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Abstract. Given a cone pseudodifferential operatorP we give a full asymptotic expansion
as t → 0+ of the trace Tr Pe−tA, whereA is an elliptic cone differential operator for which
the resolvent exists on a suitable region of the complex plane. Our expansion contains log t
and new (log t)2 terms whose coefficients are given explicitly by means of residue traces.
Cone operators are contained in some natural algebras of pseudodifferential operators on
which unique trace functionals can be defined. As a consequence of our explicit heat trace
expansion, we recover all these trace functionals.

1. Introduction

On a smooth compact manifold M without boundary we may consider the quo-
tient algebra A = �Z

c
(M)/�−∞(M), where �Z

c
(M) is the algebra of classical
pseudodifferential operators of integral order and �−∞(M) is its ideal of smooth-
ing elements. Operators of order less than − dim M are of trace class, but the
L2-trace cannot be extended to the whole algebra A. However, M. Wodzicki [21]
and V. Guillemin [8] independently introduced a new functional Res : A → C

which vanishes on commutators, so defines a trace on A. This trace functional is
called the noncommutative residue or Wodzicki residue, and is unique in the sense
that any other trace on A is a constant multiple of Res. A detailed survey about this
trace can be found for instance in [9].

The noncommutative residue is closely related to the zeta function of opera-
tors and to the generalized heat trace asymptotics. In fact, Res(P ) can be defined
(up to a constant) as the residue at z = 0 of Tr PA−z, for some fixed invertible
pseudodifferential operator A; the complex power being defined as by Seeley [20].
Alternatively, Res(P ) can be defined as the coefficient of log t in the asymptotic
expansion as t → 0+ of Tr Pe−tA. Using these different but equivalent definitions,
the noncommutative residue has been extended to various algebras of pseudodif-
ferential operators on manifolds with and without boundaries (cf. [3], [6], [11])
including manifolds with singularities, cf. [17], [18]. The purpose of this paper is
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to obtain a generalized heat trace expansion for cone operators, and use it to recover
the corresponding noncommutative residue(s) that can be associated to them.

Let M be a compact manifold with boundary and let x denote a fixed bound-
ary defining function. Let �m

b (M) be the space of b-pseudodifferential operators
over M , cf. Section 2. On manifolds with conic singularities, spaces of the form
x−p�m

b (M), p ∈ R, arise as natural spaces of pseudodifferential operators con-
taining the cone differential operators.

As originally done by R. Melrose and V. Nistor in [17] for cusp operators, it is
helpful to consider the following algebra

x−Z�Z

b (M) =
⋃
p∈Z

⋃
m∈Z

x−p�m
b (M).

In this algebra there is an ideal of smoothing operators

I := x∞�−∞
b (M) =

⋂
p∈Z

x−p�−∞
b (M),

and we can consider the following quotient algebras:

Iσ := x∞�Z

b (M)/I, I∂ := x−Z�−∞
b (M)/I,

Aσ := x−Z�Z

b (M)/x−Z�−∞
b (M),

A∂ := x−Z�Z

b (M)/x∞�Z

b (M),

A∂,σ := x−Z�Z

b (M)/{x−Z�−∞
b (M) + x∞�Z

b (M)}.

These quotients ‘separate’ the filtration given by the order of the operators from the
filtration given by the power of x. It turns out that on these algebras there are three
‘unique’ trace functionals Tr∂,σ on Aσ , A∂ and A∂,σ , Tr∂ on I∂ , and Trσ on Iσ .
They are conic versions of the functionals studied in [17]. Tr∂,σ and Trσ were also
considered in [18]. Their definitions and basic properties are given in Section 2.

In [5, 4], the first author defines natural conditions (called parameter-ellipticity)
on a cone differential operator A ∈ x−mDiffmb (M) which ensure that the heat op-
erator e−tA exists. Moreover, a full asymptotic expansion of Tr e−tA was obtained.
Later in [12], this expansion was generalized to Tr Pe−tA where P is a cone differ-
ential operator. In the present work, the techniques of [12] are expanded to analyze
the generalized heat trace expansion when P is pseudodifferential.

Let P ∈ x−p�m′
b (M), p,m′ ∈ R, be a pseudodifferential cone operator. As-

sume that p < m so that Pe−tA is of trace class (on appropriate weighted Sobolev
spaces) for all t > 0. In Section 5, we obtain an asymptotic expansion of the form

Tr Pe−tA ∼t→0+
∞∑
k=0

ck t
ξk +

∞∑
k=0

c′
k(log t) tηk +

∞∑
k=0

c′′
k (log t)2 tωk
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and give explicit formulas for all the log t coefficients c′
k and c′′

k in terms of the
trace functionals mentioned above, see Theorems 5.1, 5.2 and their corollaries. In
particular, the coefficient of log t is

− 1

m
Trσ (P ) − 1

m
Tr∂ (P ) − 1

m2 Tr∂,σ (P ),

and Tr∂,σ (P ) = −m2 × the coefficient of (log t)2.
Our results rely on the parametrix construction within a parameter-dependent

calculus which is presented in Section 3, and on basic properties of the Laplace
and Mellin transforms discussed in Section 4. Let us finally mention that the study
of heat trace asymptotics on manifolds with conic singularities was initiated by
J. Cheeger [1, 2] and further developed by many other authors, a list of references
can be found in [4], [12].

2. Operator algebras and trace functionals

Recall that an n-dimensional manifold with corners M is a manifold with atlas
given by local models of the form [0,∞)k × R

n−k , where k can run anywhere
between 0 and n. (This definition is suitable for our purposes, but is a bit more
general than the standard definition, cf. [15].) For any α ∈ R, the b-alpha density
bundle �α

b is the line bundle on M with local basis of the form |(dx/x)dy|α on a
patch [0,∞)kx × R

n−k
y . We either use α = 1/2 or α = 1; in the latter case, we will

write �b for �1
b.

We now review the definition of b-pseudodifferential operators. The standard
reference is Melrose’s book [15]. Let M be an n-dimensional compact manifold
with connected boundary Y = ∂M . Recall that M2

b is the manifold with corners
that has an atlas consisting of the usual coordinate patches on M2 \ Y 2 together
with polar coordinate patches over Y 2 in M2. The typical picture of M2

b is shown
in Figure 2.1. The boundary hypersurfaces lb, rb, and ff stand for “left boundary”,
“right boundary”, and “front face”.

For symmetry reasons, it is common practice to have b-pseudodifferential op-
erators act on b-half densities rather than on functions. Given m ∈ R, the space

�m
b (M,�

1
2
b ) consists of operators A on C∞(M,�

1
2
b ) that have a Schwartz kernel

KA satisfying the following two conditions:

rb

ff

lb

�
�

�
�

��$bM2
b

Fig. 2.1. The manifold M2
b is M2 “blown-up” at the corner Y 2. The submanifold $b is the

the diagonal in M2 lifted to M2
b ; that is, written in the polar coordinates of M2

b .
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1. given ϕ ∈ C∞
c (M2

b \ $b), we can write ϕKA in the form k · ν, where k is
a smooth function on M2

b vanishing to infinite order at lb and rb, and where

ν ∈ C∞(M2
b ,�

1
2
b ),

2. given a coordinate patch of M2
b overlapping $b of the form Uy × R

n
η such that

$b
∼= U × {0}, and given ϕ ∈ C∞

c (U × R
n), we have

ϕKA =
∫

eiξ ·ηa(y, ξ)d̄ξ · ν, (2.1)

where ν ∈ C∞(M2
b ,�

1
2
b ), and where a(y, ξ) is a classical pseudodifferential

symbol of order m.

Henceforth, we fix a boundary defining function x for Y . Let p, m ∈ R. Given

A ∈ x−p�m
b (M,�

1
2
b ), we define its (Wodzicki) residue density ω(A) as follows,

cf. [22]. Write the kernel ofA locally as in (2.1) above. Observe that since$b
∼= M ,

the coordinate patch U can be considered a coordinate patch onM . We define ω(A)

locally on the patch U by

ωy(A) :=
∫

|ξ |=1
a−n(y, ξ)d̄ξ · ν|$b

, (2.2)

where a−n(y, ξ) is the homogeneous term of degree −n in the symbol expansion
of a(y, ξ). Note that if m �∈ Z, then ω(A) = 0 since a(y, ξ) has no homogeneous
component of degree −n. Also note that ν|$b

∈ C∞(M,�b) as one can check
using local coordinates. The local expression (2.2) turns out to be independent of
coordinates; a nice proof of this fact can be found in [3]. Thus, the local expressions
(2.2) actually define a global density ω(A) ∈ x−pC∞(M,�b).

We now review various trace functional introduced by Melrose and Nistor [17,
Sec. 5], and in a slightly different setting by Schrohe [18]. We remark that Melrose
and Nistor studied cusp operators, although by continuity many of their results ap-
ply to b-operators. In what follows, we will freely use their results presented from
the perspective we need them.

The functional Tr∂,σ . Given P ∈ x−p�m
b (M,�

1
2
b ), m ∈ R and p ∈ N0, we

define

Tr∂,σ (P ) := 1

p!

∫
Y

∂
p
x {xp ω(P )}|x=0. (2.3)

The expression ∂
p
x {xp ω(P )}|x=0 is defined as follows. Since ω(P ) belongs to

x−pC∞(M,�b), in a collar M ∼= [0, 1)x × Y near Y , we can write xp ω(P ) =
f (x)dx

x
, where f (x) is a smooth family of densities on Y . We then define

∂
p
x {xp ω(P )}|x=0 := ∂

p
x f (0). It is not obvious that Tr∂,σ (P ) is defined inde-

pendent of the boundary defining function x. We will prove that it is independently
defined following Lemma 2.1 below.
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A more transparent way to view Tr∂,σ (P ) is as follows. Expand ω(P ) near the
boundary Y in a Taylor series:

ω(P ) ∼
∞∑

j=−p

xj ω(Pj )
dx

x
.

Then as 1
p!∂

p
x {xp ω(P )}|x=0 = ω(P0), we have

Tr∂,σ (P ) =
∫
Y

ω(P0). (2.4)

Thus, Tr∂,σ is a natural way to restrict the Wodzicki residue trace to the boundary.
If p �∈ N0, then Tr∂,σ (P ) is defined to be zero.

Lemma 2.1. Let u ∈ x−pC∞(M,�b), p ∈ R. Then the function C � z �→ ∫
M
xzu

is well-defined for �z > p and it extends to be a meromorphic function on C with
only simple poles at z = p, p − 1, p − 2, . . . . In particular, it has a pole at z = 0
if and only if p ∈ N0 in which case, its residue is given by 1

p!

∫
Y
∂
p
x {xpu}|x=0. The

regular value of the function C � z �→ ∫
M
xzu is called the b-integral of u and is

denoted by b
∫
M
u.

Proof. In a neighborhood M ∼= [0, 1)x × Y of Y , we can write u = x−pv(x) dx
x

where v(x) is a smooth family of densities on Y . Expanding v(x) in a Taylor series
at x = 0 gives the expansion u ∼ ∑∞

j=0 x
−p+j uj

dx
x

. Then our lemma follows

since
∫ 1

0 xz−p+j dx
x

= 1
z−p+j

. In particular, if p ∈ N0, we get the expansion

u ∼ ∑∞
j=−p x

jup+j
dx
x

, where

up+j = 1

(p + j)!
∂
p+j
x v(0) = 1

(p + j)!
∂
p+j
x {xpu}|x=0

for j = −p,−p + 1, . . . ��

Lemma 2.2. The functional Tr∂,σ is defined independent of the choice of boundary
defining function x.

Proof. Suppose that x′ is another boundary defining function. Then x′ = ax where
0 < a ∈ C∞(M). Denote by Tr∂,σ,x and Tr∂,σ,x′ the functional Tr∂,σ defined using
the boundary defining functions x and x′, respectively. Then by Lemma 2.1,

Tr∂,σ,x(P ) − Tr∂,σ,x′(P ) = Res1

∫
M

xzP (z),

where Res1 denotes the residue at z = 0, and where P(z) = (1 − az) ω(P ). Since
P(0) = 0, by Lemma 2.1 it follows that

∫
M
xzP (z) is regular at z = 0. Thus,

Tr∂,σ,x(P ) = Tr∂,σ,x′(P ). ��
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We now consider in what sense the functional Tr∂,σ defines a trace. To do so,
we need to introduce some operator algebras. The main algebra is

x−Z�Z

b (M,�
1
2
b ) =

⋃
p∈Z

⋃
m∈Z

x−p�m
b (M,�

1
2
b ).

Consider now the following quotient algebras:

Aσ := x−Z�Z

b (M,�
1
2
b )/x

−Z�−∞
b (M,�

1
2
b ),

A∂ := x−Z�Z

b (M,�
1
2
b )/x

∞�Z

b (M,�
1
2
b ),

A∂,σ := x−Z�Z

b (M,�
1
2
b )/{x−Z�−∞

b (M,�
1
2
b ) + x∞�Z

b (M,�
1
2
b )}.

Melrose and Nistor [17] prove that a functional analogous to Tr∂,σ defines a unique
trace functional on quotient algebras of cusp operators. The corresponding state-
ment in the cone setting is the following.

Theorem 2.3. The functional Tr∂,σ defines a trace on the algebras Aσ , A∂ , and
A∂,σ , and is the unique such trace in the sense that any other trace on any of these
algebras is a constant multiple of Tr∂,σ .

The functional Tr∂ . Fix a holomorphic familyQ(z) ∈ xαz�
βz
b (M,�

1
2
b ), α, β ∈ R,

of operators such that Q(0) = Id. Let P ∈ x−p�m
b (M,�

1
2
b ), p,m ∈ R, and denote

by (PQ(z))|$ the restriction of the Schwartz kernel of PQ(z) to the diagonal $
in M2. Then by [17, Lem. 4], (PQ(z))|$ defines a meromorphic function on C,
taking values in xαz−pC∞(M,�b) (using that$ ∼= M), with possible simple poles
at those z ∈ C with βz = −n − m + k for k = 0, 1, . . . .
In particular,

Res0(PQ(z))|$ ∈ x−pC∞(M,�b)

is well defined, where Res0 means “the regular value at z = 0”. We define

Tr∂ (P ) := 1

p!

∫
Y

∂
p
x {xp Res0(PQ(z))|$}|x=0. (2.5)

If p �∈ N0, then Tr∂ (P ) is defined to be zero. The functional Tr∂ was first intro-
duced in [17]. The same argument found in Lemma 2.2 shows that Tr∂ is defined
independent of the boundary defining function chosen. (Unfortunately, Tr∂ does
depend on the regularizing operator Q(z); however, its dependence on Q(z) can
be explicitly determined, see [17, Lem. 11].)

For P of sufficiently large negative order, Tr∂ (P ) has a natural interpretation.
Indeed, if m < −n, then observe that (PQ(z))|$ is regular at z = 0 with value
KP |$ ∈ x−pC∞(M,�b). Assume that p ∈ N0 and expand KP |$ in Taylor series
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at x = 0: KP |$ ∼ ∑∞
j=−p x

jKP,j |$ dx
x

. Then as ∂px {xpKP |$}|x=0 = KP,0|$, we
have

Tr∂ (P ) =
∫
Y

KP,0|$.

Thus, for P of sufficiently negative order, Tr∂ (P ) is a type of L2-trace of P re-
stricted to the boundary of M .

Consider now the algebra

I∂ := x−Z�−∞
b (M,�

1
2
b )/x

∞�−∞
b (M,�

1
2
b ).

The next theorem follows from analogous results proved in [17].

Theorem 2.4. The functional Tr∂ defines a trace on I∂ , and it is unique in the sense
that any other trace on I∂ is a constant multiple of Tr∂ .

The trace functional Trσ . Given P ∈ x−p�m
b (M,�

1
2
b ), p,m ∈ R, we define

Trσ (P ) := b

∫
M

ω(P ), (2.6)

where b
∫

is the b-integral introduced in Lemma 2.1. This functional was first in-
troduced in [18] when P vanishes at the boundary (in which case, b

∫
M

ω(P ) =∫
M

ω(P ) is just the usual integral of ω(P ) over M). In the generality presented in
(2.6), Trσ was first studied in [17]. Trσ is the natural generalization of the Wodzicki
residue trace to cone operators.

To see how the functional Trσ depends on the boundary defining function x,
we first prove the following lemma.

Lemma 2.5. Let x′ = ax be another boundary defining function for Y where
0 < a ∈ C∞(M) and let u ∈ x−pC∞(M,�b), p ∈ R. Denote by b,x

∫
M
u and

b,x′∫
M
u the b-integral of u as defined by using the boundary defining function x

and x′, respectively. Then,

b,x

∫
M

u = b,x′
∫
M

u + 1

p!

∫
Y

∂
p
x {xp log a u}|x=0. (2.7)

If p �∈ N0, then the last term is understood to be equal to zero.

Proof. We can write (x′)zu − xzu = zxza(z)u, where a(z) = (az − 1)/z. As
a(0) = log a, we have

b,x′
∫
M

u − b,x

∫
M

u = Res0 z

∫
M

xza(z)u = Res1

∫
M

xz log a u,

where Res1 denotes the residue at z = 0. The identity (2.7) now follows from
Lemma 2.1. ��
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Lemma 2.6. Given another boundary defining function x′ = ax where 0 < a ∈
C∞(M), the trace functionals Trσ defined with respect to x′ and x, respectively,
are related by

Trσ,x′(P ) − Trσ,x(P ) = Tr∂,σ (log a P ).

Proof. By Lemma 2.5, we have

Trσ,x′(P ) − Trσ,x(P ) = b,x

∫
M

ω(P ) − b,x′
∫
M

ω(P )

= 1

p!

∫
Y

∂
p
x {xp ω(log a P )}|x=0

= Tr∂,σ (log a P ).

��
The final algebra we consider is

Iσ := x∞�Z

b (M,�
1
2
b )/x

∞�−∞
b (M,�

1
2
b ).

The next theorem follows from analogous results proved in [17].

Theorem 2.7. The functional Trσ defines a trace on Iσ , and it is unique in the sense
that any other trace on Iσ is a constant multiple of Trσ .

3. Parameter-dependent calculus

Let E → M be a smooth vector bundle. The space x−m Diffmb (M,E), m > 0, is
the space of differential operators that near the boundary take the form

A = x−m
∑

k+|α|≤m

akα(x, y)(xDx)
kDα

y

with coefficients smooth up to x = 0. To such an A we associate the operator

A0 = r−m
∑

k+|α|≤m

akα(0, y)(rDr)
kDα

y

by freezing the coefficients at r = 0. Recall that D = 1
i
∂ .

In order to define the Sobolev spaces on which these operators act continuous-
ly, we fix a boundary defining function x, a b-density dµ, and a smooth hermitian
metric on E → M . Then, L2

b(M,E) is the Hilbert space of sections in E that are
square integrable with respect to dµ. Recall that, on a collar neighborhood of ∂M =
{0} × Y , dµ can be written as dµ = dx

x
⊗ dy, where dy is a smooth density on Y .

For any m ∈ N, the space Hm
b (M,E) consists of those elements u ∈ L2

b(M,E)

such that Lu ∈ L2
b(M,E) for every operator L ∈ Diffmb (M,E). For an arbitrary

s ∈ R, the space Hs
b (M,E) can be defined by duality and interpolation.
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On the manifold Y∧ := R+ × Y we also consider the spaces Ks,α(Y∧, E),
s, α ∈ R, defined as follows. Let ω ∈ C∞

c (R+) with ω(r) = 1 near r = 0. Then
Ks,α(Y∧, E) consists of distributions u such that ωu ∈ rαHs

b (Y
∧, E) and such

that given any coordinate patch U on Y diffeomorphic to an open subset of S
n−1

and function ϕ ∈ C∞
c (U), we have (1 − ω)ϕ u ∈ Hs(Rn, E) where R+ × S

n−1 is
identified with R

n \ {0} via polar coordinates.

Definition 3.1. Let A ∈ x−m Diffmb (M,�
1
2
b ) and let 5 be a sector in C containing

the origin. The operator family A − λ is said to be parameter-elliptic with respect
to α ∈ R on 5 if and only if

1. σm
ψ,b(A)(ξ) − λ is invertible for all ξ �= 0 and λ ∈ 5,

2. specb(A) ∩ {z ∈ C | �z = −α} = ∅,

3. A0 − λ : Ks,α(Y∧, �
1
2
b ) → Ks−m,α−m(Y∧, �

1
2
b ) is invertible for every λ ∈ 5

sufficiently large, and for some s ∈ R.

Here σm
ψ,b(A)(ξ) is the principal b-symbol of xmA and specb(A) denotes its bound-

ary spectrum, cf. [4, Sec. 3].

This concept of ellipticity is similar to the one introduced by Schulze [19]
for the analysis on manifolds with edges. The following proposition is proved in
[4, Th. 3.2].

Proposition 3.2. If A − λ is parameter-elliptic with respect to α on 5, then

A − λ : xαHs
b (M,�

1
2
b ) → xα−mHs−m

b (M,�
1
2
b )

is invertible for every λ ∈ 5 sufficiently large, and all s ∈ R.

The parameter-dependent ellipticity of A − λ turns out to be a necessary con-
dition for the previous proposition to hold with a uniformly bounded inverse.

Thus any positive selfadjoint cone operator on xα−mHs−m
b (M,�

1
2
b ) with domain

xαHs
b (M,�

1
2
b ) is indeed parameter-elliptic with respect to α.

Example 3.3. Let x be a fixed boundary defining function, and let g be a Riemannian
metric on M which, near the boundary, coincides with the cone metric dx2 +x2gY ,
where gY is a metric on Y . The corresponding measure is of the form xndµ for a
b-measure dµ. Let $g be the Laplace-Beltrami operator associated to the metric g.
This operator is by definition symmetric on L2(M, xndµ) = x−n/2L2

b(M). There-
fore, the operator −xn/2−1$g x

−n/2+1 is symmetric on x−1L2
b(M) which implies

the symmetry of

A = −xn/2−1$g x
−n/2+1 + x−2a2

for every real number a. Now, for a function u ∈ C∞
c (M) supported near the

boundary, we have

$gu = −x−2
(
(xDx)

2u − i(n − 2)(xDx)u − $Yu
)
,
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where $Y is the Laplacian associated to gY on Y . Then,

−xn/2−1$g x
−n/2+1u = x−2

(
(xDx)

2u − $Yu + (n−2)2

4 u
)

and so Au = x−2
(
(xDx)

2u + LY,au
)
, where LY,a = −$Y + (n−2)2

4 + a2. For
a > 1 the boundary spectrum of x2A does not intersect the critical strip {σ ∈
C | |�σ | < 1} so that A with domain xH 2

b (M) is selfadjoint on x−1L2
b(M). In

particular, A − λ is parameter-elliptic with respect to α = 1 on any sector 5 ⊂ C

contained in the resolvent set of A.

We next analyze the resolvent (A−λ)−1 within a suitable parameter-dependent
pseudodifferential calculus. We begin by describing the corresponding parameter-
dependent symbols as defined in [14]. Related symbol classes can be found in
[7].

For m, p ∈ R and d > 0 we define Sm,p,d(Rn;5) as the space of functions
a ∈ C∞(Rn × 5) such that

|∂αξ ∂βλ a(ξ, λ)| ≤ Cαβ(1 + |ξ |)m−p−|α|(1 + |ξ | + |λ|1/d)p−d|β|.

The space Sm,p,d
r (Rn;5), p/d ∈ Z, consists of elements a ∈ Sm,p,d(Rn;5) such

that if we set

ã(ξ, z) := zp/da(ξ, 1/z),

then ã(ξ, z) is smooth at z = 0, and

|∂αξ ∂βz ã(ξ, z)| ≤ Cαβ(1 + |ξ |)m−p−|α|+d|β|(1 + |z||ξ |d)p/d−|β|

uniformly for |z| ≤ 1. Further let Sm,p,d
r,c
 (Rn;5) be the space of elements a ∈

S
m,p,d
r (Rn;5) that, for every N ∈ N, admit a decomposition

a(ξ, λ) =
N−1∑
j=0

χ(ξ)am−j (ξ, λ) + rN(ξ, λ), (3.1)

where rN ∈ S
m−N,p,d
r (Rn;5), χ ∈ C∞(Rn) with χ(ξ) = 0 for |ξ | ≤ 1

2 and
χ(ξ) = 1 for |ξ | ≥ 1, and where each am−j (ξ, λ) is anisotropic homogeneous of
degree m − j , i.e.,

am−j (δξ, δ
dλ) = δm−j am−j (ξ, λ) for δ > 0,

and zp/dam−j (ξ, 1/z) is smooth at z = 0. Finally, a ∈ S
m,p,d
r,c
 (Rn;5) is said to be

holomorphically tempered if it is holomorphic in a neighborhood of 5, and there
exists an ε > 0 such that each am−j (ξ, λ) is holomorphic in the region

{
(ξ, λ) ∈ (Rn \ {0}) × C | λ ∈ 5 or |λ| ≤ ε|ξ |d or 1

ε
|ξ |d ≤ |λ|}.

We now define our corresponding spaces of parameter-dependent cone opera-
tors, cf. [12, 13]. Let ρ denote a boundary defining function for the front face ff
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of M2
b . Our first space �

m,p,d
c,5 (M,�

1
2
b ) is defined as the space of those operator

families A(λ) ∈ C∞(5,�m
b (M,�

1
2
b )) whose Schwartz kernels KA(λ) satisfy the

following two conditions:

1. given ϕ ∈ C∞
c (M2

b \ $b), then ϕKA(λ) = R(ρdλ), where R(λ) is smooth in λ

taking values in �−∞
b (M,�

1
2
b ) and satisfies the estimates

|∂αλ R(λ)| ≤ Cα(1 + |λ|)p/d−|α|, for all α ∈ N0, λ ∈ 5,

2. given a coordinate patch on M2
b overlapping $b of the form Uy × R

n
η such that

$b
∼= U × {0}, and given ϕ ∈ C∞

c (U × R
n), then

ϕKA(λ) =
∫

eiξ ·ηa(y, ξ, ρdλ)d̄ξ · ν,

where ν ∈ C∞(M2
b ,�

1
2
b ), and where

y �→ a(y, ξ, λ) ∈ C∞(U, S
m,p,d
r,c
 (Rn;5)).

Furthermore, A(λ) is holomorphically tempered if it is holomorphic in a neighbor-
hood of 5 and its corresponding local symbols are holomorphically tempered.

We sketch the definition of our next parameter-dependent space; see [12] for
the precise definition. Assume that a branch of log is defined and fixed on 5, and
let

51/d := {λ1/d | λ ∈ 5 \ 0} ∪ {0}.
Let T denote the manifold M2

b × 51/d blown-up at the submanifold ff × {λ1/d =
∞}. The boundary hypersurface of T originating from M2

b ×{λ1/d = ∞} is called

the “boundary at ∞”. We define �−∞,d,E
c,5 (M,�

1
2
b ) as the class of operators whose

Schwartz kernels can be written in the form k · ν, where ν ∈ C∞(M2
b ,�

1
2
b ), and

where k is a function on T which vanishes to infinite order at the boundary at ∞,
and is of asymptotic type E at the rest of the faces of T . Here, k is of asymptotic
type E means, roughly speaking, that if H is a boundary hypersurface of T (except
the boundary at ∞), then E associates to H a set of numbers EH such that k can
be expanded at H in powers and powers of the logarithm of the corresponding
boundary defining function; the powers that may occur in the expansion are given
exactly by the set EH .

Our final space of operators is�−∞,F
5 (M,�

1
2
b ), where F = (F1, F2) is an index

family for M2. An element S(λ) ∈ �
−∞,F
5 (M,�

1
2
b ) is a family of operators whose

Schwartz kernels KS(λ) can be written in the form k · ν, where ν ∈ C∞(M2, �
1
2
b ),

and where k is a function on M2 ×5 that vanishes to infinite order at λ = ∞, and
is of asymptotic type F on M2.

The next theorem follows from corresponding results in [13] and [14] .
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Theorem 3.4. LetA ∈ x−m Diffmb (M,�
1
2
b ) be such thatA−λ is parameter-elliptic

with respect to α ∈ R on a sector 5 ⊂ C. Let P ∈ x−p�m′
b (M,�

1
2
b ), p,m

′ ∈ R.
Then we get a decomposition

P(A − λ)−1 = Q(λ) + R(λ) + S(λ),

whereQ(λ) ∈ xm−p�
m′−m,−m,m
c,5 (M,�

1
2
b ),R(λ) ∈ x−p�

−∞,m,G(α)
c,5 (M,�

1
2
b ), and

S(λ) ∈ x−p�
−∞,F(α)
5 (M,�

1
2
b ) for some index families G(α) and F(α). Q(λ) be-

ing holomorphically tempered.

Remark 3.5. The index families G(α) and F(α) are given explicitly in terms
of the boundary spectrum specb(A). For their precise definition we refer to [12,
Section 3.2]. They will play no role in the trace expansions that we are looking at,
so we do not need their explicit descriptions here.

4. Analysis of the Laplace and Mellin transforms

In order to give a precise representation of the coefficients in the asymptotic ex-
pansion of Tr Pe−tA we first want to analyze the Laplace transform of a holo-

morphically tempered family Q(λ) ∈ xm−p�
m′−m,−m,m
c,5 (M;�

1
2
b ), m

′, p ∈ R,
m > max(0, p). Here, we assume that 5 is a sector of the form

{λ ∈ C | ε ≤ arg λ ≤ 2π − ε} for some 0 < ε < π/2. (4.1)

Since Q(λ) is holomorphically tempered, there exists δ > 0 such that Q(λ) is
holomorphic on and to the left of the contour

ϒ := {λ ∈ C | λ ∈ ∂5 for |λ| ≥ δ, or |λ| = δ for 2π − ε ≤ arg λ ≤ ε}.
For t > 0 define

Q(t) = i

2π

∫
ϒ

e−tλQ(λ)dλ. (4.2)

Then Q(t) is an operator of trace class on xα−mHs
b (M,�

1
2
b ) for every s ∈ R. This

relies on the fact that for each t > 0, the kernel of Q(t) is a smooth function on
M2 vanishing to infinite order at ∂M2, cf. [14].

Let M2
b

∼= [0, 1)x × Y × R
n
η near the face ff with $b

∼= [0, 1)x × Y × {0}, see
Figure 2.1. For simplicity, in the analysis that follows we assume that the kernel of
Q(λ) is supported on this coordinate patch. Furthermore, since the variables on Y

enter in the analysis more or less as parameters (cf. [14]), we also omit the variables
on Y . Thus, we can write

KQ(λ) =
∫

eiξ ·ηq(x, ξ, xmλ)d̄ξ
∣∣ dx
x
dη

∣∣1/2
, (4.3)
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where q(x, ξ, λ) ∈ S
m′−m,−m,m
r,c
 (Rn;5) and q(x, ξ, λ) = O(xm−p). Thus,

KQ(t) =
∫

eiξ ·ηLc(q)(t, x, ξ)d̄ξ
∣∣ dx
x
dη

∣∣1/2
,

where

Lc(q)(t, x, ξ) = i

2π

∫
ϒ

e−tλq(x, ξ, xmλ)dλ.

Finally,

Tr Q(t) =
∫∫

Lc(q)(t, x, ξ)d̄ξ
dx
x
. (4.4)

Motivated by the relation between the heat trace and the zeta function via the Mellin
transform, we define

B(z) := 1

F(z)

∫ ∞

0
tz−1 Tr Q(t)dt. (4.5)

Thus, by means of the inverse Mellin transform we get

Tr Q(t) = 1

2πi

∫
�z=δ

t−zB(z)F(z)dz (4.6)

for any sufficiently large δ ∈ R. The following proposition (which is just an appli-
cation of Cauchy’s theorem) suggests that the asymptotic expansion of Tr Q(t) as
t → 0+ is determined by the poles of B(z)F(z).

Proposition 4.1. Suppose that ψ(z) is meromorphic with a single pole of order

 + 1 at z = w. Let

u(t) = 1

2πi

∫
γ

t−zψ(z)dz,

where γ is a simple closed curve around w. Then, we can write

u(t) =

∑

k=0

(−1)k

k!
t−w(log t)krk+1,

where r1, r2, . . . are the coefficients of the Laurent expansion of ψ .

Now, our goal is to determine all the poles of B(z)F(z), then push the contour
�z = δ in (4.6) down to �z = −∞. Every time we pass a pole of B(z)F(z) we
pick up a contour integral of B(z)F(z) around that pole, which by Proposition 4.1,
contributes powers and powers of the logarithm of t to the expansion of Tr Q(t).

We first determine the poles of B(z). To do so, we want to write it in terms of
q(x, ξ, λ). By (4.4) and (4.5), and the fact that

λ−z = 1

F(z)

∫ ∞

0
tz−1e−tλdt,
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we have

B(z) = 1

F(z)

∫ ∞

0
tz−1 Tr Q(t)dt

= 1

F(z)

∫ ∞

0
tz−1

∫∫
Lc(q)(t, x, ξ)d̄ξ

dx
x
dt

=
∫∫ (

1

F(z)

∫ ∞

0
tz−1Lc(q)(t, x, ξ)dt

)
d̄ξ dx

x

=
∫∫ (

i

2π

∫
ϒ

λ−zq(x, ξ, xmλ)dλ

)
d̄ξ dx

x

=
∫∫

q̂(x, ξ, z)d̄ξ dx
x
,

where

q̂(x, ξ, z) := i

2π

∫
ϒ

λ−zq(x, ξ, xmλ)dλ

= xmz−m i

2π

∫
ϒ

λ−zq(x, ξ, λ)dλ (λ → x−mλ).

According to (4.3), q̂(x, ξ, z) is a local symbol of the operator

M(Q)(z) := i

2π

∫
ϒ

λ−zQ(λ)dλ.

By the definition of the space S
m′−m,−m,m
r,c
 (Rn;5), cf. (3.1), a straight forward

computation shows that q̂(x, ξ, z) is a classical symbol of order −mz + m′. Now
let us write

B(z) =
∫
M

M(Q)(z)|$ with M(Q)(z)|$ =
∫

Rn

q̂(x, ξ, z)d̄ξ dx
x
. (4.7)

As in [14], M(Q)(z)|$ extends to be a meromorphic function on C having
simple poles at z = −zk , zk = k−m′−n

m
, k ∈ N0, with residues

Res1 M(Q)(−zk)|$ = 1

m
ω(M(Q)(−zk)),

where ω(M(Q)(−zk)) is the corresponding Wodzicki residue density, i.e.,

ω(M(Q)(−zk)) =
∫

|ξ |=1
q̂−n(x, ξ,−zk)d̄ξ

dx
x
,

where q̂−n(x, ξ,−zk) denotes the homogeneous component of order −n in the
expansion of q̂(x, ξ,−zk). Note that q̂(x, ξ,−zk) is a classical symbol of order
k − n ∈ Z since q̂(x, ξ, z) is classical of order −mz + m′.

Now Lemma 2.1 implies that if u ∈ x−pC∞
c (R+), then

∫ ∞
0 xmzu(x)dx

x
has

poles at z= − j−p
m

, j ∈ N0, with corresponding residues 1
m

1
j !∂

j
x (x

pu)|x=0. Thus, as

M(Q)(z)|$ ∈ xmz−pC∞
c (R+, �b), the family B(z) has the poles of M(Q)(z)|$
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and additional poles at z = − j−p
m

. On the other hand, F(z) has simple poles at

z = −
, 
 ∈ N0, with residues given by (−1)



! . Altogether we get that B(z)F(z)
may have poles at

z = −
 for 
 = 0, 1, 2, . . .

z = −j − p

m
for j = 0, 1, 2, . . . (4.8)

z = −k − m′ − n

m
for k = 0, 1, 2, . . .

These are simple, double or triple order poles depending on j , k and 
. In any
case, only double and triple order poles may produce log terms in the asymptotic
expansion of Tr Q(t), cf. Proposition 4.1. In summary, the poles of B(z)F(z) arise
because of the poles of F(z), integrating M(Q)(z)|$ in x, and from the poles
of M(Q)(z)|$ itself. Using this information, we now write down all the possible
combinations for the higher order poles of B(z)F(z).

Second order poles of B(z)�(z). Suppose that this function has a pole at z = ζ .
According to (4.8) there are three cases where ζ may be a double pole.

Case 1: ζ = − j−p
m

= − k−m′−n
m

�∈ −N0. Then j = p − ζm, and the second
order residue at ζ = −zk is

r2 = F(ζ )
1

mj !
∂
j
x

{
xp−ζm 1

m
ω(M(Q)(ζ ))

}∣∣∣
x=0

= F(−zk)

m2(p + zkm)!
∂
p+zkm
x

{
xp+zkm ω(M(Q)(−zk))

}∣∣∣
x=0

.

Case 2: ζ = −
 = − k−m′−n
m

∈ −N0 and ζ �= − j−p
m

for any j . Then

r2 = (−1)


m
!
b

∫
ω(M(Q)(−
)).

Case 3: ζ = −
 = − j−p
m

and ζ �= − k−m′−n
m

for any k. In this case,

r2 = (−1)



!

1

mj !
∂
j
x

{
xj Res0 M(Q)(−
)|$

}∣∣∣
x=0

= (−1)


m
!(p + 
m)!
∂
p+
m
x

{
xp+
m Res0 M(Q)(−
)|$

}∣∣∣
x=0

,

where Res0 M(Q)(−
)|$ means the regular value of the kernel of M(Q)(z) re-
stricted to the diagonal $ in M2, evaluated at z = −
.

Third order poles of B(z)�(z). They may only occur when in (4.8)


 = j − p

m
= k − m′ − n

m
for some j, k, 
 ∈ N0.
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In this case, the third order residue is given by

r3 = (−1)



!

1

mj !
∂
j
x

{
xj

1

m
ω(M(Q)(−
))

}∣∣∣
x=0

= (−1)


m2
!(p + 
m)!
∂
p+
m
x

{
xp+
m ω(M(Q)(−
))

}∣∣∣
x=0

.

The second order residue can be written as a sum of the following three expressions:

r2,1 = F0(−
)

m2(p + 
m)!
∂
p+
m
x

{
xp+
m ω(M(Q)(−
))

}∣∣∣
x=0

,

where F0(−
) denotes the regular value of F(−
),

r2,2 = (−1)


m
!
b

∫
ω(M(Q)(−
)),

r2,3 = (−1)


m
!(p + 
m)!
∂
p+
m
x

{
xp+
m Res0 M(Q)(−
)|$

}∣∣∣
x=0

.

As a consequence of Proposition 4.1 and the previous discussion, we obtain the
following theorem.

Theorem 4.2. The trace of Q(t) admits an asymptotic expansion

Tr Q(t) ∼t→0+
∞∑
k=0

ak t
(k−p)/m +

∞∑
k=0

{
bk + βk log t

}
tk

+
∞∑
k=0

{
ck + γk log t + δk(log t)2} tzk ,

where zk = k−m′−n
m

with n = dim M . Moreover,

βk = − (−1)k

mk!
b

∫
ω(M(Q)(−k))

− (−1)k

mk!(p + km)!

∫
Y

∂
p+km
x

{
xp+km Res0 M(Q)(−k)|$

}∣∣∣
x=0

,

γk = − F0(−zk)

m2(p + zkm)!

∫
Y

∂
p+zkm
x

{
xp+zkm ω(M(Q)(−zk))

}∣∣∣
x=0

,

δk = − (−1)zk

m2zk!(p + zkm)!

∫
Y

∂
p+zkm
x

{
xp+zkm ω(M(Q)(−zk))

}∣∣∣
x=0

.

If in any of the factorials (p + km)!, (p + zkm)!, or (zk)! the number is not in N0,
we define the corresponding coefficient to be 0.
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5. Heat trace expansion

Let 5 be a sector of the form (4.1). Let P and A be as in Theorem 3.4. Thus,

P(A − λ)−1 = Q(λ) + R(λ) + S(λ), (5.1)

where the family Q(λ) ∈ xm−p�
m′−m,−m,m
c,5 (M,�

1
2
b ) is holomorphically tem-

pered, R(λ) ∈ x−p�
−∞,G(α)
c,5 (M,�

1
2
b ), and S(λ) ∈ x−p�

−∞,F(α)
5 (M,�

1
2
b ) for

some index families G(α) and F(α). Define R(t) and S(t) in the same way as Q(t)

was defined in (4.2). Then as shown in [14], R(t) and S(t) are also operators of
trace class and we get a decomposition

Tr(P e−tA) = Tr Q(t) + Tr R(t) + Tr S(t), t > 0.

By the same theorems of loc. cit. the trace of R(t) admits an expansion

Tr R(t) ∼
∞∑
k=0

rk t
(k−p)/m as t → 0+,

and Tr S(t) vanishes to infinite order at t = 0. On the other hand, the trace of
Q(t) admits the asymptotic expansion given in Theorem 4.2. Thus, Tr(P e−tA) has
the same expansion as Tr Q(t). To provide a nicer expression for the second term
appearing in the formula for βk in Theorem 4.2, we proceed as follows. Denote
by Q0(λ) the function Q(λ) in (5.1) for P = Id. Then, since Q0(λ) is equal to
(A − λ)−1 modulo �−∞

b , formally speaking,

M(Q0)(z) = i

2π

∫
ϒ

λ−zQ0(λ)dλ ∼ i

2π

∫
ϒ

λ−z(A − λ)−1dλ = A−z.

Thus, although the complex powerAz does not exist in general, we can still associate
a useful meaning to it:

Az := M(Q0)(−z). (5.2)

Moreover, the symbolic properties of Q0(λ) imply that M(Q0)(0) = Id and that,
modulo �−∞

b , Ak M(Q0)(−z + k) = M(Q0)(−z) for any k ∈ N0.
Thus, we have proved:

Theorem 5.1. Let A ∈ x−m Diffmb (M,�
1
2
b ) be such that A − λ is parameter-

elliptic with respect to some α ∈ R on a sector 5 ⊂ C of the form (4.1). Let

P ∈ x−p�m′
b (M,�

1
2
b ), p,m

′ ∈ R, and assume that m > p. Then

Tr Pe−tA ∼t→0+
∞∑
k=0

ak t
(k−p)/m +

∞∑
k=0

{
bk + βk log t

}
tk

+
∞∑
k=0

{
ck + γk log t + δk(log t)2} tzk ,
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where zk = k−m′−n
m

with n = dim M . Moreover, the coefficients βk , γk and δk are
given explicitly by

βk = − (−1)k

mk!
b

∫
ω(PAk)

− (−1)k

mk!(p + km)!

∫
Y

∂
p+km
x

{
xp+km Res0(PAkAz)|$|z=0

}∣∣∣
x=0

,

γk = − F0(−zk)

m2(p + zkm)!

∫
Y

∂
p+zkm
x

{
xp+zkm ω(PAzk )

}∣∣∣
x=0

,

δk = − (−1)zk

m2(zk)!(p + zkm)!

∫
Y

∂
p+zkm
x

{
xp+zkm ω(PAzk )

}∣∣∣
x=0

.

Again, if in any of the factorials the number is not in N0, we define the corresponding
coefficient to be 0. The meaning of the powers Az and Azk is given in (5.2).

Trace functionals revisited. By means of the generalized heat trace expansion
obtained above, we can recover the unique trace functionals on the algebras Iσ , I∂ ,
Aσ , A∂ and Aσ,∂ from Section 2.

In the following results, the functional Tr∂ is defined using the holomorphic
family Az given in (5.2).

Theorem 5.2. In the expansion of Tr Pe−tA given in Theorem 5.1, the coefficients
βk , γk and δk can be written as

βk = − (−1)k

mk!

(
Trσ (PAk) + Tr∂ (PAk)

)
,

γk = −F0(−zk)

m2 Tr∂,σ (PAzk ),

δk = − (−1)zk

m2(zk)!
Tr∂,σ (PAzk ).

In particular, the coefficient of log t is

− 1

m
Trσ (P ) − 1

m
Tr∂ (P ) − 1

m2 Tr∂,σ (P ),

and

Tr∂,σ (P ) = −m2 × the coefficient of (log t)2.

Corollary 5.3. Suppose that P ∈ x−p�m′
b (M,�

1
2
b ) with p < 0. Then there are no

(log t)2 terms in the expansion of Tr Pe−tA, and

Trσ (P ) = −m × the coefficient of log t.

Corollary 5.4. Suppose that P ∈ x−p�m′
b (M,�

1
2
b ) with m′ < −n. Then there are

no (log t)2 terms in the expansion of Tr Pe−tA, and

Tr∂ (P ) = −m × the coefficient of log t.
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