂x1), in which case the factor in
front of the above integral is 1

2πi
and not 1

4πi
.

In view of (3.3) and the definition (1.6), the Cauchy integral or Poisson operator in the Clifford
analysis context is the operator

Kϕ = 1

σn

∫
∂X

x − y

|x − y|n+1
G(y)ϕ(y) dS(y), (3.4)

where G is Clifford multiplication by the inward pointing normal vector to ∂X and S is surface
measure.
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4. Polyhomogeneous expansions and asymptotics of h-transforms

In this section we first review some ideas concerning analysis on manifolds with corners; stan-
dard references include [77,78], and [73]. The main results in this section occur in Sections 4.2
and 4.3 where we describe in great detail the properties of “h-transforms” (generalizations of
Laplace and Fourier transforms) on polyhomogeneous functions. In particular, Theorems 4.4
and 4.8 will be used quite a bit in the sequel.

4.1. Analysis on manifolds with corners

We begin with a definition of a manifold with corners. An n-dimensional manifold with cor-
ners Z is a Hausdorff paracompact topological space with C∞ structure given by local coordinate
patches of the form

[0,1)k × (−1,1)n−k, (4.1)

where k can be any integer between 0 and n depending on where the patch is located in Z.
A codimension d face of Z is the closure of a connected component of points in Z which are
origins of charts of the form (4.1) with k = d . The set Md(Z) denotes the set of all codimension
d faces of Z. The codimension of Z is the largest k that can occur in a local chart (4.1). For
example, a manifold with boundary is just a codimension one manifold with corners.

Remark 4.1. In the terminology of Melrose [76], we should technically call Z a tied manifold.
A manifold with corners in the sense of Melrose [78] requires that each boundary hypersur-
face H , or codimension one face, be embedded in the sense that it has a globally defined
boundary defining function; a nonnegative function in C∞(Z) that vanishes only on H where it
has a nonzero differential. An example of a manifold with corners in the sense of this paper that
is not a manifold with corners in the sense of [78] is the tear drop shown in Fig. 2 of Section 2.

4.1.1. Asymptotic expansions
We now discuss asymptotic expansions. Let U = [0,1)kx × (−1,1)n−k

y . Then for a =
(a1, . . . , ak) ∈ R

k , the space of symbols Sa(U) consists of smooth functions u ∈ C∞(Ů) that
can be expressed in the form

u(x, y)= x
−a1
1 · · ·x−ak

k v(x, y), (4.2)

where all “b-derivatives” [78] (that is, partials of the form (x∂x)
α∂

β
y v(x, y)) of v(x, y) are locally

bounded functions on U ; that is, bounded on compact subsets of U . If u has compact support,
then for any N = 0,1,2, . . . we define

‖u‖Sa,N :=
∑

|β|+|γ |�N

∥∥(x∂x)
β∂

γ
y v(x, y)

∥∥∞. (4.3)

By taking a compact exhaustion of U we can make Sa(U) into a Fréchet space using the
norms (4.3) on compact subsets of U ; however, we will not need to do this although we shall
use (4.3) later to define semi-norms on polyhomogeneous spaces.

Let N0 =N∪ {0} = {0,1,2, . . .}. A (C∞) index set I is a discrete subset of C×N0 such that
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• (α, k) ∈ I⇒ (α, ) ∈ I for all 0 �  � k;
• given any N ∈R, the set {(α, k) ∈ I | 
α � N} is finite (where 
 denotes the real part);
• (α, k) ∈ I⇒ (α + j, k) ∈ I for all j ∈N0.

If β ∈R, to say that I > β we mean that for any (α, k) ∈ I , we have 
α > β .
Given an index set I , a function u ∈ Sa(U) is said to have an asymptotic expansion at x1 = 0

with index set I if, for each N > 0, we can write

u(x, y)=
∑

(α,k)∈I,
α�N

xα
1 (logx1)

ku(α,k)(x
′, y)+ xN

1 uN(x, y), (4.4)

where if a = (a1, a
′), then uN(x, y) ∈ S(0,a′)(U), u(α,k)(x

′, y) ∈ Sa′(U ′) with x = (x1, x
′) and

U ′ = [0,1)k−1
x′ × (−1,1)n−k

y . It is common to write

u(x, y)∼
∑

(α,k)∈I
xα

1 (logx1)
ku(α,k)(x

′, y)

to express the asymptotic expansion. For example, note that if I = ∅, then the expansion property
(4.4) holds if and only if for all N > 0, we can write u = xN

1 uN(x, y) with uN(x, y) ∈ Sa(U).
This is equivalent to the statement that u vanishes with all derivatives at x1 = 0. For another
example, taking I =N0, we see from (4.4) that for any N > 0, we have

u(x, y)=
∑

0�j�N

x
j

1 uj (x
′, y)+ xN

1 uN(x, y) (4.5)

with uN(x, y) ∈ Sa(U) and uj (x
′, y) ∈ Sa′(U ′). This just means that u(x, y) is C∞ in x1 even

down to x1 = 0 and this expansion is nothing more than the Taylor expansion of u(x, y) taken
at x1 = 0. Of course, asymptotic expansions at any other boundary xi = 0 for i = 2, . . . , k are
defined similarly.

On a manifold with corners Z we can define symbol spaces and asymptotic expansions by
reducing to the local cases described above. Henceforth assume that Z has finitely many hy-
persurfaces H1, . . . ,Hm. For a = (a1, . . . , am) ∈ R

m, a function u ∈ C∞(Z̊) is said to be in
the symbol space Sa(Z) if given any coordinate patch U = [0,1)kx × (−1,1)n−k

y and com-
pactly supported function ϕ ∈ C∞c (U), we have ϕu ∈ SaU (U) where aU = (ai1 , . . . , aik ) with
{x1 = 0} =Hi1 ∩ U, . . . , {xk = 0} =Hik ∩ U . Note that SaU (U) has already been defined above.

A function u ∈ Sa(Z) is said to have an asymptotic expansion at a hypersurface H with index
set I , if for any patch U = [0,1)x1 × U ′ on Z as in (4.1) with H ∩ U = {x1 = 0}, and for any
function ϕ ∈ C∞c (U), the function ϕu has an asymptotic expansion at x1 = 0 with index set I
in the sense described in (4.4). (One can show that the notion of symbol space and asymptotic
expansion is independent of the choice of local coordinates (4.1); see [67,77].)

Let H be a collection of hypersurfaces of Z and let I be a collection of index sets I =
{IH | H ∈H} associated to the collection of hypersurfaces H. If β ∈ R, to say that I > β we
mean that for any IH ∈ I , we have IH > β and if β ∈ C, we define I + β = {IH + β} where
IH + β = {(α + β, k) | (α, k) ∈ IH }. We denote by AI(Z) the space of functions u such that
(i) u ∈ Sa(Z) for some a ∈R

m (depending on I and not on u), (ii) for each H ∈H the function
u has an expansion at H with index set IH , and (iii) if H /∈H, then u has an expansion at H
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with index set IH := N0. By the example given around (4.5), for H /∈H, u is smooth up to H

and note that the values of the ai ’s in Sa(Z) are related to the leading terms in the expansion
(4.4). The letter “A” stands for “asymptotics.” If Z has exactly one hypersurface, then an index
family I consists of just one set I = {J } for an index set J , in which case we denote AI(Z) by
AJ (Z).

The space AI(Z) has a Fréchet space structure described as follows. Let u ∈ AI(Z). Then
u ∈ Sa(Z) for some a ∈ R

m depending on I . Let H ∈M1(Z) and let U = [0,1)kx × (−1,1)n−k
y

be a coordinate patch as in (4.1) with H ∩ U = {x1 = 0}. Then for any ϕ ∈ C∞c (U) and N ∈N0,
we can write (ϕu)(x, y) as in (4.4) where IH =N0 if H /∈H:

ϕ(x, y)u(x, y)=
∑

(α,k)∈IH ,
α�N

xα
1 (logx1)

ku(α,k)(x
′, y)+ xN

1 uN(x, y), (4.6)

where if ϕu ∈ SaU (U) (using the notation in the definition of Sa(Z) above) and aU = (ai1, a
′),

then uN(x, y) ∈ S(0,a′)(U), u(α,k)(x
′, y) ∈ Sa′(U ′) with x = (x1, x

′) and U ′ = [0,1)k−1
x′ ×

(−1,1)n−k
y . We define

‖ϕu‖H,N := ‖uN‖S(0,a′),N +
∑

(α,k)∈IH ,
α�N

‖u(α,k)‖Sa′ ,N ,

where the norms ‖ ‖
S(0,a′),N and ‖ ‖

Sa′ ,N are defined in (4.3). Let {(Uj , ϕj )} be a partition of
unity of Z where the Uj ’s are charts of the form (4.1) and ϕj ∈ C∞c (Uj ). For each H ∈M1(Z),
let JH be the set of j ’s such that Uj ∩H �= ∅ and let J be those j ’s such that Uj is in the interior
of Z. Let ‖ ‖j,CN be a CN norm over Uj for j ∈ J . For each N ∈N0 we define

‖u‖N :=
∑

H∈M1(Z)

∑
j∈JH , j�N

‖ϕju‖H,N +
∑

j∈J, j�N

‖ϕju‖j,CN . (4.7)

With these norms, AI(Z) becomes a Fréchet space. One can check that in this topology, a se-
quence {ui}, with ui ∈ AI(Z), converges to u ∈ AI(Z) if and only if on compact subsets of
the interior of Z, ui → u in the C∞-topology, and in any expansion of the sort (4.6), the co-
efficients in the expansion of ϕui converge to the corresponding coefficients of ϕu; that is,
ui,(α,k)(x

′, y)→ u(α,k)(x
′, y) in Sa′(U ′) and uiN(x, y)→ uN(x, y) in S(0,a′)(U).

4.1.2. Blow-ups and compactifications
Let Z be a manifold with corners and let Y ⊆ Z be an embedded submanifold of codi-

mension , which by definition means that near each point of Y there is a coordinate patch
U = [0,1)k × (−1,1)n−k of the form (4.1) on Z such that Y ∩ U is equal to the zero set of ex-
actly  of the coordinates x1, . . . , xn. The blow-up [Z;Y ] of Z along Y is then a new manifold
with corners that has an atlas consisting of the usual coordinate patches on Z \ Y together with
polar coordinate patches over Y in Z. For instance, if

U = [0,1)p × (−1,1)q × [0,1)k−p × (−1,1)n−k−q

with

Y ∩ U = {0} × {0} × [0,1)k−p × (−1,1)n−k−q,
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then local coordinates for [Z;Y ] are given by the original coordinates on the factor [0,1)
k−p
y ×

(−1,1)
n−k−q

y′ together with polar coordinates on [0,1)
p
x × (−1,1)

q

x′ :

r = ∣∣(x, x′)
∣∣ � 0, ω= (x, x′)

|(x, x′)| ∈ S
p+q−1.

The blow-down map β : [Z;Y ]→Z is the map that takes a point in polar coordinates back to the
original coordinates: (r,ω, y, y′) �→ (x, x′, y, y′) where (x, x′) = rω. For example, if Z = R

n

and Y = {0}, then

[
R

n; {0}]= [0,∞)× S
n−1

is just the standard polar coordinates r = |x| and ω = x/|x|. The blow-down map in this case is
just the map (r,ω) �→ x = rω.

Back to our general discussion involving [Z;Y ], if X ⊆ Z is a closed subset of Z, then the lift
of X into [Z;Y ], β∗X ⊆ [Z;Y ], is defined under the following conditions:

• if Z ⊆ Y , then we define β∗X := β−1(X);
• if X =X \ Y , then we define β∗X := β−1(Y \X).

If X satisfies either of these two conditions, and if in addition, β∗X is an embedded subman-
ifold of [Z;Y ], then [Z;Y ] blown-up along β∗X is defined, and we denote it by [Z;Y ;X] ≡
[[Z;Y ];β∗X]. A family Y = {Y1, . . . , YN } of embedded submanifolds of Z is said to intersect
normally if the conormal bundles of Y1, . . . , YN are independent at intersections; for example,
this trivially holds when Y1, . . . , YN are pairwise disjoint. For any normal family, the iterated
blow-up

[Z;Yi1; · · · ;YiN ] =
[[· · · [[Z;Yi1];Yi2

] · · · ;YiN

]]
(4.8)

is defined independent of the ordering [76]. This manifold is denoted by [Z;Y]. For example,
if Z is a manifold with corners of codimension two, then the submanifolds in Y =M2(Z) are
pairwise disjoint, so Ztb := [Z;M2(Z)] is defined.

We now describe compactifications. We denote by [0,∞) the compactification of the interval
[0,∞), which is obtained from [0,∞) by adding a point 0′ at infinity and using the function ρ

defined by ρ = 0 at 0′ and ρ := 1
x

for x ∈ (0,∞) as the coordinate function near 0′. The manifold
[0,∞) has two boundary components, 0 and 0′. The compactification of R

n, denoted by Rn, is
the disjoint union of R

n with the sphere S
n−1, which forms the “boundary at infinity.” Rn has

the usual structure on the R
n portion of Rn and outside of the point 0 ∈ R

n, where we identify
R

n \ 0≡ (0,∞)r × S
n−1 using polar coordinates, we identify Rn with [0,∞)r × S

n−1 \ ({0} ×
S

n−1). Thus, outside of the origin, (ρ,ω) ∈ [0,∞)×S
n−1 with ρ = 1

r
define coordinates on Rn.
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4.2. h-Transform expansions at ∞
Let h(ξ) ∈ C∞(Rn) be a smooth bounded function. Then for r > 0 and φ(ξ) a locally inte-

grable function on R
n, we shall analyze the following integral “transform”

Th(φ, r) :=
∫
Rn

h(rξ)φ(ξ) dξ, (4.9)

when this integral can be given a meaning; see [66] for related results. Specifically, we shall
assume that the function h(ξ) is one of the following types:

Example 1: h(ξ) = e−|ξ |. More generally we can consider h(ξ) = e−t |ξ | for t ∈ (0,∞). The
h-transform (4.9) then represents a type of “Laplace transform.”

Example 2: h(ξ) = eiγ ·ξ where γ ∈ S
n−1. More generally we can consider h(ξ) = eiγ ·ξ for

γ ∈R
n nonzero. In this case, the integral (4.9) must be interpreted as an oscillatory

integral as e.g. in Hörmander’s book [47, Section 7.8].
Example 3: We can combine Examples 1 and 2 with

h(ξ) := eiγ ·ξ−t |ξ |

where (γ, t) ∈ R
n × [0,∞) with |γ |2 + t2 > 0. When γ = 0 we have Example 1

and when t = 0 we have Example 2.

In this section we shall study the asymptotic expansions of Th(φ, r) as r →∞ for φ ∈
AI([Rn; {0}]) compactly supported. Here, we recall from Section 4.1 that [Rn; {0}] = [0,∞)r ×
S

n−1 is the manifold R
n blown-up at {0}. In Section 4.3 we consider the behavior of Th(φ, r) as

r → 0. To study r →∞, we introduce the variable ρ = 1/r and study

Th

(
φ,

1

ρ

)
=

∫
h

(
ξ

ρ

)
φ(ξ) dξ

as ρ → 0. We begin with the following lemma. In this section, our standing assumption is that
h(ξ) is a function described in Examples 1–3 above.

Lemma 4.2. Let χ(ξ) ∈ C∞(Rn) such that χ(ξ) ≡ 1 near 0 and χ(ξ) ≡ 0 outside a neigh-
borhood of 0. Then given any function φ(ξ) of the form φ(ξ) = |ξ |α(log |ξ |)ka(ξ/|ξ |) where
a(ω) ∈ C∞(Sn−1), 
α >−n and k ∈N0, there are constants aj ∈C, such that

Th

(
χφ,

1

ρ

)
=

∫
h

(
ξ

ρ

)
χ(ξ)φ(ξ) dξ ≡ ρα+n

k∑
j=0

aj (logρ)j , (4.10)

modulo a smooth function on [0,∞)ρ that vanishes to infinite order at ρ = 0.

Proof. Scaling ξ �→ ρξ , one can see that for some constants ck,j , we have

φ(ρξ)= ρα|ξ |αa
(
ξ/|ξ |) k∑

j=0

ck,j (logρ)k−j
(
log |ξ |)j

.
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Therefore, changing variables ξ �→ ρξ , we see that

Th

(
χφ,

1

ρ

)
=

∫
h

(
ξ

ρ

)
χ(ξ)φ(ξ) dξ

= ρα+n

k∑
j=0

ck,j (logρ)k−j

∫
h(ξ)χ(ρξ)|ξ |α(

log |ξ |)j
a
(
ξ/|ξ |)dξ. (4.11)

Let us fix j and consider the function

fj (ρ) :=
∫

h(ξ)χ(ρξ)|ξ |α(
log |ξ |)j

a
(
ξ/|ξ |)dξ.

Note that fj (ρ) is smooth for ρ ∈ (0,∞); this is obvious if t > 0 in h(ξ)= eiγ ·ξ−t |ξ | and if t = 0,
this smoothness follows from the oscillatory integral definition of the right-hand side of fj (ρ).
We claim that f ′j (ρ) is smooth on [0,∞) and vanishes to infinite order at ρ = 0. To see this,
observe that since ρ∂ρχ(ρξ)= (ξ · ∂ξχ)(ρξ), we have

ρ∂ρfj (ρ)=
∫

h(ξ)(ξ · ∂ξχ)(ρξ)|ξ |α(
log |ξ |)j

a
(
ξ/|ξ |)dξ.

Changing variables ξ �→ ξ/ρ and expanding just as we did to get (4.11), we can write

ρ∂ρfj (ρ)= ρ−α−n

j∑
i=0

cj,i(− logρ)j−i

∫
h

(
ξ

ρ

)
(ξ · ∂ξχ)(ξ)|ξ |α(

log |ξ |)i
a
(
ξ/|ξ |)dξ.

Since χ(ξ)≡ 1 near 0 and χ(ξ)≡ 0 outside a neighborhood of 0, the function

(ξ · ∂ξχ)(ξ)|ξ |α(
log |ξ |)i

a
(
ξ/|ξ |)

is a smooth compactly supported function on R
n vanishing near the origin. It follows that for the

examples of h we are considering that the function∫
h

(
ξ

ρ

)
(ξ · ∂ξχ)(ξ)|ξ |α(

log |ξ |)i
a
(
ξ/|ξ |)dξ

is a smooth function of ρ ∈ [0,∞) vanishing to infinite order (that is, with all derivatives) at
ρ = 0—for h(ξ) = eiγ ·ξ−t |ξ | with t > 0 this statement is obvious and in the Fourier transform
example h(ξ)= eiγ ·ξ , this statement is just the well-known fact that the Fourier transform of a
Schwartz function is again a Schwartz function. In particular, ρ∂ρfj (ρ) is smooth and vanishes
to infinite order at ρ = 0. Therefore ∂ρfj (ρ) is smooth on [0,∞) and vanishes to infinite order
at ρ = 0, and so by integration, we see that

fj (ρ)= fj (0)+ gj (ρ),
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where gj (ρ) is smooth on [0,∞) and vanishes to infinite order at ρ = 0. Substituting this into
(4.11) we see that

Th

(
χφ,

1

ρ

)
≡ ρα+n

k∑
j=0

ck,j (logρ)k−j fj (0)

modulo a function vanishing to infinite order at ρ = 0. This concludes the proof. �
Next, we need the following lemma.

Lemma 4.3. If a(r,ω) ∈ rNS0([0,∞)r × S
n−1
ω ), with N � 0, is compactly supported, then the

function

A(ρ) :=
∫

h

(
ξ

ρ

)
a(ξ) dξ,

where a(ξ) := a(|ξ |, ξ/|ξ |), defines an element of ρN+n−1S0([0,∞)ρ).

Proof. Recalling that h(ξ)= eiγ ·ξ−t |ξ |, we need to show that

ρ−N−n+1A(ρ)= ρ−N−n+1
∫

e
i
γ
ρ
·ξ

e
−t

|ξ |
ρ a(ξ) dξ ∈ S0([0,∞)ρ

)
.

Note that A(ρ) certainly has this property if t > 0. Indeed, making the change of variables
ξ �→ ρξ in the formula for A(ρ) we obtain

ρ−N−n+1A(ρ)= ρ−N+1
∫

eiγ ·ξ e−t |ξ |a(ρξ) dξ.

Using that a(r,ω) ∈ rNS0([0,∞)r × S
n−1
ω ) is compactly supported in r , it is easy to check

that ρ−N−n+1A(ρ) ∈ S0([0,∞)) for t > 0. Therefore we might as well assume from the very
beginning that t = 0 and |γ |> 0. Summarizing, all we have to do is show that

ρ−N−n+1A(ρ)= ρ−N−n+1
∫

e
i
γ
ρ
·ξ

a(ξ) dξ ∈ S0([0,∞)
)
.

Before proving this, we note that using the definition of rNS0([0,∞)r × S
n−1
ω ), one can check

that for any β , there is a constant C such that∣∣∂β
ξ a(ξ)

∣∣ � C|ξ |N−|β|, for |ξ |� 1. (4.12)

Observe that if we define Lγ := − γ

|γ |2 ·Dξ =− 1
i

∑n
k=1

γk

|γ |2 ∂ξk
, then

Lγ e
i
γ
ρ
·ξ =−ρ−1e

i
γ
ρ
·ξ

.

Hence, using the estimates (4.12) to justify integrating by parts, we have
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ρ−N−n+1A(ρ)= (−1)N+n−1
∫ (

LN+n−1
γ e

i
γ
ρ
·ξ )

a(ξ) dξ =
∫

e
i
γ
ρ
·ξ

LN+n−1
γ a(ξ) dξ

=
∫

e
i
γ
ρ
·ξ

a0(ξ) dξ,

where a0(ξ) := LN+n−1
γ a(ξ). By definition of our symbol spaces, it follows that in polar coor-

dinates, a0(r,ω) ∈ Sn−1([0,∞)r × S
n−1
ω ) and of course is still compactly supported in r . Thus,

we are reduced to proving the statement: if a(r,ω) ∈ Sn−1
c ([0,∞)r × S

n−1
ω ), where the subscript

c denotes compact support, then

A(ρ) :=
∫

e
i
γ
ρ
·ξ

a(ξ) dξ

is an element of S0([0,∞)). To prove this, first of all observe that a(ξ) is integrable because
a(ξ)=O(|ξ |−n+1) near ξ = 0, so A is bounded. We claim that

ρ∂ρA(ρ)=
∫

e
i
γ
ρ
·ξ

a1(ξ) dξ, where a1 ∈ Sn−1
c

([0,∞)r × S
n−1
ω

)
. (4.13)

Once we prove this statement, given any k ∈N, induction proves that

(ρ∂ρ)kA(ρ)=
∫

e
i
γ
ρ
·ξ

ak(ξ) dξ, where ak ∈ Sn−1
c

([0,∞)r × S
n−1
ω

)
.

Since ak is integrable, (ρ∂ρ)kA(ρ) is bounded. Thus, A(ρ) ∈ S0([0,∞)). So, it remains to prove
(4.13). To do so, we use the estimates (4.12) to justify integrating by parts and find that

ρ∂ρA(ρ)=−ρ−1
∫

e
i
γ
ρ
·ξ

(iγ · ξ)a(ξ) dξ

=
∫ (

Lγ e
i
γ
ρ
·ξ )

(iγ · ξ)a(ξ) dξ

=−
∫

e
i
γ
ρ
·ξ

Lγ

[
(iγ · ξ)a(ξ)

]
dξ.

Note that Lγ [(iγ · ξ)a(ξ)] ∈ Sn−1
c ([0,∞)r × S

n−1
ω ). Thus, (4.13) holds. �

We can now prove the following theorem.

Theorem 4.4. If I >−n, then

φ ∈AIc
([

R
n; {0}]) �⇒ Th(φ) ∈AI+n

([0,∞)
)
,

where the subscript c denotes compact support and where on the right, I+n is associated to the
boundary at infinity 0′ of the compactification [0,∞). (Thus, Th(φ) is smooth at 0 ∈ [0,∞).)
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Proof. If I > −n and φ ∈ AIc ([Rn; {0}]), then using the formula (4.9), it is easily seen that
Th(φ, r) is smooth at r = 0 (recalling that φ(ξ) has compact support). Thus, we just need to
show that an expansion of the sort

φ(r,ω)∼
∑

(α,k)∈I
rα(log r)kaα,k(ω) as r → 0,

implies an expansion of the sort

Th

(
φ,

1

ρ

)
∼

∑
(α,k)∈I

bα,kρ
α+n(logρ)k as ρ→ 0.

Let φα,k = rα(log r)kaα,k(ω) and let χ(ξ) ∈ C∞(Rn) with χ(ξ)≡ 1 near 0 and χ(ξ)≡ 0 outside
a neighborhood of 0. Then fixing any large N � 0, consider the finite expansion

φ(rω)=
∑

(α,k)∈I,
α�N

χ(rω)φα,k(rω)+ fN(r,ω),

where fN(r,ω) ∈ rNS0([0,∞)r × S
n−1
ω ) and vanishes for r large. Thus,

Th

(
φ,

1

ρ

)
=

∑
(α,k)∈I,
α�N

Th

(
χφα,k,

1

ρ

)
+ Th

(
fN,

1

ρ

)
.

By Lemma 4.2 we know that Th(χφα,k,
1
ρ
) is of the form

Th

(
χφα,k,

1

ρ

)
≡ ρα+n

k∑
=0

bα,k,(logρ)

modulo a smooth function on [0,∞)ρ that vanishes to infinite order at ρ = 0. Because fN(r,ω) ∈
rNS0([0,∞)r×S

n−1
ω ) and is compactly supported in r , by Lemma 4.3 we know that Th(fN, 1

ρ
) ∈

ρN+n−1S0([0,∞)ρ). Since N � 0 was completely arbitrary, this completes our proof. �
Remark 4.5. By the proof of this theorem and the lemmas it used, one can check that if φt ∈
AI([Rn; {0}]) depends smoothly on a parameter t and has support in a fixed compact set for all
parameters t , then Th(φt ) ∈ AI+n([0,∞)) also depends smoothly on t . Here, “smoothly” has
a well-defined meaning since recall that AI([Rn; {0}]) and AI+n([0,∞)) have natural Fréchet
topologies, and differentiation for any Fréchet space-valued function is a well-defined notion.

4.3. h-Transform expansions at 0

We now give a “converse” to Theorem 4.4. We first prove the following lemma, which is akin
to Lemma 4.2. The proof is similar, but there is a big twist pointed out near the middle of the
proof.
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Lemma 4.6. Let φ = χ(ξ)aβ,k(ξ/|ξ |)|ξ |−β−n(log |ξ |)k where β ∈C and χ(ξ) ∈ C∞(Rn) is zero
for |ξ |� 1 and identically 1 for |ξ |� 2. Then the h-transform

Th(φ, r)=
∫

h(rξ)φ(ξ) dξ

has the following expansion as r → 0

Th(φ, r)∼ rβ

k∑
j=0

aj (log r)j + rβ

k∑
j=0

bj (log r)j+1 +
∞∑

=0

k∑
j=0

c,j r
(log r)j ,

where bj = 0 if β /∈N0.

Proof. Observe that

φ(ξ/r)= χ(ξ/r)rβ+n|ξ |−β−naβ,k

(
ξ/|ξ |) k∑

j=0

dk,j (log r)k−j
(
log |ξ |)j

,

for some constants dk,j , therefore changing variables ξ �→ ξ/r , we see that

Th(φ, r)= r−n

∫
h(ξ)φ(ξ/r) dξ

= rβ

k∑
j=0

dk,j

(
log r

)k−j
∫

h(ξ)χ(ξ/r)|ξ |−β−n
(
log |ξ |)j

aβ,k

(
ξ/|ξ |)dξ. (4.14)

Let us fix j and consider the function

fj (r) :=
∫

h(ξ)χ(ξ/r)|ξ |−β−n
(
log |ξ |)j

aβ,k

(
ξ/|ξ |)dξ ;

note that fj (r) is smooth for r ∈ (0,∞). We now expand fj (r) by expanding f ′j (r). To do so,
observe that since r∂r (χ(ξ/r))=−(ξ · ∂ξχ)(ξ/r), we have

r∂rfj (r)=−
∫

h(ξ)(ξ · ∂ξχ)(ξ/r)|ξ |−β−n
(
log |ξ |)j

aβ,k

(
ξ/|ξ |)dξ.

Changing variables ξ �→ rξ and expanding, we can write

r∂rfj (r)= r−β

j∑
i=0

dj,i(− log r)j−i

∫
h(rξ)(ξ · ∂ξχ)(ξ)|ξ |−β−n

(
log |ξ |)i

aβ,k

(
ξ/|ξ |)dξ.

Observe that the function (ξ · ∂ξχ)(ξ)|ξ |−β−n(log |ξ |)iaβ,k(ξ/|ξ |) is a smooth compactly sup-
ported function on R

n (vanishing near the origin). It follows that the function∫
h(rξ)(ξ · ∂ξχ)(ξ)|ξ |−β−n

(
log |ξ |)i

aβ,k

(
ξ/|ξ |)dξ
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is a smooth function of r ∈ [0,∞). Hence, after expanding this integral at r = 0, we obtain

r∂rfj (r)∼
∞∑

=0

j∑
i=0

r−β+dj,i,(log r)j−i as r → 0

for some constants dj,i,, or after division by r , we have

∂rfj (r)∼
∞∑

=0

j∑
i=0

dj,i,r
−β+−1(log r)j−i as r → 0. (4.15)

In the proof of Lemma 4.2, at this point the proof was basically finished because the function
∂ρfj (ρ) in that proof was identically zero in Taylor series at ρ = 0; in our present situation,
∂rfj (r) has an expansion at r = 0, which needs to be integrated to find fj (r). To this end,
observe that an integration by parts argument shows that for any complex number τ �= −1, we
have ∫

tτ (log t)k dt = tτ+1

τ + 1
(log t)k − k

τ + 1

∫
tτ (log t)k−1 dt.

Using this recurrence formula, an induction argument shows that modulo an integration constant,

∫
tτ (log t)k dt =

k∑
j=0

Cτ,j t
τ+1(log t)j , τ �= −1,

for some constants Cτ,j ; when τ =−1, we have∫
tτ (log t)k dt = 1

k+ 1
(log t)k+1, τ =−1.

Now integrating both sides of (4.15) and using the formulas for
∫

tτ (log t)k dt , we get a formula
of the type

fj (r)∼Dj +
j∑

i=0

Cji(log r)j−i+1 +
∞∑

=0

j∑
i=0

Dj,i,r
−β+(log r)j−i as r → 0,

for some constants Dj,Cji,Dj,i, and where Cji = 0 if β /∈N0. Now substituting this expression
for fj (r) into (4.14) we obtain, as r → 0,

Th(φ, r)= rβ

k∑
j=0

dk,j (log r)k−j fj (r)

∼ rβ

k∑
j=0

dk,jDj (log r)k−j + rβ

k∑
j=0

j∑
i=0

dk,jCji(log r)k−i+1
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+
∞∑

=0

k∑
j=0

j∑
i=0

Dj,i,dk,j r
(log r)k−i .

This expansion completes our proof. �
Next, we need the following technical result.

Lemma 4.7. Let a1, a2, a3, . . . ∈AI([0,∞)) and suppose that f : (0,∞)→C has the property
that for all N ∈N sufficiently large, we can write

f =
j∑

i=1

ai + fj ,

where fj ∈ Cj ([0,∞)) with j →∞ as j →∞. Then f ∈AI∪N0([0,∞)).

Proof. For fixed N0 ∈N, we shall prove that

f =
∑

(α,k)∈I,
α�N0

rα(log r)kbα,k +
N0−1∑
k=0

ckr
k + rN0gN0 ,

where gN0 ∈ S0([0,∞)); this proves our result. To prove this, choose N ∈ N and then choose j

such that j > N0 + N . Then by assumption we can write f = ∑j

i=1 ai + fj , where fj ∈
Cj ([0,∞))⊆ CN0+N([0,∞)). In particular, expanding fj in Taylor series up to order rN0 we
obtain

fj =
N0−1∑
k=0

ckr
k + rN0fN0(r),

where fN0(r) ∈ CN([0,∞)). Expanding each ai up to a term that is O(rN0) we obtain

ai =
∑

(α,k)∈I,
α�N0

rα(log r)kai,α,k + rN0aiN0(r),

where aiN0(r) ∈ S0([0,∞)). Hence,

f =
j∑

i=1

( ∑
(α,k)∈I,
α�N0

rα(log r)kai,α,k + rN0aiN0(r)

)
+

N0−1∑
k=0

ckr
k + rN0fN0(r)

=
∑

(α,k)∈I,
α�N0

rα(log r)kbα,k +
N0−1∑
k=0

ckr
k + rN0gN0(r),

where bα,k = ∑j

i=1 ai,α,k and gN0(r) =
∑j

i=1 aiN0(r) + fN0(r). Since fN0(r) ∈ CN([0,∞))

it follows that (r∂r )
kgN0(r) is locally bounded on [0,∞) for all k � N and gN0(r) is in CN
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for r away from zero. Of course, since N is completely arbitrary, it follows that gN0(r) is in
S0([0,∞)). This completes our proof. �

We now prove a converse statement to Theorem 4.4. To state this result, given an index set I
we define the index set Î as the index set defined as follows:

(α, k) ∈ I �⇒
⎧⎨⎩

(α, k) ∈ Î,

(α, k + 1) ∈ Î if α ∈N0,

(j, k) ∈ Î for all j ∈N0.

(4.16)

We box the formula because it plays such an important rôle in this paper. The following theorem
gives a partial “converse” to Theorem 4.4.

Theorem 4.8. We have

φ ∈AI+n
(
Rn

) �⇒ Th(φ) ∈AÎ([0,∞)
)
.

Proof. More explicitly, we need to show that an expansion of the sort

φ

(
1

ρ
,ω

)
∼

∑
(β,k)∈I

ρβ+n(logρ)kaβ,k(ω) as ρ→ 0,

implies an expansion of the sort

Th(φ, r)∼
∑

(β,k)∈Î
bβ,kr

β(log r)k as r → 0.

If χ(ξ) ∈ C∞(Rn) with χ(ξ)≡ 0 near 0 and χ(ξ)≡ 1 outside a neighborhood of 0, then

Th(φ)= Th(χφ)+ Th

(
(1− χ)φ

)
.

Since a smooth compactly supported function gives rise to an h-transform that is smooth at r = 0,
the term Th((1− χ)φ) is smooth at r = 0, so we may focus on Th(χφ). Put

φβ,k(ξ) := χ

(
ω

ρ

)
ρβ+n(logρ)kaβ,k(ω)= χ(ξ)|ξ |−β−n

(− log |ξ |)k
aβ,k

(
ξ/|ξ |),

where ρ = 1/|ξ | and ω= ξ/|ξ |. Then fixing any large N � 0, consider the finite expansion

χφ =
∑

(β,k)∈I,
β�N

φβ,k(ξ)+ fN(ρ,ω),

where fN(ρ,ω) ∈ ρNS0([0,∞)ρ×S
n−1
ω ) and vanishes for ρ large (that is, near the origin in R

n).
In particular,

Th(χφ, r)=
∑

(β,k)∈I,
β�N

Th(φβ,k, r)+ Th(fN, r).



Aut
ho

r's
   

pe
rs

on
al

   
co

py

P. Loya / J. Differential Equations 239 (2007) 132–195 161

By Lemma 4.6 we know that as r → 0 we can write

Th(φβ,k, r)∼ rβ

k∑
j=0

aj (log r)j + rβ

k∑
j=0

bj (log r)j+1 +
∞∑

=0

k∑
j=0

c,j r
(log r)j ,

where bj = 0 if β /∈ N0, which implies that φβ,k ∈ AÎ([0,∞)) by definition of Î in (4.16).
Because fN(ρ,ω) ∈ ρNS0([0,∞)ρ × S

n−1
ω ) = O(|ξ |−N) and is compactly supported in ρ, it

follows that

Th(fN, r)=
∫

h(rξ)fN(ξ) dξ ∈ CN−n−1([0,∞)
)
.

Since N − n − 1 →∞ as N →∞, by Lemma 4.7 it follows that Th(φ) ∈ AÎ∪N0([0,∞)).
Finally, since N0 ⊆ Î , we have AÎ∪N0([0,∞))=AÎ([0,∞)) and our proof is complete. �
Remark 4.9. Remark 4.5 holds for Theorem 4.8 as well: If φt ∈AI+n(Rn) depends smoothly
on a parameter t , then Th(φt ) ∈AÎ([0,∞)) also depends smoothly on t .

5. PDOs on blown-up spaces I

Suppose we have a (classical) pseudodifferential operator on a smooth manifold without
boundary. If we blow-up codimension two submanifolds inside M , what are the mapping prop-
erties (if any) of the pseudodifferential operator on polyhomogeneous functions on the resulting
blown-up manifold? The goal of this section is to answer this question (see Theorem 5.2) and
then use the answer to derive properties of our Dirac operator (see Theorems 5.3 and 5.4).

5.1. Symbols and polyhomogeneous functions

Let M be a smooth manifold without boundary and let N ⊆M be a connected codimension
two embedded submanifold of M ; thus, centered at each point in N there is a coordinate patch
U of M such that

U = V ×W, (5.1)

where V ⊆ R
2 is open containing (0,0) and W ⊆ R

n−2 is open such that U ∩ N = {(0,0)} ×
W . Assume that φ ∈AI([M;N ]) is supported in the coordinate patch (5.1). Recall from (4.4)
this means that with (u, v) = rω written in polar coordinates, where (u, v) are the rectangular
coordinates on V , we have, for any N � 0,

φ(rω,y)=
∑

(α,k)∈I,
α�N

rα(log r)kaα,k(ω, y)+ rNfN(r,ω, y), (5.2)

where the coefficients aα,k(ω, y) are smooth functions of ω and y and are compactly supported
in y, and fN(r,ω, y) is bounded with all b-derivatives in r ∈ [0,∞) and derivatives in ω and y.
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Note that the expansion (5.2) and the fact that φ is compactly supported in y are equivalent to
the statement

y �→ φ(u, v, y) ∈ C∞c
(
W;AI([

U; {0}])),
the compactly supported functions in W with values in the space AI([U; {0}]). Here we recall
thatAI([U; {0}]) has a natural Fréchet topology so the notion φ ∈ C∞c (W;AI([U; {0}])) is well
defined. Below we shall use similar Fréchet space-valued notation so we do not have to write out
long expansions of the sort (5.2). For example, S (Rn;AI(Rm)), which appears in Lemma 5.1
below, denotes the space of all AI(Rm)-valued Schwartz functions on R

n. For any α ∈ C, we
define

S−α
c

(
R

p
) :=Aα+N0

(
Rp

)
,

where α+N0 = {α+ k | k ∈N0}. It is straightforward to check that a(η) ∈ S−α
c (Rp) just means

that a(η) is a classical symbol of order α in the usual sense: For any N we can write

a(η)=
N∑

j=0

χ(η)aj

(
η

|η|
)
|η|−α−j + (

1+ |η|2)− α+N+1
2 bN(η), (5.3)

where χ(η)= 0 near η= 0 and χ(η)= 1 for η � 1, aj ∈ C∞(Sp−1), and for any γ the function
|η||γ |∂γ

η bN(η) is bounded.
The following lemma will be an important ingredient in the theorems in the subsequent sec-

tions.

Lemma 5.1. For any α ∈ C and index set I , if a(ξ, τ ) ∈ S−α
c (Rm × R

n) and τ �→ ϕ(ξ, τ ) ∈
S (Rn;AI(Rm)), then

τ �→ a(ξ, τ )ϕ(ξ, τ ) ∈S
(
R

n;Aα+I(
Rm

))
.

Proof. Since ϕ(ξ, τ ) ∈S (Rn;AI(Rm)), for any N � 0 we can write

ϕ(ξ, τ )=
∑

(β,k)∈I,
β�N

χ(ξ)|ξ |−β
(
log |ξ |)k

ϕβ,k(τ )+ (
1+ |ξ |2)−N+1

2 RN(ξ, τ ),

where χ(ξ)= 0 near ξ = 0 and χ(ξ)= 1 for |ξ |� 1, ϕβ,k(τ ) ∈S (Rn), and for any multi-indices
μ,ν, γ ,

ξμτγ ∂
μ
ξ ∂ν

τ RN(ξ, τ ) is bounded. (5.4)

Now let ϕ(τ) ∈S (Rn) and suppose we can show that for any N � 0, we can write

a(ξ, τ )ϕ(τ)=
N∑

j=0

χ(ξ)|ξ |−α−jψj (τ )+ (
1+ |ξ |2)− α+N+1

2 SN(ξ, τ ), (5.5)
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where ψj(τ) ∈ S (Rn), and SN(ξ, τ ) has the same boundedness property (5.4) as RN(ξ, τ )

above. Then writing

a(ξ, τ )ϕ(ξ, τ )=
∑

(β,k)∈I,
β�N

χ(ξ)|ξ |−β
(
log |ξ |)k

a(ξ, τ )ϕβ,k(τ )

+ (
1+ |ξ |2)−N+1

2 a(ξ, τ )RN(ξ, τ ),

and applying the expansion (5.5) to a(ξ, τ )ϕβ,k(τ ) for each β, k, it follows that

τ �→ a(ξ, τ )ϕ(ξ, τ ) ∈S
(
R

n
τ ;Aα+I(

R
m
ξ

))
,

which is exactly the statement of this lemma. Thus, it suffices to prove (5.5).
To prove (5.5) we first use the expansion (5.3) of elements in the symbol space S−α

c (Rm×Rn):
For any N we can write

a(ξ, τ )=
N∑

j=0

χ(ξ, τ )aj (θ)〈ξ, τ 〉−α−j + (
1+ |ξ |2 + |τ |2)− α+N+1

2 bN(ξ, τ ),

where 〈ξ, τ 〉 = (|ξ |2 + |τ |2)1/2, χ(ξ, τ ) = 0 near (ξ, τ ) = 0 and χ(ξ, τ ) = 1 for 〈ξ, τ 〉 � 1,
aj (θ) ∈ C∞(Sm+n−1), and for any γ ,

〈ξ, τ 〉|γ |∂γ

(ξ,τ )bN(ξ, τ ) is bounded.

Thus,

a(ξ, τ )ϕ(τ)=
N∑

j=0

χ(ξ, τ )aj (θ)〈ξ, τ 〉−α−j ϕ(τ )+ (
1+ |ξ |2 + |τ |2)− α+N+1

2 bN(ξ, τ )ϕ(τ)

=
N∑

j=0

χ(ξ, τ )aj (θ)〈ξ, τ 〉−α−j ϕ(τ )

+ (
1+ |ξ |2)− α+N+1

2

[(
1+ |τ |2

1+ |ξ |2
)− α+N+1

2

bN(ξ, τ )ϕ(τ)

]
.

The remainder term in brackets is easily shown to satisfy the boundedness property (5.4). There-
fore, to prove (5.5) it suffices to prove that for each j ,

χ(ξ, τ )aj (θ)〈ξ, τ 〉−α−j ϕ(τ )

has an expansion of the form (5.5). To see this, first write

χ(ξ, τ )aj (θ)〈ξ, τ 〉−α−j ϕ(τ )

= χ(ξ)aj (θ)〈ξ, τ 〉−α−j ϕ(τ )+ (
χ(ξ, τ )− χ(ξ)

)
aj (θ)〈ξ, τ 〉−α−j ϕ(τ ).
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Notice that for |ξ |� 1, we have χ(ξ, τ )− χ(ξ) = 1− 1= 0, so we can drop the last term and
focus on the first term χ(ξ)aj (θ)〈ξ, τ 〉−α−j ϕ(τ ).

In summary, we have reduced our theorem to deriving an expansion of the sort (5.5) for the
special case

a(ξ, τ )= χ(ξ)b(θ)〈ξ, τ 〉−α and ϕ(τ) ∈S
(
R

n
)
,

where b(θ) ∈ C∞(Sm+n−1). By choosing a partition of unity of the sphere S
m+n−1, we may

further consider two cases for any fixed c > 0:

Case 1. a(ξ, τ ) is supported in an angle of the form |ξ |� c|τ |.
Case 2. a(ξ, τ ) is supported in an angle of the form |τ |� c|ξ |.

In Case 1, for any N � 0, we can write

a(ξ, τ )ϕ(τ)= (
1+ |ξ |2)−N/2 ·

(
1+ |ξ |2
1+ |τ |2

)N/2

a(ξ, τ )ϕN(τ),

where ϕN(τ) = (1 + |τ |2)N/2ϕ(τ) is still a Schwartz function and the function (
1+|ξ |2
1+|τ |2 )N/2 is

bounded. Therefore, if a(ξ, τ ) is supported in an angle |ξ |� c|τ |, then because of the decaying
term (1+ |ξ |2)−N/2 and the arbitrariness of N it is clear that such a term will contribute to the
residual term in (5.5). Therefore, we may consider Case 2 when a(ξ, τ ) is supported in an angle
of the form |τ |� c|ξ |. In this case, we may use projective coordinates

θ = (θ1, θ2)=
(

ξ

|ξ | ,
τ

|ξ |
)

,

which are coordinates on the sphere S
m+n−1 in the region where |τ |� c|ξ | (in fact, even in the

larger region where |ξ |> 0). In this case, we have

a(ξ, τ )ϕ(τ)= χ(ξ)〈ξ, τ 〉−αϕ(τ)b

(
ξ

|ξ | ,
τ

|ξ |
)

.

Expanding b(θ1, θ2) in a partial Taylor expansion at θ2 = 0, we get

b

(
ξ

|ξ | ,
τ

|ξ |
)
=

N∑
|γ |=0

bγ

(
ξ

|ξ |
)

τγ |ξ |−|γ | +
∑

|γ |=N+1

τγ |ξ |−N−1bγ (θ1, θ2), (5.6)

where the bγ ’s are smooth. By the binomial theorem we have

(1+ x)−α/2 =
N∑

j=0

cj x
j + xN+1fN(x),

where fN ∈ C∞([0,∞)). Using this expansion we have
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〈ξ, τ 〉−α = (|ξ |2 + |τ |2)−α/2 = |ξ |−α

(
1+ |τ |

2

|ξ |2
)−α/2

=
N∑

j=0

cj |ξ |−α−2j |τ |2j + |ξ |−α−2N−2|τ |2N+2fN

( |τ |2
|ξ |2

)
. (5.7)

Finally, multiplying the expansions (5.6) and (5.7) and using that τγ |τ |2j ϕ(τ ) is Schwartz for
any nonnegative powers γ and j , we see that

a(ξ, τ )ϕ(τ)= χ(ξ)〈ξ, τ 〉−αϕ(τ) · b
(

ξ

|ξ | ,
τ

|ξ |
)

has the desired expansion (5.5). �
5.2. Inverse on the total space

Let

D :C∞(M,E)→ C∞(M,F)

be a Dirac-type operator and consider the coordinate patch U = V×W in (5.1) considered earlier.
If (u, v) denote the coordinates on V , then over U we have

D =G1∂u +G2∂v +B,

where G1,G2 :E→ F are bundle maps over U and B = B(u,v) is a first-order differential oper-
ator on W depending on (u, v). Choosing polar coordinates u= r cos θ and v = r sin θ in the V
factor, one can check that

D = (cos θG1 + sin θG2)∂r + (cos θG2 − sin θG1)
1

r
∂θ +B.

From this formula and the expansion (5.2) for a typical element of AI([M;N ]), one can show
that the Dirac-type operator has the mapping property

D :AI
([M;N ],E)→AI−1([M;N ],F )

,

for an arbitrary index family I . More generally, Theorem 5.2 below gives the mapping properties
for any pseudodifferential operator on such polyhomogeneous spaces. If I = {IH } is an index
family associated to some boundary hypersurfaces of a manifold with corners, then we define
Î := {ÎH } where ÎH is defined in (4.16).

Theorem 5.2. Any classical pseudodifferential operator A ∈ Ψ m(M,E,F ) of order m ∈ C de-
fines a continuous linear map

A :AIc
([M;N ],E)→AÎ−m

([M;N ],F )
,

for any index family I >−2 and where the subscript c on the left denotes compactly supported
sections.
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Proof. In this proof we drop the bundles for notational simplicity. Since the Schwartz kernel
of A is smoothing off the diagonal, we may assume that A is supported in a single coordinate
patch of M , and in particular, in a coordinate patch near N

U = V ×W,

where V ⊆R
2 is open containing (0,0) and W ⊆R

n−2 is open such that U ∩N = {(0,0)}×W .
If (u, v) denotes the coordinates on V , then over the coordinate patch U , modulo a smoothing
operator we have

Aφ =
∫
Rn

eiuξ+ivη+iy·τ a(u, v, y, ξ, η, τ )φ̂(ξ, η, τ ) d-ξ d-τ d-η,

where a(u, v, y, ξ, η, τ ) is the complete symbol of A, which is a classical (polyhomogeneous)
symbol of order m in (ξ, η, τ ). Assume that φ ∈AI([M;N ]) is supported in the coordinate patch
U = V ×W . This means that

y �→ φ(u, v, y) ∈ C∞c
(
W;AI([

U; {0}])),
the compactly supported functions in W with values in the space AI([U; {0}]). Taking the
Fourier transform in y, we see that

τ �→
∫

Rn−2

e−iy·τ φ(u, v, y) dy ∈S
(
R

n−2;AI([
U; {0}])), (5.8)

the space of Schwartz functions with values in AI([U; {0}]). Now using Theorem 4.4 it follows
that taking the Fourier transform of (5.8) with respect to (u, v), we have

τ �→ φ̂(ξ, η, τ ) ∈S
(
R

n−2;AI+2(
R2

))
.

Since a(u, v, y, ξ, η, τ ) is a classical symbol of order m, by Lemma 5.1 we see that for fixed
u,v, y,

τ �→ a(u, v, y, ξ, η, τ )φ̂(ξ, η, τ ) ∈S
(
R

n−2;AI−m+2(
R2

))
.

Of course, this is smooth and compactly supported in (u, v, y) ∈ U , so we actually have(
(u, v, y), τ

) �→ a(u, v, y, ξ, η, τ )φ̂(ξ, η, τ ) ∈ C∞
(
U ×R

n−2;AI−m+2(
R2

))
,

and is Schwartz in τ . Integrating out the τ variable by taking the inverse Fourier transform in τ ,
we get

(u, v, y) �→
∫
Rn

eiy·τ a(u, v, y, ξ, η, τ )φ̂(ξ, η, τ ) dτ ∈ C∞c
(
U;AI−m+2(

R2
))

.
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Fig. 7. Blowing up the corners M2(X) of X in the extended manifold M forms [M;M2(X)].

Finally, taking the inverse transform in (ξ, η) and using Theorem 4.8, we get∫
Rn

eiuξ+ivη+iy·τ a(u, v, y, ξ, η, τ )φ̂(ξ, η, τ ) d-ξ d-τ d-η ∈ C∞c
(
W;AÎ−m

([
U; {0}])),

which is exactly what we wanted to show. �
Let X ⊆M be a compact manifold with corners of codimension two with dimX = dimM .

Recall from Section 4.1 that Md(X) denotes the set of codimension d faces of X. Since X is of
codimension two, M2(X) consists of finitely many pairwise disjoint smooth compact connected
manifolds without boundary, the dimension of each equal to dimM − 2. In particular, we can
define the blown-up space (see Fig. 7) [

M;M2(X)
]

via (4.8) by simply blowing-up (or taking polar coordinates around) each element of M2(X).
We henceforth assume that D−1 exists on compactly supported functions—the assumption (1.5).
Then we have the following result.

Theorem 5.3. We have

D−1 :AIc
([

M;M2(X)
]
,F

)→AÎ+1([M;M2(X)
]
,E

)
for any index family I >−2.

Proof. We have [
M;M2(X)

]= [M;Y1;Y2; · · · ;Y],

where Y1, . . . , Y are the connected codimension two components of X. Since D−1 is pseudodif-
ferential (not necessarily properly supported but this makes no difference), its Schwartz kernel is
smoothing off the diagonal in M ×M , so it suffices to assume that X has exactly one codimen-
sion two face N and we just have to show that

D−1 :AIc
([M;N ],F )→AÎ+1([M;N ],E)
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for any index set I > −2. But this follows from the previous theorem and the fact that D−1 ∈
Ψ−1(M,F,E). �
5.3. Surjectivity of D

Given any index family I = {IY | Y ∈M2(X)}, we can consider I as an index family on Xtb
where we associate IY to the (unique) boundary face in Xtb obtained by the blow-up of Y in
forming Xtb := [X;M2(X)]. Let I denote the collection of all index families F = {FY | Y ∈
M2(X)} such that

F ∈ I ⇐⇒ F is an index family and FY ⊆ IY ∪ (N0 ×N0) ∀Y ∈M2(X). (5.9)

Then we define AI(Xtb,E) as the set of all sections of E such that

φ ∈AI(Xtb,E) ⇐⇒ φ ∈AF (Xtb,E), where F ∈ I.

Thus, an element of AF (Xtb,E) basically has the same expansion as an element of AI(Xtb,E)

except, because of the union with N0 ×N0, one can add smooth expansions multiplied by loga-
rithms. An important property of I is that ifF ∈ I , then F̂ ∈ I , which follows from the definition
(4.16) of F̂ .

We can put a natural complete metric topology on AI(Xtb,E) such that if {φj } is a se-

quence in AI(Xtb,E), then φj → φ ∈ AI(Xtb,E) if and only if for j sufficiently large,
φj ,φ ∈AF (Xtb,E) for some fixed index set F ∈ I and φj → φ in AF (Xtb,E).

Theorem 5.3 will be used to prove the following result.

Theorem 5.4. For any index family I >−2 associated to M2(X), the Dirac operator

D :AI(Xtb,E)→AI−1(Xtb,F )

is surjective.

Proof. Let ψ ∈ AF−1(Xtb,F ) where F ∈ I . We claim that we can extend ψ to an element
ψ̃ ∈ AF−1

c ([M;M2(X)],F ). Indeed, observe that if Y ∈ M2(X) and M ∼= (−1,1)2 × Y and
X ∼= [0,1)2 × Y near Y ⊆X, then writing these coordinates in polar form we have

[
M;M2(X)

]∼= [0, ε)r × S
1 × Y, Xtb ∼= [0, ε)r ×

[
0,

π

2

]
× Y, ε > 0.

Now the extension claim is clear since a function ψ(r, θ, y) in the coordinates [0, ε)r×[0, π
2 ]×Y

can always be extended to a function ψ̃(r, θ, y) on [0, ε)r × S
1 × Y . Note that ψ̃ is not unique,

but this non-uniqueness is irrelevant in what follows. By Theorem 5.3, we know that

φ̃ :=D−1ψ̃ ∈AF̂ ([
M;M2(X)

]
,E

)
.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

P. Loya / J. Differential Equations 239 (2007) 132–195 169

Restricting to Xtb ⊆ [M;M2(X)], we get an element

φ := φ̃|Xtb ∈AF̂ (Xtb,E) �⇒ φ ∈AI(Xtb,E).

This section satisfies

Dφ =D(φ̃|Xtb)=
(
DD−1ψ̃

)∣∣
Xtb
= ψ̃ |Xtb =ψ.

Therefore, D :AI(Xtb,E)→AI−1(Xtb,F ) is surjective as stated. �
6. PDOs on blown-up spaces II

In Theorem 5.3 we proved that D−1 maps polyhomogeneous spaces on Xtb to polyhomoge-
neous spaces on Xtb (really [M;M2(X)] but it is useful to think of this mapping property in terms
of Xtb ⊆ [M;M2(X)]). The goal of this section is to prove Theorem 6.3, which implies that D−1

maps polyhomogeneous spaces from the boundary ∂X to polyhomogeneous spaces on the total
space Xtb. This fact will be used in Section 7 to analyze the Cauchy integral and transform.

6.1. Preliminary lemmas

We need a couple lemmas. Here is the first.

Lemma 6.1. Let U be an open subset of [0,∞)v ×R
m
y , for any index set I let

a(v, y, ξ, τ ) ∈ C∞
(
U(v,y);S

(
R

n
τ ;AI

(
R

p
ξ

)))
,

let q(ξ, τ ) be a positive-definite quadratic form and define 〈1, ξ, τ 〉2 := 1+ q(ξ, τ ), and finally,
define

f (v, y, ξ) :=
∫
Rn

e−v〈1,ξ,τ 〉+iy·τ a(v, y, ξ, τ ) dτ.

Then we can write

f (v, y, ξ)= e−v〈1,ξ,0〉g(v, y, ξ),

where g(v, y, ξ) ∈ C∞(U(v,y);AI(R
p
ξ )).

Proof. For simplicity assume that a(v, y, ξ, τ ) has support for ξ near ∂Rp; the case when a

has compact support in ξ ∈ R̊p ≡ R
p is much simpler. Then the statement that a(v, y, ξ, τ ) ∈

C∞(U(v,y);S (Rn
τ ;AI(R

p
ξ ))) just means that in terms of the variables ρ = 1/|ξ | and ω = ξ/|ξ |

near ∂Rp , for any N � 0 we have
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a

(
v, y,

ω

ρ
, τ

)
=

∑
(α,k)∈I,
α�N

ρα(logρ)kχ(ρ)ϕα,k(v, y,ω, τ)+ ρNRN(v, y,ρ,ω, τ),

(6.1)

where χ(ρ) is compactly supported and equals 1 for ρ near 0, ϕα,k(v, y,ω, τ) ∈ C∞(U(v,y) ×
S

p−1
ω ;S (Rn

τ )), and for any multi-indices , β , μ, ν, γ ,

ρτγ ∂
β

(v,y)∂

ρ∂μ

ω ∂ν
τ RN(v, y,ρ,ω, τ) is bounded. (6.2)

Since 〈1, ξ, τ 〉 = (1+ q(ξ, τ ))1/2 and 〈1, ξ,0〉 = (1+ q(ξ,0))1/2, we have

〈1, ξ, τ 〉 − 〈1, ξ,0〉 = q(ξ, τ )− q(ξ,0)

〈1, ξ, τ 〉 + 〈1, ξ,0〉 ,

so

g(v, y, ξ)= ev〈1,ξ,0〉f (v, y, ξ)=
∫
Rn

e−v(〈1,ξ,τ 〉−〈1,ξ,0〉)+iy·τ a(v, y, ξ, τ ) dτ

=
∫
Rn

e
−v

q(ξ,τ )−q(ξ,0)
〈1,ξ,τ 〉+〈1,ξ,0〉+iy·τ

a(v, y, ξ, τ ) dτ.

Replacing ξ with ξ = ω/ρ, and for any real a, putting 〈a, ξ, τ 〉2 := a2 + q(ξ, τ ), and then using
that

〈1,ω/ρ, τ 〉2 = 1+ q(ω/ρ, τ)= ρ−2(ρ2 + q(ω,ρτ)
) �⇒ 〈1,ω/ρ, τ 〉 = ρ−1〈ρ,ω,ρτ 〉,

we obtain

g

(
v, y,

ω

ρ

)
=

∫
Rn

e−vh(ρ,ω,τ)+iy·τ a
(

v, y,
ω

ρ
, τ

)
dτ,

where

h(ρ,ω, τ) := 1

〈ρ,ω,ρτ 〉 + 〈ρ,ω,0〉 ·
q(ω,ρτ)− q(ω,0)

ρ
.

Therefore, using (6.1) we conclude that for any N ,

g

(
v, y,

ω

ρ

)
=

∑
(α,k)∈I,
α�N

ρα(logρ)kχ(ρ)

∫
Rn

e−vh(ρ,ω,τ)+iy·τ ϕα,k(v, y,ω, τ) dτ

+ ρα+N+1
∫
Rn

e−vh(ρ,ω,τ)+iy·τRN(v, y,ρ,ω, τ) dτ. (6.3)
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Noting that q(ω,ρτ)− q(ω,0) vanishes at ρ = 0 so that h(ρ,ω, τ) is infinitely differentiable at
ρ = 0, and recalling that ϕα,k(v, y,ω, τ) and RN(v, y,ρ,ω, τ) are Schwartz in τ , it follows that∫

Rn

e−vh(ρ,ω,τ)+iy·τ ϕα,k(v, y,ω, τ) dτ (6.4)

is infinitely differentiable at ρ = 0 (and C∞ in v, y, ω), and also∫
Rn

e−vh(ρ,ω,τ)+iy·τRN(v, y,ρ,ω, τ) dτ

has the same properties as RN in (6.2) except of course without the τ derivatives. Expanding the
integral (6.4) in Taylor series at ρ = 0 up to the ρN term and replacing the expansion into (6.3),

we conclude that g(v, y, ξ) ∈ C∞(U(v,y);AI(R
p
ξ )), which completes our proof. �

We need one more lemma.

Lemma 6.2. For any index set I > −1, let ψ(t, τ ) ∈S (Rn
τ ;AI([0,∞)t )) be compactly sup-

ported in t , let 〈1, η, τ 〉2 := 1 + q(η, τ ) with q(η, τ ) a positive-definite quadratic form on
R

m ×R
n and define

f (η, τ ) :=
∞∫

0

e−t〈1,η,τ 〉ψ(t, τ ) dt.

Then f (η, τ ) ∈S (Rn
τ ;AI+1(Rm

η )).

Proof. Throughout this proof, we put 〈a,η, τ 〉2 := a2 + q(η, τ ) and 〈a,η〉 := 〈a,η,0〉. Observe
that

〈1, η, τ 〉 = 〈1, η,0〉 + (〈1, η, τ 〉 − 〈1, η,0〉)= 〈1, η〉 +
(

q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)

,

so we can rewrite f (η, τ ) as

f (η, τ )=
∞∫

0

e−t〈1,η,τ 〉ψ(t, τ ) dt =
∞∫

0

e−t〈1,η〉e−t
q(η,τ )−q(η,0)
〈1,η,τ 〉+〈1,η〉 ψ(t, τ ) dt. (6.5)

Fix N � 0. Then we can write

e
−t

q(η,τ )−q(η,0)
〈1,η,τ 〉+〈1,η〉 =

N∑
j=0

cj t
j

(
q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)j

+ tN+1
(

q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)N+1

EN

(
t
q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)

,



Aut
ho

r's
   

pe
rs

on
al

   
co

py

172 P. Loya / J. Differential Equations 239 (2007) 132–195

where cj = (−1)j−1/j ! and where EN(x)= (−1)N+1

(N+1)!
∫ 1

0 e−ux du. Replacing this expression into
(6.5) we obtain

f (η, τ )=
N∑

j=0

cj

∞∫
0

e−t〈1,η〉tj
(

q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)j

ψ(t, τ ) dt

+
(

q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)N+1 ∞∫

0

e−t〈1,η〉tN+1EN

(
t
q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)

ψ(t, τ ) dt.

(6.6)

Making the change of variables t �→ t/〈1, η〉 in the last integral, we see that

∞∫
0

e−t〈1,η〉tN+1EN

(
t
q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)

ψ(t, τ ) dt

= 〈1, η〉−N−2

∞∫
0

e−t tN+1EN

(
t

〈1, η〉
q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)

ψ

(
t

〈1, η〉 , τ
)

dt.

Recalling that ψ(t, τ ) is Schwartz in τ , so that powers of τ multiplied with ψ(t, τ ) have no effect
on the Schwartz property in τ , it can be checked that the last term in (6.6) decays like 〈1, η〉−N−1

and is Schwartz in τ , even with all derivatives in η, τ . Therefore, our lemma follows once we
prove the following claim:

∞∫
0

e−t〈1,η〉tj
(

q(η, τ )− q(η,0)

〈1, η, τ 〉 + 〈1, η〉
)j

ψ(t, τ ) dt ∈S
(
R

n
τ ;AI+j+1(

Rm
η

))
.

To prove this, observe that q(η, τ )− q(η,0) has at most a linear factor of η so that (q(η, τ )−
q(η,0))j is at most of order |η|j in η, and observe that |η|jAJ (Rm)⊆AJ−j (Rm) for any index
set J . Also observe that tjAI([0,∞)) ⊆ AI+j ([0,∞)). With these observations in mind, it
suffices to prove that for fixed j ,

fj (η, τ ) :=
∞∫

0

e−t〈1,η〉 1

(〈1, η, τ 〉 + 〈1, η〉)j ψ(t, τ ) dt ∈S
(
R

n;AI+2j+1(
Rm

))
,

where ψ(t, τ ) ∈S (Rn;AI+j ([0,∞))) is compactly supported in t . Note that

〈1, η〉 = q
1
2 (η,0)+ ((

1+ q(η,0)
) 1

2 − q
1
2 (η,0)

)= 〈0, η〉 +
(

1

〈1, η〉 + 〈0, η〉
)

,

so if we put ρ = 1/|η| and ω= η/|η|, then after some simplification,

〈1,ω/ρ〉 = ρ−1〈0,ω〉 +
(

ρ

〈ρ,ω〉 + 〈0,ω〉
)

.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

P. Loya / J. Differential Equations 239 (2007) 132–195 173

Fig. 8. A tied submanifold H ⊆R
2 and the blown-up manifold R

2
H

. Here, R
2
H
=R

2\ the (“narrow hallway” ∪ “bubble”)
and consists of two connected components.

Hence,

fj

(
ω

ρ
, τ

)
= ρj

∞∫
0

e−t〈0,ω〉/ρe
− tρ
〈ρ,ω〉+〈0,ω〉 1

(〈ρ,ω,ρτ 〉 + 〈ρ,ω〉)j ψ(t, τ ) dt.

The function

e
− tρ
〈ρ,ω〉+〈0,ω〉 1

(〈ρ,ω,ρτ 〉 + 〈ρ,ω〉)j

is infinitely differentiable at ρ = 0, so expanding this function in Taylor series at ρ = 0, we
get an expansion in ρ with coefficients in terms of powers of t and powers of τ . The powers
of τ multiplied with ψ(t, τ ) have no effect on the Schwartz property in τ , and tkAJ ([0,∞))⊆
AJ+k([0,∞)) for any index set J , so to prove that fj (η, τ ) ∈S (Rn;AI+2j+1(Rm)) it suffices
to prove that

ρj

∞∫
0

e−t〈0,ω〉/ρψ(t, τ ) dt ∈S
(
R

n
τ ;AI+2j+k+1(

Rm
η

))
,

where ψ(t, τ ) ∈S (Rn;AI+j+k([0,∞))) is compactly supported in t . However, this fact fol-
lows from Theorem 4.4 and the fact that ρjAJ (Rm)⊆AJ+j (Rm) for any index set J . �
6.2. Inverse from the boundary to the interior

A tied submanifold with boundary of codimension one in M is just a codimension one face
of a manifold with corners of codimension two X ⊆ M with dimX = dimM . For example,
the upper left pictures in Fig. 8 (the boundary of a “tear drop”) and Fig. 9 (a curved segment)
are examples of tied submanifolds with boundary of codimension one in R

2. The word “tied”
has to do with Fig. 8, where we see that the boundary is “tied” to itself [76]. We denote by
M1(H) := {Y ∈M2(X) | Y ⊆H }. For example, M1(H) consists of just the vertex in the upper
left picture in Fig. 8 and the two end points of the curved segment in Fig. 9. We define

MH :=
[
M;M1(H);H ]

.
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Fig. 9. A tied submanifold H ⊆R
2 and the blown-up manifold R

2
H

. Here, R
2
H
=R

2\ the “curved dumbbell.”

See Figs. 8 and 9 for examples. The proof of the following theorem is necessarily long and
detailed and probably should be omitted at a first reading.

Theorem 6.3. If H ⊆M is a compact tied submanifold with boundary of codimension one in M ,
then for any index family I >−1 associated to M1(H), we have a continuous linear map

φ �→D−1δH GH φ :AI(H,E)→AÎ(MH ,E),

where Î is defined in (4.16) and is associated to the faces in MH obtained from the blow-ups of
the boundary components of H , δH is the delta function concentrated on H , and GH :E→ F is
the principal symbol of D evaluated on the inward pointing unit normal vector field to H .

Proof. Given φ ∈ AI(H,E) we need to prove that D−1δH GH φ ∈ AÎ(MH ,E). As with the
proof of Theorem 5.3, since the Schwartz kernel of D−1 is smoothing off the diagonal, it suffices
to work in a single coordinate patch. In a coordinate patch near the interior of H (that is, away
from M1(H)) we can consider H as part of a smooth boundary of a manifold with boundary in
M , so we can prove this result using techniques from the smooth boundary case as in [15,19,
24,43,107] and other papers. The new phenomenon is near a corner, say Y . If H happens to be
tied at Y as in the far left picture in Fig. 10, then by choosing a partition of unity of H we can
assume that φ ∈AI(H,E) is supported on only one of the ends entering Y ; for example, in the
far left picture in Fig. 10 we may assume that φ is supported on the horizontal portion of H .
Thus, for the rest of this proof, we may assume that H takes the form in Fig. 11. Now consider
a coordinate patch on M near a corner Y ⊆H :

U = V(u,v) ×Wy,

where the subscripts denote the notation for coordinates, V ⊆ R
2 is open containing (0,0) and

W ⊆ R
n−2 is open such that U ∩ Y = {(0,0)} ×W . We assume that in this coordinate patch,

U ∩H is the horizontal line {u � 0, v = 0} such as seen in Fig. 11, properties of which we shall
be more specific later in our proof.

For a compactly supported function φ over U , modulo a smoothing operator we have

D−1φ =
∫
Rn

eiuξ+ivη+iy·τ a(u, v, y, ξ, η, τ )φ̂(ξ, η, τ ) d-ξ d-τ d-η,
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Fig. 10. If H is tied, then MH is as shown in the figure.

Fig. 11. Blowing up the manifold M at Y , then at H .

where a(u, v, y, ξ, η, τ ) is the complete symbol ofD−1, which is a classical symbol of order−1.
Assume that φ ∈AI(H,E), where I >−1, is supported in U = V ×W . Thus, we may write

φ = κ(u)ϕ(u, y),

where κ(u) is the Heaviside function and ϕ(u, y) ∈ C∞c (W,AI([R; {0}])). Therefore,

δH GH φ =GH κ(u)δ(v)ϕ(u, y),

where δ(v) is the delta function. Hence,

D−1δH GH ϕ =
∫
Rn

eiuξ+ivη+iy·τ a(u, v, y, ξ, η, τ )GH (̂κϕ)(ξ, τ ) d-ξ d-η d-τ. (6.7)

We need to prove that this function defines an element of AÎ(MH ,E), which in local polar
coordinates (r, θ, y) is just C∞([0,2π]θ ×W;AÎ([0,∞)r )) where we drop the vector bundle
E from the notation just for simplicity. To go about doing this, note that since a(u, v, y, ξ, η, τ )

is classical of order −1 we have an expansion

a(u, v, y, ξ, η, τ )∼
∞∑

j=1

χ(ξ, η, τ )aj (u, v, y, ξ, η, τ ),

where χ(ξ, η, τ ) vanishes for |(ξ, η, τ )| near 0 and equal to 1 for |(ξ, η, τ )|� 1 and aj is homo-
geneous of degree −j in (ξ, η, τ ). Recall that ∼ means that for any N we have

a(u, v, y, ξ, η, τ )−
N∑

j=1

χ(ξ, η, τ )aj (u, v, y, ξ, η, τ )= rN(u, v, y, ξ, η, τ ) ∈ S−1−N
c ,
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a symbol of order −1−N . Replacing this expansion into (6.7) we obtain

D−1δH GH φ =
N∑

j=1

φj + fN,

where

φj :=
∫
Rn

eiuξ+ivη+iy·τ χ(ξ, η, τ )aj (u, v, y, ξ, η, τ )GH (̂κϕ)(ξ, τ ) d-ξ d-η d-τ

and

fN :=
∫
Rn

eiuξ+ivη+iy·τ rN (u, v, y, ξ, η, τ )GH (̂κϕ)(ξ, τ ) d-ξ d-η d-τ.

Since (κϕ) is L1 we know that (̂κϕ)(ξ, τ ) is bounded and hence

rN(u, v, y, ξ, η, τ )GH (̂κϕ)(ξ, τ )=O((
1+ |ξ | + |η| + |τ |)−N−1)

.

It follows that taking N � n we have

fN =
∫
Rn

eiuξ+ivη+iy·τ rN (u, v, y, ξ, η, τ )GH (̂κϕ)(ξ, τ ) d-ξ d-η d-τ ∈ CN−n(U,E).

Since N − n→∞ as N →∞, by (a similar version of) Lemma 4.7 all we have to do is prove
that for each j , the function

φj :=
∫
Rn

eiuξ+ivη+iy·τ χ(ξ, η, τ )aj (u, v, y, ξ, η, τ )GH (̂κϕ)(ξ, τ ) d-ξ d-η d-τ (6.8)

defines an element of AÎ(MH ,E), which in local polar coordinates (r, θ, y) is just
C∞([0,2π]θ ×W;AÎ([0,∞)r )) where we henceforth drop vector bundles from the notation
for simplicity. In order to do this we need to consider two cases shown in Fig. 12: When (u, v) is
in part of a sector away from the negative real axis and when (u, v) is in a sector containing the
negative real axis. As seen below, the proof of the second case is different from the first case; the
subtle reason is that if H is continued to the negative real axis, then H actually has no boundary
at Y .

Case 1. In this case, we may assume initially that |v|> 0. We can write (6.8) as

φj =
∫
Rn

eiuξ+ivη+iy·τ χ(ξ, η, τ )aj (u, v, y, ξ, η, τ )(̂κϕ)(ξ, τ ) d-ξ d-η d-τ

=
∫

Rn−1

eiuξ+iy·τ bj (u, v, y, ξ, τ )(̂κϕ)(ξ, τ ) d-ξ d-τ, (6.9)
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Fig. 12. Cases 1 and 2 are when (u, v) is away and near the negative real axis.

where

bj (u, v, y, ξ, τ ) :=
∫
R

eivηχ(ξ, η, τ )aj (u, v, y, ξ, τ, η)GH d-η; (6.10)

by Dirichlet’s test this integral exists (as an improper Riemann integral) because the symbol
aj (u, v, y, ξ, τ, η) decays like |η|−j with j � 1 and eivη oscillates. In order to get a nice formula
for aj (u, v, y, ξ, τ, η) that will make the properties of bj transparent, we now choose coordinates
so that the metric takes the form

g = dv2 + h(v),

where h(v) is a metric in the u,y coordinates; this can be done by choosing a normal vector to
{v = 0} and using geodesic flow in the direction of the normal to define the coordinate v. This
implies, in particular, that the metric looks like

g
(
(ξ, η, τ ), (ξ, η, τ )

)= η2 + λ(ξ, τ ), (6.11)

where λ(ξ, τ )= λ(u, v, y, ξ, τ ) is a homogeneous polynomial of degree two in (ξ, τ ), and posi-
tive for (ξ, τ ) �= 0. This implies that

D =G1∂u +G2∂v +B, where G2 =GH ,

and the principal symbol of a(u, v, y, ξ, η, τ ) is equal to

a1(u, v, y, ξ, η, τ )= σ1(D)−1 = σ1(D∗)
σ2(D∗D)

= (−iη+ σ(u, v, y, ξ, τ ))G−1
2

η2 + λ(ξ, τ )
, (6.12)

where σ is the principal symbol of (G1∂u+B)∗G2. Moreover, from the explicit local parametrix
construction of D [42,88,108,109] we know that a(u, v, y, ξ, η, τ ) has a rational expansion in
ξ, τ, η in the sense that

a(u, v, y, ξ, η, τ )∼
∞∑

j=1

χ(ξ, η, τ )
pj (u, v, y, ξ, η, τ )

(η2 + λ(ξ, τ ))j
, (6.13)
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with pj (u, v, y, ξ, τ, η) a polynomial of degree j in (ξ, τ, η). The proof of the rational expansion
(6.13) is by induction using that a1(u, v, y, ξ, η, τ ) has this property by (6.12). Thus, we may
assume that

aj (u, v, y, ξ, η, τ )= pj (u, v, y, ξ, η, τ )

(η2 + λ(ξ, τ ))j
. (6.14)

Consider now, for each j , the integral∫
R

eivηaj (u, v, y, ξ, τ, η) d-η=
∫
R

eivη pj (u, v, y, ξ, η, τ )

(η2 + λ(ξ, τ ))j
d-η.

Assume for a moment that v < 0 so we are in the bottom part of the sector labelled Case 1
in Fig. 12. Then factoring η2 + λ(ξ, τ ) = (η + iλ1/2(ξ, τ ))(η − iλ1/2(ξ, τ )) with λ1/2(ξ, τ ) =√

λ(ξ, τ ) and using Cauchy’s theorem, we obtain∫
R

eivη pj (u, v, y, ξ, η, τ )

(η2 + λ(ξ, τ ))j
d-η=

∫
R

eivη pj (u, v, y, ξ, η, τ )

(η+ iλ
1
2 (ξ, τ ))j (η− iλ

1
2 (ξ, τ ))j

d-η

= −i

(j − 1)!
(

∂

∂η

)j−1∣∣∣∣
η=−iλ

1
2 (ξ,τ )

(
eivη pj (u, v, y, ξ, η, τ )

(η− iλ
1
2 (ξ, τ ))j

)
.

(6.15)

Here, recalling that v < 0, we shifted the line R = {�ξ = 0} down to {�ξ = −∞} where the
integral vanishes, and we picked up a pole at ξ =−iλ1/2(τ, η). Applying the product rule to the
last term in (6.15) we obtain∫

R

eivη pj (u, v, y, ξ, η, τ )

(η2 + λ(ξ, τ ))j
d-η= evλ

1
2 (ξ,τ )q−j (u, v, y, ξ, τ ), for v < 0,

where

q−j (u, v, y, ξ, τ )=
j−1∑
k=0

vkq−jk(u, v, y, ξ, τ )

with q−jk(u, v, y, ξ, τ ) a homogeneous function in (ξ, τ ) (not rational) of degree 1− j + k. An
identical computation, but this time shifting the contour R = {�ξ = 0} up to {�ξ = +∞}, we
obtain ∫

R

eivη pj (u, v, y, ξ, η, τ )

(η2 + |(ξ, τ )|2)j d-η= e−vλ
1
2 (ξ,τ )q+j (u, v, y, ξ, τ ), for v > 0,

where

q+j (u, v, y, ξ, τ )=
j−1∑
k=0

vkq+jk(u, v, y, ξ, τ )
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with q+jk(u, v, y, ξ, τ ) a homogeneous function in (ξ, τ ) of degree 1− j + k. In view of (6.10) it
follows that

bj (u, v, y, ξ, τ )= e∓v〈1,ξ,τ 〉q±j (u, v, y, ξ, τ ), for v =±|v|,

where

q±j (u, v, y, ξ, τ ) ∈ S0
c,

a symbol of order 0, where 〈1, ξ, τ 〉2 := 1 + λ(ξ, τ ), and where “for v = ±|v|” is shorthand
for “for v > 0 and v < 0, respectively.” Note that although the expression for bj (u, v, y, ξ, τ )

depends initially on v > 0 and v < 0, each of the functions q+(u, v, y, ξ, τ ) and q−(u, v, y, ξ, τ )

extends canonically to be smooth for all (u, v, y) ∈ U . Now by (6.9), we have

φj =
∫

Rn−1

eiuξ∓v〈1,ξ,τ 〉+iy·τ q±j (u, v, y, ξ, τ )(̂κϕ)(ξ, τ ) d-ξ d-τ, for v =±|v|. (6.16)

Noting that κ(u)ϕ(u, y) ∈ C∞c (W,AI([0,∞)))⊆ C∞c (W,AI([R; {0}])) (it happens to vanish
on the negative real axis too) it follows that

τ �→
∫

Rn−2

e−iy·τ κ(u)ϕ(u, y) dy ∈S
(
R

n−2
τ ;AI([

R; {0}])), (6.17)

the space of Schwartz functions with values inAI([R; {0}]). Now using Theorem 4.4, taking the
Fourier transform in u we have

τ �→ (̂κϕ)(ξ, τ ) ∈S
(
R

n−2
τ ;AI+1(R )

)
.

Since q±(u, v, y, ξ, τ ) is a classical symbol of order 0, by Lemma 5.1, we see that for fixed
u,v, y,

τ �→ q±j (u, v, y, ξ, τ )(̂κϕ)(ξ, τ ) ∈S
(
R

n−2
τ ;AI+1(R)

)
.

Of course, this is smooth in (u, v, y) ∈ U , so we actually have(
(u, v, y), τ

) �→ q±j (u, v, y, ξ, τ )(̂κϕ)(ξ, τ ) ∈ C∞
(
U(u,v,y) ×R

n−2
τ ;AI+1(R)

)
,

and is Schwartz in τ . Now employing Lemma 6.1, we can write∫
Rn−2

e∓v〈1,ξ,τ 〉+iy·τ q±j (u, v, y, ξ, τ )(̂κϕ)(ξ, τ ) d-τ = e∓v〈1,ξ〉s±j (u, v, y, ξ),

for v =±|v|, where 〈1, ξ 〉2 := 1+ λ(ξ,0) and

(u, v, y) �→ s±j (u, v, y, ξ) ∈ C∞
(
U;AI+1(R)

)
.
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In conclusion, we have

φj =
∫
R

eiuξ∓v〈1,ξ〉s±j (u, v, y, ξ) d-ξ, for v =±|v|.

Modulo a smooth function we can write this as

φj ≡
∫
R

eiuξ∓v|ξ |s±j (u, v, y, ξ) d-ξ, for v =±|v|,

where we used that λ(ξ,0)= |ξ |2, the Riemannian length of ξ , by the formula (6.11). If (u, v)=
rω, where ω = (ω1,ω2) ∈ A with A ⊆ S

1 is a fixed arch in either the upper or lower Case 1
regions in Fig. 12, then we can write this as

φj ≡
∫
R

er(iω1ξ∓ω2|ξ |)s±j (rω, y, ξ) d-ξ, for ω2 =±|ω2|.

This fits into the h-transform situation of Theorem 4.8 with h(ξ) = eiω1ξ∓ω2|ξ | (see Example 3
of Section 4.2). Hence, by Theorem 4.8 and Remark 4.9 we know that

φj (rω,y) ∈ C∞
(
Aθ ×W;AÎ

([0,∞)r
))

.

This implies that φj ∈ AÎ(MH ,E) as required and completes Case 1. We remark that∫
R

er(iω1ξ−ω2|ξ |)s+j (rω, y, ξ) d-ξ and
∫

R
er(iω1ξ+ω2|ξ |)s−j (rω, y, ξ) d-ξ define smooth functions

on [0,π] and [π,2π], respectively. However, this does not imply that φj ∈ C∞([0,2π]θ ×W;
AÎ([0,∞)r )) because it is not obvious that these integrals agree when θ = π ! (In fact, at 0 and
2π , these integrals are different!) This is why we need a second case to deal with angles near π .

Case 2. In this case, we may assume that u < 0 and we are working near v = 0. As with Case 1,
the starting point is again (6.8):

φj =
∫
Rn

eiuξ+ivη+iy·τ χ(ξ, η, τ )aj (u, v, y, ξ, η, τ )(̂κϕ)(ξ, τ ) d-ξ d-η d-τ.

The fact that u < 0 plays an important part here because in this case, we write

φj =
∫

Rn−1

eivη+iy·τ cj (u, v, y, η, τ ) d-η d-τ, (6.18)

where

cj (u, v, y, η, τ ) :=
∫
R

eiuξχ(ξ, η, τ )aj (u, v, y, ξ, η, τ )(̂κϕ)(ξ, τ ) d-ξ. (6.19)

Thus, in this case, the roles of ξ and η are switched!
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We now proceed as we did in Case 1 but with appropriate switching of the roles of ξ and η

taking care to note the special twists that occur because of the switching. First, we now choose
coordinates so that the metric takes the form

g = du2 + h̃(u),

where h̃(u) is a metric in the v, y coordinates; this can be done by choosing a vector field locally
near Y that is tangent and pointing inward to H and using geodesic flow in the direction of the
vector field to define the coordinate u. This implies, in particular, that the metric looks like

g
(
(ξ, η, τ ), (ξ, η, τ )

)= ξ2 +μ(η, τ), (6.20)

where μ(η, τ)= μ(u, v, y, η, τ ) is a homogeneous polynomial of degree two in (η, τ ) and pos-
itive for (η, τ ) �= 0. In this case, we can take the expansion in (6.13) to look like (cf. the related
series (6.14))

a(u, v, y, ξ, η, τ )∼
∞∑

j=1

χ(ξ, η, τ )
qj (u, v, y, ξ, η, τ )

(ξ2 +μ(η, τ))j

with qj (u, v, y, ξ, τ, η) a polynomial of degree j in (ξ, η, τ ). Thus, for Case 2 we shall (and
may) assume that

aj (u, v, y, ξ, η, τ )= qj (u, v, y, ξ, η, τ )

(ξ2 +μ(η, τ))j
.

In order to study the integral (6.19), we need to analyze each integral

∫
R

eiuξ aj (u, v, y, ξ, τ, η)(̂κϕ)(ξ, τ ) d-ξ =
∫
R

eiuξ qj (u, v, y, ξ, η, τ )

(ξ2 +μ(η, τ))j
(̂κϕ)(ξ, τ ) d-ξ.

Writing ξ2 +μ(η, τ)= (ξ + iμ1/2(η, τ ))(ξ − iμ1/2(η, τ )) and using Cauchy’s theorem exactly
as we did in (6.15), we obtain

∫
R

eiuξ qj (u, v, y, ξ, η, τ )

(ξ2 +μ(η, τ))j
(̂κϕ)(ξ, τ ) d-ξ

=
∫
R

eiuξ qj (u, v, y, ξ, η, τ )

(ξ + iμ
1
2 (η, τ ))j (ξ − iμ

1
2 (η, τ ))j

(̂κϕ)(ξ, τ ) d-ξ

= −i

(j − 1)!
(

∂

∂ξ

)j−1∣∣∣∣
ξ=−iμ

1
2 (η,τ )

(
eiuξ qj (u, v, y, ξ, η, τ )

(ξ − iμ
1
2 (η, τ ))j

(̂κϕ)(ξ, τ )

)
. (6.21)
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Here, recalling that u < 0, we shifted the line R= {�ξ = 0} down to {�ξ =−∞} and we picked
up a pole at ξ =−iμ1/2(η, τ ). Moreover, it is important to note that κ(t)ϕ(t, y) is supported in
t � 0, so that

(̂κϕ)(ξ, τ )=
∞∫

0

∫
Rn−2

e−itξ−iy·τ ϕ(t, y) dy dt,

and therefore if ξ = z1 + iz2 ∈C with z1, z2 ∈R and z2 < 0, then

(̂κϕ)(ξ, τ )=
∞∫

0

∫
Rn−2

e−itz1+tz2−iy·τ ϕ(t, y) dy dt

is bounded as z2 →−∞. Therefore the integral remainder in (6.21) does indeed vanish as we
take the contour R= {�ξ = 0} down to {�ξ =−∞}. Observe that

(̂κϕ)
(−iμ

1
2 (η, τ ), τ

)= ∞∫
0

∫
Rn−2

e−tμ
1
2 (η,τ )−iy·τ ϕ(t, y) dy dt

=
∞∫

0

e−tμ
1
2 (η,τ )ψ(t, τ ) dt,

where

ψ(t, τ )=
∫

Rn−2

e−iy·τ ϕ(t, y) dy ∈S
(
R

n−2;AI([0,∞)
))⊆S

(
R

n−2;AI([
R; {0}]))

and vanishes for t < 0. We are now in the situation of Lemma 6.2, which implies that away from
(η, τ )= (0,0), we have

(̂κϕ)
(−iμ

1
2 (η, τ ), τ

)= ∞∫
0

e−tμ
1
2 (η,τ )ψ(t, τ ) dt ∈S

(
R

n−2
τ ;AI+1(Rη)

)
.

Since for any k,

∂k
ξ (̂κϕ)(ξ, τ )= (−i)k

∞∫
0

∫
Rn−2

e−itξ−iy·τ tkϕ(t, y) dy dt,

and tkAI([R; {0}])⊆AI+k([R; {0}]), we have(
∂k
ξ (̂κϕ)

)(−iμ
1
2 (η, τ ), τ

) ∈S
(
R

n−2
τ ;AI+k+1(Rη)

)
.
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Hence, by Lemma 5.1 and using the product rule noting that
pj (u,v,y,ξ,η,τ )

(η−iμ1/2(ξ,τ ))j
is a symbol of order

zero, we see that for arbitrary k,(
∂

∂ξ

)k∣∣∣∣
ξ=−iμ

1
2 (η,τ )

(
pj (u, v, y, ξ, η, τ )

(η− iμ
1
2 (ξ, τ ))j

(̂κϕ)(ξ, τ )

)
∈ C∞

(
U(u,v,y);S

(
R

n−2
τ ;AI+k+1(Rη)

))
⊆ C∞

(
U(u,v,y);S

(
R

n−2
τ ;AI+1(Rη)

))
.

Now using the product rule in (6.21) we have∫
R

eiuξ qj (u, v, y, ξ, η, τ )

(ξ2 +μ(η, τ))j
(̂κϕ)(ξ, τ ) d-ξ = euμ

1
2 (η,τ )sj (u, v, y, η, τ ), for u < 0,

where

sj (u, v, y, η, τ ) ∈ C∞
(
U(u,v,y);S

(
R

n−2
τ ;AI+1(Rη)

))
.

Thus, in view of (6.19), it follows that

cj (u, v, y, η, τ ) :=
∫
R

eiuξχ(ξ, η, τ )aj (u, v, y, ξ, η, τ )(̂κϕ)(ξ, τ ) d-ξ

=
∫
R

eiuξχ(ξ, η, τ )
qj (u, v, y, ξ, η, τ )

(ξ2 +μ(η, τ))j
(̂κϕ)(ξ, τ ) d-ξ

= eu〈1,η,τ 〉qj (u, v, y, η, τ ),

where u < 0, 〈1, η, τ 〉2 := 1+μ(η, τ), and where

qj (u, v, y, η, τ ) ∈ C∞
(
U(u,v,y);S

(
R

n−2
τ ;AI+1(Rη)

))
.

Hence, by (6.18), we have

φj =
∫

Rn−1

eu〈1,η,τ 〉+ivη+iy·τ qj (u, v, y, η, τ ) d-η d-τ.

Now employing Lemma 6.1, we can write∫
Rn−2

eu〈1,η,τ 〉+iy·τ qj (u, v, y, η, τ ) d-τ = eu〈1,η〉q̃j (u, v, y, η),

where 〈1, η〉2 := 1+μ(η,0)= 1+ |η|2 (with |η|2 denoting the Riemannian squared length of η

by (6.20)), and

(u, v, y) �→ q̃j (u, v, y, η) ∈ C∞
(
U;AI+1(Rη)

)
.
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In conclusion, we have

φj =
∫
R

eu〈1,η〉+ivηq̃j (u, v, y, η) d-η, for u < 0.

Up to a smooth function we can write this as

φj ≡
∫
R

eu|η|+ivηq̃j (u, v, y, η) d-η, for u < 0.

We are now in the exact same situation as we were at the end of Case 1 (but now we have η

instead of ξ and now u < 0 instead of having v’s of various signs in that case). Therefore, by the
same argument based on Theorem 4.8, φj ∈AÎ(MH ,E) as required.

Finally, we remark that all the lemmas used in this proof depend continuously on their function
data (as can be seen by examining the proofs). Therefore, the map

AI(H,E) � φ �→D−1δH GH φ ∈AÎ(MH ,E)

depends continuously on φ. �
7. The Cauchy integral and transform on manifolds with corners

Using Theorem 6.3 we can now define the Cauchy integral and transform; see Lemma 7.1.
The main results of this section include the Borel–Pompeiu formula (a generalization of Cauchy’s
integral formula) in Theorem 7.2, which implies Theorems 2.1 and 2.4 on the Cauchy integral
(= Poisson operator). We also prove Theorem 2.2 on the Cauchy transform (= Calderón projec-
tor).

7.1. Definition of the Cauchy integral and transform

Let X ⊆M be a compact manifold corners of codimension two with dimX = dimM .
The Cauchy integral or Poisson operator is defined by

K :=
∑

H∈M1(X)

D−1δH GH ,

where δH is the delta function concentrated on H and GH :E→ F is the principal symbol of D
evaluated on the inward pointing unit normal vector field to H . Let I >−1 be an index family
associated to M2(X). Then applying Theorem 6.3 to each of D−1δH GH it follows that

K :AI(∂X,E)→AÎ(Mtb,E),

where AI(∂X,E) := (AI(Xtb,E))|∂X with |∂X meaning restriction to the interior of each
boundary hypersurface of X, where (see Fig. 5 in Section 2)

Mtb :=
[
M;M2(X);M1(X)

]
,
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and Î is the index set defined in (4.16) associated to the faces coming from the blow-ups
of M2(X). If ϕ ∈ AI(∂X,E), then Kϕ ∈ AÎ(Mtb,E), so restriction to Xtb ⊆ Mtb we get
(Kϕ)|Xtb ∈AÎ(Xtb,E) and on the interior of Xtb, we have

D(Kϕ)=
∑

H∈M1(X)

DD−1δH GH ϕ =
∑

H∈M1(X)

δH GH ϕ = 0.

Therefore, restriction to X̊tb ⊆Mtb, we have Kϕ ∈ ker(D on AÎ(Xtb,E)). Hence, if for any
index set J associated to M2(X), we define

γ+∂X :AJ (Mtb,E)→AJ (∂X,E)

as the restriction map γ+∂X := |∂X , from the interior of Xtb ⊂Mtb to the hypersurface components
of ∂X minus the corners of X, then γ+∂XKϕ ∈HÎ(D) by definition of the Cauchy–Hardy space

HÎ(D) := {
φ|∂X

∣∣ φ ∈AÎ(Xtb,E), Dφ = 0
}
,

where φ|∂X := γ+∂Xφ. Therefore, if we define the Cauchy transform or Calderón projector

C :AI(∂X,E)→AÎ(∂X,E)

by

Cϕ := γ+∂XKϕ for all ϕ ∈AI(∂X,E),

then ranC ⊆HÎ(D). We summarize our findings in the following lemma.

Lemma 7.1. For any index family I > −1 associated to M2(X), the Cauchy integral defines a
continuous linear map

K :=
∑

H∈M1(X)

D−1δH GH :AI(∂X,E)→AÎ(Mtb,E)

with

ran
(
γXtbK

)⊆ ker
(
D :AÎ(Xtb,E)→AÎ−1(Xtb,F )

)
,

where γXtb denotes restriction from Mtb to Xtb. The Cauchy transform defines a continuous linear
map

C := γ+∂XK :AI(∂X,E)→AÎ(∂X,E) with ranC ⊆HÎ(D).

Having defined the Cauchy integral and Calderón–Cauchy projector, we now investigate their
main properties.
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7.2. Properties of the Cauchy integral (Poisson operator)

The first formula in the following theorem is the so-called the Borel–Pompeiu theorem; see
[85] for a historical review. In the following theorem the function χ on Mtb is defined by

χ :=
{

1 on Xtb,
0 on Mtb \Xtb.

The following theorem, in particular, proves Theorem 2.4.

Theorem 7.2 (Borel–Pompeiu’s formula). For any index family I > −1 associated to M2(X),
if φ ∈AI(Xtb,E) and ϕ := φ|∂X ∈AI(∂X,E), then

(Kϕ)(x)+ (
D−1χDφ

)
(x)=

{
φ(x), x ∈Xtb,

0, x ∈Mtb \Xtb.

In particular, if Dφ = 0, then “Cauchy’s formula” holds:

(Kϕ)(x)=
{

φ(x), x ∈Xtb,

0, x ∈Mtb \Xtb.

Proof. Extend φ to Mtb via φ̃ := χφ. In order to apply D to φ̃, we work locally (at least for the
moment) so consider near a corner Y as shown in Fig. 13, and by choosing a partition of unity
of Xtb if necessary and by reflecting if necessary we assume that φ is supported near Y and near
θ = 0 in Fig. 13.

Specify the coordinates (u, v, y) near Y in M with H = {u � 0, v = 0} such that the metric
takes the form

g = dv2 + h(v),

where h(v) is a metric in the u,y coordinates and in these coordinates write

D =G1∂u +G2∂v +B.

Introducing polar coordinates (r, θ), this becomes

D = (G1 cos θ +G2 sin θ)∂r + 1

r
(G2 cos θ −G1 sin θ)∂θ +B,

Fig. 13. The manifolds Xtb and Mtb near the blow-ups.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

P. Loya / J. Differential Equations 239 (2007) 132–195 187

and

φ̃ = κ(θ)φ(r, θ),

where κ is the Heaviside function on R. Applying D to φ̃ and using that the derivative of the
Heaviside function is the delta distribution, it follows that

Dφ̃ = 1

r
G2δ(θ)φ(r,0)+ κ(θ)Dφ(r, θ).

Since Clifford multiplication by the inward pointing normal on H is exactly G2 and since
φ(r,0)= ϕ(r), as a distribution acting on C∞c (M,F ) we have(

1

r
G2δ(θ)φ(r,0)

)
(ψ)=

∫
M

1

r

〈
ψ(r, θ),GH δ(θ)ϕ(r)

〉
r dr dθ dy

=
∫
M

〈
ψ(r,0),GH ϕ(r)

〉
dr dy = (GH δH ϕ)(ψ).

Hence,

Dφ̃ = δH ⊗GH ϕ + χDφ.

In conclusion, summing up our local results, we have

Dφ̃ =
∑

H∈M1(X)

δH GH ϕ + χDφ.

Applying D−1 to both sides we get

φ̃ =
∑

H∈M1(X)

D−1δH GH ϕ +D−1χDφ =:Kϕ +D−1χDφ.

This proves our result. �
7.3. Proof of Theorem 2.1 on the Poisson operator

Recall from (5.9) that for any index set I associated to M2(X), we have

φ ∈AI(Xtb,E) ⇐⇒ φ ∈AF (Xtb,E),

where F ∈ I means that F is an index family associated to M2(X) and for each Y ∈M2(X),
FY ⊆ IY ∪ (N0 ×N0). As already mentioned, an element of AF (Xtb,E) basically has the same
expansions as an element of AI(Xtb,E) except one can add smooth expansions multiplied by
logarithms. One of the key properties of I is that if F ∈ I , then F̂ ∈ I .

To prove Theorem 2.1, we shall prove that for any index family I >−1 associated to M2(X),

γXtbK :AI(∂X,E)→AI(Xtb,E), (7.1)
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where γXtb denotes restriction from Mtb to Xtb and

ran(γXtbK)= ker
(
D :AI(Xtb,E)→AI−1(Xtb,F )

)
. (7.2)

In fact, by Lemma 7.1 we know that

γXtbK :AF (∂X,E)→AF̂ (Xtb,E)

with

ran
(
γXtbK on AF (∂X,E)

)⊆ ker
(
D on AF̂ (Xtb,E)

)
.

Since F ∈ I⇒ F̂ ∈ I , (7.1) follows and (7.2) will follow if we can show the inclusion

ker
(
D :AI(Xtb,E)→AI−1(Xtb,F )

)⊆ ran
(
γXtbK on AI(∂X,E)

)
.

However, this inclusion follows immediately from Cauchy’s formula in Theorem 7.2.

7.4. Proof of Theorem 2.2 on the Calderón projector

We need to prove that for any index family I >−1 associated to M2(X), the Cauchy trans-
form C defines a continuous linear map

C :AI(∂X,E)→AI(∂X,E)

such that

(i) C = Id on HI(D) := {φ|∂X | φ ∈AI(Xtb,E), Dφ = 0};
(ii) C2 = C on AI(∂X,E); that is, C is a projection;

(iii) ranC =HI(D).

Step I. We first show that C = Id on HI(D). Let ϕ = φ|∂X where φ ∈AI(Xtb,E) and Dφ = 0;
we need to show that Cϕ = ϕ. But, by Borel–Pompeiu’s formula, we have

(Kϕ)(x)=
{

φ(x), x ∈Xtb,

0, x ∈Mtb \Xtb.

Hence,

Cϕ := γ+∂X(Kϕ)= γ+∂X(φ)= ϕ.

Hence, C = Id on HI(D).

Step II. From Lemma 7.1 we know that ranC ⊆HI(D). Therefore, since C = Id on HI(D) by
Step I, we have

HI(D)= Id
(
HI(D)

)= C(HI(D)
)⊆ ranC.

Therefore ranC =HI(D).
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Step III. Finally, we show that C2 = C. Let ϕ ∈AI(∂X,E). Then by Lemma 7.1, we know that
Cϕ ∈HI(D). Hence, as C = Id on HI(D) by Step I, we see that

C2ϕ = C(Cϕ)= Id(Cϕ)= Cϕ.

Therefore C2 = C and our proof is complete.

8. Fredholm properties on polyhomogeneous spaces

In this section we prove Theorem 2.5 characterizing Fredholm boundary value problems for
Dirac operators on manifolds with corners of codimension two.

8.1. BVPs for linear maps between vector spaces

The proof of Theorem 2.5 is based on Theorem 8.1 below concerning “abstract” BVPs. This
theorem was proved with J. Park in [68], but in order to keep this article self-contained, we give
an abbreviated proof of the theorem whose details can be filled in or looked up in [68]. Let
V0,V1,V2 be vector spaces (finite- or infinite-dimensional) and let

A :V1 → V2, γ :V1 → V0

be linear surjective maps. Suppose that there is a projection C :V0 → V0 whose image is the
“Hardy space” of A

H(A) := γ kerA= {γφ | φ ∈ V1, Aφ = 0} ⊆ V0.

Also suppose that the “unique continuation property” holds:

ψ ∈ ranC ⇐⇒ ∃!φ ∈ V1, Aφ = 0 and γφ =ψ.

The novelty of the following “abstract” boundary value problem for linear maps is that it makes
no mention of topology (Hilbert space, Fréchet space, etc.) so it can be applied to a wide range
of situations. (In [68] the following result was stated for topological vector spaces but the proof
is purely linear algebraic and makes no mention of topology.)

Theorem 8.1. (See [68].) For an arbitrary projection P :V0 → V0, the operator

AP : dom(AP )→ V2,

where

dom(AP ) := {
φ ∈ V1

∣∣ P(γ φ)= 0
}⊆ V1,

and the operator

PC : ranC→ ranP
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have isomorphic kernels and cokernels

kerAP ∼= ker(PC : ranC→ ranP),
V2

ranAP
∼= ranP

ran(PC : ranC→ ranP)
.

In particular, AP is Fredholm; that is, it has a finite-dimensional kernel and cokernel, if and only
if PC : ranC→ ranP is Fredholm, in which case

indAP = ind(PC : ranC→ ranP).

Proof. We need to prove that kerAP ∼= kerPC and cokerAP ∼= cokerPC. That kerAP ∼=
kerPC is easy: By “unique continuation,” it follows that

ψ ∈ ranC, Pψ = 0 ⇐⇒ ∃!φ, Aφ = 0 and γφ =ψ and Pψ = 0

⇐⇒ ∃!φ, Aφ = 0 and Pγφ = 0 and γφ =ψ

⇐⇒ ∃!φ ∈ kerAP with γφ =ψ.

Therefore the map

kerAP � φ �→ γφ ∈ kerPC

is an isomorphism.
To prove that cokerAP ∼= cokerPC, we define a map

f :V0 → V2/ ranAP =: cokerAP

as follows. Let ψ ∈ V0. Then there is a φ ∈ V1 such that γφ =ψ . We define

f (ψ) := [Aφ] ∈ V2/ ranAP ,

where [ ] denotes equivalence class. It is easy to check that f is well defined independent of the
choice of φ ∈ V1 with γφ = ψ , and, since A :V1 → V2 is surjective, f is also surjective. It is
also easy to check that f : kerP→ ranAP , therefore f descends to a (still surjective) map on
the quotient:

f̃ :V0/kerP→ V2/ ranAP .

Since P is a projection, we have a canonical isomorphism ranP ∼= V0/kerP , therefore we obtain
a surjective map f̃ : ranP→ V2/ ranAP . Finally, one can show that ker f̃ = ran(PC : ranC→
ranP). It follows that f̃ descends to an isomorphism of vector spaces

cokerPC := ranP/ ranPC
∼=→ V2/ ranAP =: cokerAP ,

which completes our proof. �
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8.2. The Fredholm theorem

To prove Theorem 2.5, let I >−1 be any index family associated to M2(X) and consider

D :AI(Xtb,E)→AI−1(Xtb,F ), γ+∂X :AI(Xtb,E)→AI(∂X,E),

where γ+∂X := |∂X means restriction to (the hypersurface components of) ∂X, which is obviously
surjective. Also, D is surjective by Theorem 5.4 and by Theorem 2.2 we know that

C :AI(∂X,E)→AI(∂X,E)

has image equal to the Cauchy data space of D:

HI(D) := γ+∂X kerI D =
{
γ+∂Xφ

∣∣ φ ∈AI(Xtb,E), Dφ = 0
}⊆AI(∂X,E)

and

ψ ∈ ranC ⇐⇒ ∃!φ ∈AI(Xtb,E), Dφ = 0 and γ+∂Xφ =ψ.

Note that the uniqueness statement is just the celebrated unique continuation principle for Dirac
operators; see for example [7,11,28]. Therefore, with

A=D, V1 =AI(Xtb,E), V2 =AI(Xtb,F ), γ = γ+∂X, V0 =AI(∂X,E)

we have satisfied all the conditions of Theorem 8.1. Applying Theorem 8.1 to this situation gives
Theorem 2.5.
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