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Abstract

In this paper, a complete description of the zeta functions and corresponding zeta determinants
for Dirac and Laplace-type operators over finite cylinders using the contour integration method, for
example described in [K. Kirsten, Spectral Functions in Mathematics and Physics, Chapman & Hall/
CRC Press, Boca Raton, 2001]is given. Different boundary conditions, local and non-local ones, are
considered. The method is shown to be very powerful in that it is easily adapted to each situation and
in that answers are very elegantly obtained.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Many branches of mathematics and physics are characterized by frequent appearance
of spectral functions [47]. These functions are associated with suitable sequences of num-
bers {/x},cn. Which, for most applications, are eigenvalues of Laplace-type operators. In
different ways, certain properties of physical systems or Riemannian manifolds are then
encoded in this spectrum and relevant information can be found by suitably organizing
the spectrum in form of adequate functions.
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Probably the most important spectral function is the so-called zeta function, which is
directly related to topics such as analytic torsion [63], the heat kernel [42,68], Casimir ener-
gy [12,34,56], and effective actions [13,16,37]. For the purpose of describing these relation-
ships a little further let us assume we have given a discrete spectrum 4; < A, < -+ — oo.
Then the zeta function is defined in generalization to the Riemann zeta function as

) =D 4

where Rs of the complex parameter s is assumed sufficiently large such as to make this sum
convergent [70]. It can be shown that a meromorphic continuation of {(s) to the whole
complex plane exists with isolated poles at known locations [33,66]. The relation to the
topics mentioned and described in the following shows that the zeta function is indeed
a very intelligent and relevant organization of the spectrum.

(1) The residues of the zeta function modulo a multiplicative constant equal the heat
kernel coefficients in the small-time asymptotic behavior of the heat kernel e~
[66].

(2) The derivative of the zeta function at s = 0 describes the analytical torsion of a man-
ifold. This definition was first introduced by the mathematicians Ray and Singer [63],
when they tried to give a definition of the Reidemeister-Franz torsion [41], a
combinatorial topological invariant of a manifold, in analytic terms. That the two
definitions in fact agree for compact manifolds without boundary was independently
proven by Cheeger [17] and Miiller [57]. In physics the use of zeta functions, in
particular of {’(0), took its origin in ambiguities of dimensional regularization when
applied to quantum field theory in curved spacetime [27,45]. More generally,
functional determinants provide the so-called one-loop approximation to quantum
field theories in the path integral formulation [19,38,65].

(3) The properties of {(s) at s = —1/2 contain information about the Casimir effect. The
residue is closely related to the renormalization of a quantum field theory [18,71].
The finite part is needed for a full understanding of this effect [34,35,47].

These mentioned connections make it very desirable to have effective analytical tools
available for the complete analysis of zeta functions. The obvious problem is that an
explicit knowledge of the eigenvalues A, which can serve as a starting point for any
calculation, is in general only guaranteed for highly symmetric regions like the torus,
the sphere, or regions bounded by parallel planes. For these manifolds detailed calcula-
tions have been performed, for a summary see for example [16,34,35]. However, for cases
where the spectrum is not known explicitly only a few general methods for the analysis of
(properties of) zeta functions are available.

For example for one-dimensional situations the determinants of differential and
difference operators have been related to boundary values of solutions of the opera-
tors [14,31,39,40,50,51]. When the operator is a conformally covariant differential
operator exact results may sometimes be obtained by transforming to a simpler
operator where the answer is known [8,24,25,30]. The same kind of philosophy, in
this context, applies to results from analytical surgery where results for determinants
of Laplace-type operators on different suitable manifolds are related to each other
[15,52,58,60,61].
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Another class of situations where an explicit analysis can be performed is the class
where although eigenvalues are not known explicitly, an implicit eigenvalue equation for
them is known. The starting point of this approach makes use of a suitable contour inte-
gral representation of the zeta function involving this implicit eigenvalue equation. The
approach has been developed in [9-11] in the context of calculations on the ball and
generalized cone of arbitrary dimensions, see [47] for a review. Recently, results already
available in one dimension have been rederived and generalized in this formalism in a
much simplified way in [48,49]. It is the aim of the present article to apply the contour
integration technique to the geometry of finite cylinders. As an introduction to the
method, we derive well-known properties of the Riemann zeta function in Section 2.
The basic ideas of the approach are described here and applied later on in all following
sections. In these sections, we analyze zeta functions associated with Laplacians, respec-
tively, Dirac operators over finite cylinders. Different boundary conditions are considered
and exact expressions for the zeta functions are found and used to find the determinants.
Appendix A gives two integrals needed in the main body of the text.

By starting of with the Riemann zeta function we want to emphasize that in a certain
sense the mathematical prerequisites required to read a significant part of this paper is that
of an undergraduate student; in fact, at a certain level, perhaps the two most sophisticated
mathematical formulas that we will need for this paper are the formulas

x 2+ I'a—s)I'(s—a+w)
ra- d =
reri-s ad [ o T
the so-called Reflection Formula and the Beta functlon [1, Chapter 6]. The only “advanced
fact,” we will need is that if 4 is a Laplace-type operator over a compact (n — 1)-dimen-
sional manifold Y, then the zeta function {4, (s) has a meromorphic extension to C with
isolated simple poles at (see [42, p. 112])

sin TCS

—-1-k —1-k
s:”T for k=0,1,2,... and "ng{O}qu. (1.1)
Note that if Dy is a Dirac-type operator over Y (so that D? is of Laplace-type), then the
zeta function ( 0 (s) has the meromorphic structure described in (1.1). The level of prereq-

uisites illustrates the power and elegance of the contour integration method.
2. The Riemann zeta function

To illustrate the basic idea of the contour integration method, we shall analyze the Rie-
mann zeta function {z(s) = ZOO L. For reasons that will be evident in a moment, we shall

n=1p

instead look at {z(2s) = >, -} = The starting point of the contour 1ntegrat10n method is

to determine an equation F(/) = 0 whose roots squared are exactly n* for n = 1,2, ... This

is easy

sin(md)
A

The next step in the contour integration method is to use the Argument Principle (or

Cauchy’s formula) [20, p. 123] from elementary complex analysis to write

2s
=(25) =5 1//1 U log F(A)dA, (2.1)

Z=n withneN << F():= =0.
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where y is the imaginary axis as shown in Fig. 1. (Here, we used that each zero occurs
with multiplicity one and we use the standard branch for 2~%.) Of course, if we so
desired we can choose y to be any contour surrounding the positive integers as long
as it does not pass through (—oo,0) x {0}, which is the branch cut of A~**. However,
choosing y as the imaginary axis, we can put the integral in (2.1) into a nice form. To
do so, we use that

i—25 — (ein/2)72s — e—im and (_i)*ZS — (e—in/Z)*ZY _ eim

and write the contour integral as follows:

1 1=2s d 1 1 OC s o\—2s d .
i ? A alogF(i)dA_ 2ni{ /0 (ix) dxlogF(Lx)dx

+ /Ox(fix)*l"% logF(ix)dx}

1 ; ; ~ d .
=5 (—e™™ + &™) /0 xfz'“a log F (ix) dx,

where we used that F(1) is an even function. Thus, we have

sinmts [ d
2s) = ~2 _ Jog F(ix) dx 2.2
ta() =2 [ S log (i) (22)
which is an integral representation valid for 1/2 < s < 1, the limitations coming from
the behavior of the integrand as x approaches 0 and oo. To analyze the integral, observe
that

Flix) = 22U _ €7 g eom).

We now plug this into the above integral; however, because (1 — e >™) vanishes at x = 0,
we separate out the small x behavior:

. 1 . 0
_sinms o d . sin s o d .
(r(2s) = - /O YU log F(ix) dx + - /1 U log F(ix) dx.

For R(s) > 1/2 we compute the large x integral:

Fig. 1. The contour 7 for the zeta function. The X’s represent the zeros of F(2).
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d nx —2nx _ - —2s
/1 d_xlOgF ix)dx = / —log(2 (1—e ))dx—n/l x 2 dx
C o d
_ —2s—1 —2s _ a—2mx
/1 X dx —|—/1 XU log (1 e )dx

_ T 1 OO—ZSd —2mx
_—2s—1_2_s+/1x dxlOg(l e ™) dx

wh1ch provides the analytical continuation to all values of s. Multiplying this formula by
snm) for R(s) < 1 we obtain

. 1 . . . 00
__sinms o d . sinms  sinms | sins L d
Cr(25) = T /0 Y dx log F(ix) dx + 2s—1 2ms + o /1 Y dx

x log (1 —e ™) dx. (2.3)

From this formula we can easily prove the following well-known Lemma.

Lemma 2.1. The Riemann zeta function (r(s) has a meromorphic extension to the whole
complex plane with only a single pole at s = 1. This pole is simple and

Res, 1 {z(s) = (r(=2k) =0, k=1,23,...,
1 1
(r(0) = =5, and (0 = — log(2m)

Proof. The function 4 log(1 — e ") = 2ne >"(1 — e 27) " is exponentially decreasing as
x — oo, which implies that the integral [*x >4 log (1 —e >7)dx is entire. For the first
integral in (2.3), notice that & logF(ix) = iF'(ix)/F(ix) is an odd function of x (since
F(ix) is even in x) and analytic at x = 0, therefore & log F/(ix) = > *  a,x*"~! for some con-
stants a,,. Since for Rs < 1 we have

1
1
—2s+2n—ldx —
/0 * —25+2n

the meromorphic continuation of the integral fol x’z‘Y% log F(ix)dx has poles only at
s € N. Since sin(ms) vanishes at the integers, it follows that the function
s ns fol x4 Jog F(ix)dx has a meromorphic extension (from Rs < 1), which is entire
and vanishes when s =0,—1,—2, ... Using the facts we just learned about the integrals
appearing in

. 1 . .

_ sinms o d . sinfs  sin s
(r(2s) = - /0 U log F(ix) dx + =1 ns
sints [~ _, d oy

*—log (1 —e™™™)dx
+— /1 XU og (1 —e™)

the fact that {z(s) has a meromorphic extension to the whole complex plane with only a
single pole at s = 1, and the properties Res,_{z(s) = 1, {(z(=2k) =0, k=1,2,3,...,and
{(0) = —1, then follow easily.

To compute the derivative (% (0), we take &| _, of (2.3) and use that F(i) = & (1 — e™*")
and F(0) ==, to get
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1 00
ZC’R(O):/O (%logF(ix)dx—n+/l %log (1 —e?)dx

=logF(i) —log F(0) — = —log (1 — ")
=log <ez_“ (1- e‘z“)) —logn —m—log (1 —e ") = —log(2m).

This completes our proof. [

Before moving on to zeta functions of Laplace-type operators, recall that the Hurwitz
zeta function (5 (s, a) is defined by (see [72])

o0

Ly(s,a) = (k+a)™ for0<a<l. (2.4)

=0
Imitating the proof of Lemma 2.1, one can derive the following theorem easily.

Lemma 2.2. The Hurwitz zeta function (3(s,a) has a meromorphic extension to the whole
complex plane with only a single pole at s = 1. This pole is simple with residue equal to 1, and

{3(0,a) :%—a and 4

& Gulsia) = log(I(@) — 5 log(2n).

s=0

3. Laplace-type operators over finite cylinders

We continue by studying the zeta-function for Laplace-type operators
A= -0+ Ay : H*([0,R] x Y,E) — L*([0,R] x Y, E),

where Y is a compact manifold without boundary, E is a Hermitian vector bundle over
[0,R]x Y and 4y is a Laplace-type operator acting on sections of Ey: = E|y. We can also
take Y with boundary, in which case we impose local boundary conditions so that 4y has a
well-behaved discrete spectrum. Throughout this section,

0< << s<--

denote the eigenvalues of 4y, each repeated according to its multiplicity. In what follows,
similar remarks as in Section 2 regarding the existence of different representations of the
zeta function are appropriate. However, these are always straightforward and we will not
emphasize all the time in which region expressions are well-defined.

3.1. Dirichlet conditions

As an introduction to the contour integral method for Laplace-type operators over
finite cylinders, we begin with the “simplest” of all boundary conditions, the Dirichlet con-
dition; we denote the resulting operator by Ap. Thus, we consider

Ap : {¢ € H*([0,R] x Y,E)|¢(0) =0 = ¢(R)} — L*([0,R] x Y,E).

Recall from Section 2 concerning the Riemann zeta function that the starting point of our
method is determining an implicit eigenvalue equation. Let us fix an eigenvalue 2% and work
over the /*-eigenspace of Ap. Then, for ¢ taking values in the 2-eigenspace of 4y, we have
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App = 12 = (—ai + ,ui)(/) =1p <= ¢ = (1 — ).

Therefore,

¢ = acosh (\/u,% - }u2u> + bsinh (\/u,f - /lzu>. (3.1)

Imposing Dirichlet boundary conditions, we see that

¢(0) =0 = ¢ = bsinh <\//¢,%—izu>

and then,

@(R) = 0 = sinh (N/ug — /12R> =0.

Since, 4 = . leads to the trivial solution, we can see that over the y’-eigenspace of Ay

sinh <1/,ui — 12R>

/% is an eigenvalue of Ap < Fi(4) = =0.
2 2
\ e = 4

Notice that Fj(4) is an entire even function of / that is nonzero at A = 0. In conclusion,
F;(2) is an entire even function of 1 whose zeros squared are exactly the (nonzero) eigen-
values of —0; 4 1 with Dirichlet conditions. We now form the zeta function of A via
contour integrals. Of course, we can easily see that

22=—+uk, neN,

so we could just write down the zeta function of 45 in terms of Epstein-type zeta functions
and apply the Poisson summation formula [52,58]. But we shall form the zeta function
using the contour integral method since it generalizes to cases when the eigenvalues are
not explicit. Thus, following the Riemann zeta function example, using the Argument
Principle (or Cauchy’s formula) we write

. sinmns [ . d .
Cunlo) = 30 T [ o Fiin)

k=1 n

In the case when u; = 0, we know that eigenvalues are of the form *

RZ B
sin 1ts 1
R2s 00 1 R2x
:hYF Z ﬁ:hYFCR(ZS)a (32)

n=1

where /y: = dim ker 4y and {(s) is the Riemann zeta function studied in Section 2. Let us
consider the case when gy # 0. In this case, by the definition of Fj(1), we have

sinh( wr+x R) R
Vi 4 x? 2\/ 2+ x2

Filix) = (1 eV
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therefore
0 0 d eRvV/ i +x2 —
x ¥ —logFi(ix)dx= [ x*—1lo 1 —e 2PVt ) ) dx
/0 g Fi(ix) | & o8 |5 — )

By Lemma A.1 in Appendix A, we know that

sins (%, d Ry/1242 e A %)
< Jog (efVE — R 28D
x /0 w0 gy log (VI ) dv = Rig 2T (s)

and

sins (%0, d 2, 12 1
- /Ox dxlog((uﬁﬂ )dx S

We therefore have

sin 1ts /wx72s110 RV dx = R 723+IF(S7_%)_1 2
i oz T e oA 2t

n dx Vg + x?
Thus,
sinms [ d I's—1%) 1
71 F R —25+l o\ 2 - —25
n/()x ay 108 Filiv) dr = 2/ar(s) 2"
sinms (%50 d _ e 2Ry
+ - /0 X dxlOg (l e )dx.

In conclusion, we have proved the following theorem:

Theorem 3.1. We have

R* I(s—3 1y 1
Conls) = b o e (2) +R2\§S_F(2)) (s ( 5) -3
sin s /1242
IOg 72R Hetx= ) dx.
“k>0 / )

In particular, { AD( ) has a meromorphic extension to the whole complex plane except for sim-
ple poles at s =% with k=0,1,2, ... and "5* ¢ {0} U —N.

Proof. Since, & 4 log(1 — e Ry "f“z) is decreasing exponentially in both y; and x, the series

— 2452 . .
D0 sinms [ x ‘ZS 4 Jog(1 *RVEFY dx is entire. Our statement about the meromor-

phic properties of C AD(S) now follows from those of (z(2s) (from Lemma 2.1) and
{4, (s) (from (1.1)). O

Now using the facts from Lemma 2.1:

(r(0) =~ and (3(0) = —}log(2n)
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so that
d R2s
o hyn—ZCR(Zs) = —hylogR + hylogn — hylog(2n) = —hylogR — hylog?2
s -0 s

= —hylog(2R) (3.3)

we can easily and almost automatically compute the log-zeta determinant:
d I(s—1) 1 1,
- = -2 ) —Z¢ (0
2/mds S_0< O 7¢ar(0)
*d )
+ — log (1 — e #VH+ ) dx
S [ e (1-eE)

{,,(0) = — hylog(2R) +

dx

>0

_ R d F(S _l) 1 1 /
= 57zl (g () 250
- Z log (1 — e 2Rm).
>0

Here, we notice that ), _,log(1 — e 2R converges absolutely as log(1 + z) = O(z) for |z]
small. We have now proved the following:

Theorem 3.2. We have

hy
(2R) oCR H (1 _ efzmzk),
Vv det A4 Y >0
I'(s—1)
where C = —ﬁ% s:()( o) Cay (S — %))

This result for the determinant agrees with the result presented in [52,58]. We remark that
the constant Cin[52]was accidentally written incorrectlyas C = & | (I ()¢ p(s—1 /2)).
Fortunately, [52] was interested in ratios of determinants, so the main result is correct
because the (incorrect) constants cancelled in the end.

det;AD =

3.2. Neumann conditions

We now consider the zeta function and zeta determinant for the Neumann Laplacian 4
Ay { € H([0.R] x Y,E)|¢'(0) = 0= ¢'(R)} — L2((0,R] x Y, E).

We start off by finding the eigenvalues of the Neumann Laplacian. To this end, we use for-
mula (3.1) over the z;-eigenspace of Ay:

@ = acosh (\/u,% - }u2u> + bsinh (\/u,f - /12u>.

Imposing Neumann boundary conditions, we see that

¢'(0) =0= ¢ =acosh <\/,u§ - izu)

and for 2% # 12,

¢'(R) = 0 = sinh (\/u,z — ;?R) =0.
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Therefore, we can see that over the u?-eigenspace of 4y

sinh (y/u,% - 12R>

W=z

=0.

24 12 is an eigenvalue of Ay <= Fi()) :=

For /> = 1, ¢ = constant is a nontrivial solution. Hence, { 4 (8) = Lup (s) = L4, (s) and the
result for the zeta function and the determinant are easily obtained from Theorems 3.1 and
3.2, respectively.

3.3. Mixed Dirichlet Neumann conditions

We now consider the zeta function and zeta determinant for the Laplacian 4, where
we put mixed Dirichlet and Neumann conditions:

Ap:{¢ € H*([0,R] X Y,E)|$p(0) = 0,¢'(R) =0} — L*([0,R] x Y, E);

of course, a similar result holds if we consider ¢'(0) = 0 and ¢(R) = 0. We again use the
formula (3.1) over the u?-eigenspace of 4 y:

¢@ = acosh (\/ui — 12u> + bsinh (\/u,f - /lzu>.

Imposing Dirichlet boundary condition at u = 0, we see that

@(0) =0 = ¢ = bsinh (\//xi —)Lzu)

and then,

¢'(R) =0 = cosh (\/,u,z( - /12R> =
Therefore, we can see that over the u?-eigenspace of 4y
/2 # 0 is an eigenvalue of A, <= F;(2) := cosh (\/u,f - ),2R> =0.

Then, as in the previous cases, we have

.\ sinns [ d .
La(s) = - /Ox’z‘alogl’k(tx)dx.

k=1

First, when p, = 0, we know that eigenvalues are of the form M n € N so
sin s / RZS x 1
— log Fy(ix)dx = Gils X —
=0 mz—% K ; (n+1/2)7

R» 1
= hYFéH (25‘,5), (34)
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where hy: = dim ker Ay and {4 (s, a) is the Hurwitz zeta function defined in (2.4) with the
properties in Lemma 2.2. When y;. # 0, by definition

R\/;Lz-l-xz .
F;(ix) = cosh (\/u,% +x2R) _¢ 2k (1 +e 2RV "ﬁxz),

Hence, proceeding as in Section 3.1, we obtain

sin Tts . d I'(s—1)
e 1 F R 72\‘4’1 2
n /0 Ty logulin) dv = 2ml(s)
sinms (%50 d “2Ry /122
+ - /0 X dxlog(l—i—e 2 )dx.

In conclusion, we have proved the following theorem:
Theorem 3.3. We have
R» 1 I'(s—1 1
uld) = C“<2S ) +szr( G
sin 1ts / da log 1 1 e 2R/ ) dx.

>0

In particular, {,, (s) has a meromorphic extension to the whole complex plane except for
simple poles at s ="5* with k=0,1,2, ... and "5* ¢ {0} U —N.

Proof. According to Lemma 2.2, the pole structure of {;(s,1/2) is the same as the pole
structure of (z(s). We can also prove this directly:

{n (s%) = f: ( ) kf: (2k+1)" (CR(S) - i(%)_s)

=2°(1 = 27)¢r(s) = (2° = 1) (s)

which implies our claim. Then this theorem just follows from the previous computation

and Theorem 3.1. O
1 1
~ ] =—=1og2
SZOCH <Sa 2) 2 Og

R 1
hyﬁc'}.‘ 2S7§ = —hy10g2 (35)

Using

1 d
gH <07 2) - Oa a

from Lemma 2.2, so that

d
ds|._,

now we can easily and almost automatically compute the log-zeta determinant:

_ 1
04, (0) = hylog2+2\Rfi (F(;(S)Z)CA,G— >> Z/ —log 1+e ZR\/"/T)dx
s=0 1:>0
R d I'is—1) 1 )
= mtog2+ g (TR (5-3) ) - X toe 1+ e )

>0
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Here, we notice that }_ _,log(1 + e~ 2Rm) converges absolutely. We have now proved the
following

Theorem 3.4. We have
det; A, = 2"e k. H (14 e 2m),

>0

I'(s=3)
where C = — ﬁf_[ 41, (—m)— Lay (s — %))

This result for the determinant agrees with the result presented in [55].
3.4. Periodic boundary conditions

We now consider the zeta function and zeta determinant for the Laplacian 4, where we
put periodic boundary conditions:

Ap: {§p € H*([0,R] x Y, E)|$(R) = ¢(0), §'(R) = ¢'(0)} — L*([0,R] x Y,E).

We start off by finding the eigenvalues of Ap. To this end, we use the formula (3.1) over the
2-eigenspace of Ay:

¢@ = acosh (\/yi - izu> + bsinh <\/u,f - /lzu>.

Imposing the condition ¢(R) = ¢(0), we see that

a<cosh (\/,uﬁ — JVZR) — 1) + bsinh (\/y,f — /12R> =0

and from the condition ¢'(R) = ¢’(0) we get

asinh (\/uﬁ - /12R> +b(cosh (\/,uﬁ - /12R> - 1) =0.

For both of ¢ and b not to be zero, we must have

cosh <\/,u,§ — /12R> -1 sinh (1 /13 — /12R>
sinh (\/,u,z( - /IZR) cosh (\/,u,% - /12R> -1
that is,

2
(cosh (N/ug — ﬁe) — 1) — sinhz(\/uﬁ — )?R) =0

or multiplying out and using that cosh?z — sinh?z = 1, we obtain

2 —2cosh (\/,uﬁ — AZR) =0.

Thus, over the u7-eigenspace of Ay

/% is an eigenvalue of Ap <= F,(/) := cosh (\/u,f — /12R> —-1=0, wu,#0

det =0
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and
. . , 1- AR
4> # 0 is an eigenvalue of Ap <= F(1) == # =0, w=0.
Vs
To evaluate the zeta function of Ap, we write
R _sinms [ 0 d .
Lo =300, Gl =" /0 e L log i) d.
We shall study each {,(s). Consider ﬁrst the case when y; = 0. In this case, we know that
nonzero eigenvalues are of the form 22 ” where n € 7 — {0}, so
R2S 0 1 R2s
Gil(s — = 2hy —— (% (2s). 3.6
mZ ks (ZTC)ZS ; nZs Y(ZTC)ZS R( ) ( )

In the case when gy # 0, the function Fj (ix) can easily be found:

Filix) = ~1

2 + 2

R ui +x2

= ¢ (1 + e’ZR\/’W — Ze’R\/’W)
2

R /lz +x2

= zk (1—e*V@”v?
Substituting this formula for Fy(ix) into S2rs [ =24 logF +(ix) dx, we see that

__sinms S d R/ sin 1ts i _rEe)
Lils) = /Ox dxlog(e ‘ )dx+ o o (1 e *VH )dx.

T I
By Lemma A.1, the first integral is equal to

. 00 _1
sin Ts / x*b% log (J\/‘W) dy — Ru;2s+1M
0

Y 2\/EF(S)
therefore,
I'(s—Y sinms [ d 7\ 2
_ —2s+1 2 —2s _ o Ry1g a2
(i (8) = Ry, 3T ) + - /0 X log (l e ) dx.

Summing over all k&, we have proved the following theorem. (The meromorphy statements
follow just as in Theorem 3.1.)

Theorem 3.5. We have

R* r@-@

" R 2fr< > o (v-3)

S / log ’RW)Z dx.

CAP(S) =

In particular, { Ap( s) has a meromorphic extension to the whole complex plane except for
simple poles at s ="5* with k=0,1,2, ... and "5* ¢ {0} U —N.
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A similar computation as we did in (3.3) shows that
d R2S

a sr:OZhYWCR(ZS) = —2hy IOgR

therefore
R d F(s——) ) 2
Y =—2hylogR+——= ( CY( ))+ / —log _eR ) dy
o0 = oty el L U Py )
= —2hylogR— CR— " log (1 — e2m)’,
>0

where C = —30= ] 0( CAY( 1)). Thus, we have

Theorem 3.6. We have
det;Ap = R* ek H (1 — e’ZR*‘k)z,
>0
where C = — 2\%(‘& o 0( CAY( —))
Note that periodic boundary conditions are related to finite temperature quantum field

theory of a scalar field. Therefore results like Theorems 3.5 and 3.6 can be found in that
context [28,46,59].

4. Dirac-type operators
4.1. Dirac-type operators over finite cylinders

We now consider a Dirac-type operator
0:H'([0,R] x ¥,S) — L*([0,R] x Y,S),
where S is a Clifford bundle over [0,R]x Y. We assume that 0 is of product form
8 = G(d, + Dy), (4.1)

where G is a bundle automorphism of Sy: =S|y and Dy is a Dirac operator acting on
C>*(Y,Sy) such that G*=—Id and GDy=—-D,G. Since G*=—Id, we have
S=S"®S, where ST are the +i eigensubbundles of G. Now the finite cylinder
[0,R]x Y has boundaries, so we have to impose boundary conditions. For concreteness,
we shall consider separated boundary conditions; that is, boundary conditions separately
imposed at # =0 and u = R. Moreover, breaking up

L*([0,R] x Y, 8) = L*([0,R], V) & L*([0,R], V),

where V: = ker Dy and V* is the orthogonal complement of ¥ within L*( Y, S,), the oper-
ator 0 breaks up as

d =G0, ® G(d, +Dy) over H'([0,R],V)® H'([0,R], V")

and we shall impose separated boundary conditions individually on H'([0,R], V) and
H'([0,R], V). On H'([0,R], V), we completely characterize all self-adjoint extensions of
8 = GO, with separated boundary conditions. Put V':=ker(Dy)N C>(Y,S") and
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V=:=ker(Dy) N C(Y,S") and let II, denote the orthogonal projection onto the zero
eigenspace of Dy.

Proposition 4.1. GO, has self-adjoint extensions with separated boundary conditions if and
only if dim V' =dim V", in which case, self-adjoint extensions are in one-to-one
correspondence with involutions ¢,0, over V that anticommute with G, and the boundary
conditions are given by

1+O']
2

1+O'z

HO at {O}XY, Ho at{R}xY.

Proof. For more on self-adjoint extensions, we refer the reader to the articles [44,62], and
books [2,64]. Recall that with a choice of domain D C H'([0,R], V), we say that

Go, : D — L*([0,R],S)
is self-adjoint if

{y € H'([0,R],V)|(Gd.¢,¥) = (¢, GOY) V¢ € D} =D. (4.2)

Let us choose separated boundary conditions for Gd,; that is, subspaces L, L, V' such
that

D={¢pcH(0,R],V)p(0) €L and ¢({R)E€ L},

and suppose that GO, on the domain D is self-adjoint in the above sense. Given that GO, is
self-adjoint, we shall prove that dim " = dim ¥~ and L; is exactly the +1 eigenspace of
an involution g; on V; the converse is straightforward and shall be left to the reader. Let us
prove this for L;; the proof for L, is similar.

Integrating by parts shows that for ¢,y € H'([0,R], V), we have the equality (called
Green’s formula)

(¢, GO) — (GO, ) = (G$(0),¥(0)) — (H(R), GY(R)).
Thus, by the criterion (4.2) for self-adjointness, we have
{y € #'([0,R], V)[(G(0),(0)) — (¢(R), GY(R)) =0 V¢ € D} = D.
Taking ¢,y to vanish near u = R, by definition of D, it follows that
{weV|{(Gv,w) =0 VvelL}=L.
Now
{weV|{Gow) =0 Yoel}=L <= {welV|(v,Gw) =0 YoelL}=1L
= Gl =1,
<~ GL, = LIL.

Define o1:V— V by 6;:=—1o0on Ly and 6;: =1 on LIL. We claim that G = —G ¢g;. In-
deed, if v € L,, then

61Gv = g1(Gv) = Gv (because Gv € L;) = —Gajv (because v € L;)

a similar argument shows that ;G = —Ga; on L;. Hence, 6;G = —Ga; on all of V. We
now show that dim V" =dim V. Indeed, if ¢ € V'™, then G¢p =i, so
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GO'1¢ = 761G¢ = 70'1(i¢) = 71(0’1(}3)

It follows that o;:¥" — ¥~ is an isomorphism. In particular, dim V" = dim V. This
completes our proof. [

Because of Proposition 4.1, we now henceforth assume that dim V' =dim V—; we fix
two involutions o1, o, over ker (Dy) anticommuting with G, so that GO, acts on the domain

D= {¢ € 1'(0,R], V)| +2(“ $(0)=0 and - *2“2¢(R) _ o}.

On H'([0,R], "), we can put both local and non-local separated boundary conditions.
For many applications non-local conditions which are so-called APS spectral boundary
conditions play a significant role [3,4,22,26,29,36,67]. We will consider the following
non-local condition afterwards

l1+o
m, =I. +——

II, at{0} x7Y,

l1+o
m, =I. + 2

II, at{R}xY, (4.3)

where I1-, I1- denote the orthogonal projections onto the positive and negative eigenspac-
es of Dy, respectively. The projectors I1,, and II,, are called generalized APS spectral pro-
Jjections. We denote by 8y, the resulting operator with these boundary conditions:

8y, := 0 :dom(dy,) — L*([0,R] x Y,8),
where
dom(6y,) == {¢ € H'([0,R] x Y, 5|15, |, o =0, I, |, =0}.

Then the spectrum of the Dirac type operator 85, consists of discrete real eigenvalues {1} .
Local boundary conditions for § over V* are also quite common [5-7,21,32,69].

4.2. Determinant on the zero mode

To study Cé (s) and det; 6?7 , we begin by computing the zeta function over the zero
mode of Dy, leavmg the nonzero modes to Section 4.3. Thus, over ker(Dy), we shall study

D:=Go, over [0,R] xY
with boundary conditions given by vanishing on the +1 eigenspaces of o, and o», respec-
tively,

1 =+ (]
2
Observe that

l+0’2
2

II, at{0} x7Y,

II, at{R} xY.

Do = Ap <= GO, = Lo <= 0,0 = —AGp <= @(u) = e ",
where ¢o = ¢(0). To get a nice form for ¢, we put ¢q in a nice basis. Observe that since g
and o, anticommute with G, it follows that the product o0, is a unitary isomorphism on
V™~ (and also on V+), which we denote by (g105)_: V- — V. Let {¢1,...,0,,} be an
eigenbasis for (o0,)_ so that
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@, eV and g0, =", Yj, 7y € (—mml.
Since, o, anticommutes with G, {611, ...,0,¢,,} is a basis for V", so that

{Gl(plﬂ"'761(pm7§017'”7(pm}

is a basis for ker(Dy) = V' @ V. Moreover, since G preserves span{o,¢;, @;} for each j,
we shall henceforth fix a j and assume that ¢ is in span{c,¢;, ¢;}:

Py =ao¢; + bgoj.

Then,
1+ 0,
T(po =0 0190y = —@y <> ap; + bo1p; = —aci1p;, — by,
< a=-b<+ ¢,=0190;,— ¢; (modulo a constant factor).
Thus,
o(u) = e T, = e—iiuo_lq)j _ e”“goj.

We now deal with the boundary condition at u = R. To do so, note that

iy S L iy
01020; = e Q= 020, =€*019;, 02010, =€ @,

Therefore,
1 + ()
TQD(R) =0+= 00(R) = —¢(R)
s o iMRgin 0, - Rl g, 0, =— L 0+ QiR 0,

= P e = 2R =—y, +2mn, neZ

= </1R+y2—") =mn, n€Z <+ sin (AR+%) =0.
Therefore, we can see that

/ is an eigenvalue of D over span{s,¢;, ¢;} <= sin (AR + %) =0.

It follows that

% is an eigenvalue of D? over span{a,¢;, @;}

= Fy(2) :==sin (AR + %) sin (—AR + V—z’f) =0, ify #£0

and
sin AR B
=

J% 0 is an eigenvalue of D* over span{a,;, @;} <= Fi(4) == 0,
lf ’Yk = 0.

Now we write



K. Kirsten et al. | Annals of Physics 321 (2006) 1814-1842 1831

{pa(s) Z Le(s) + Z G(s)

7%=0 %70

where the {,’s are the zeta functions for D* over span{ao| @y, @ }. The zeta function for the
vx = 0 case is handled in (3.2):

2s

SoGls) = 20 L (29),

=0

where / is the number of y,’s equal to 0 and where there is a factor of 2 in front because D>
has each nonzero eigenvalue 4> with multiplicity two. Thus, by the calculation found in
(3.3), we have

o 2O _ (ap) (4.4)
We now focus on the y; # 0 case. As is now familiar, we write
sin 1s d . .
G(s) = - /0 along( )dx, Fi(4) :=sin (/IR—i—%k) sin (—/IR—&-%I‘).

Writing

" " (efoﬂT _ exR 17) (exRﬂT _ 67XR 17)
F'::'(R )'(—'R _):_
¢ (ix) := sin (xR + 5 ) sin ( —ix + > n
erR S e—iyk + e—2xR e
_( i J ) _ e (1 —2e*®cos(y,) + e %)

we haVe
| i g k

o d e* —2xR —4xR
:/1 X Sd—xlog<T(1—Ze * COS(Vk)+e x))dx

o0 o0 d
:2R/ x 2 dx + / x—zsa log (1 — 2 *®cos(y;) + e **) dx
1 1

_ 2R
T 2s—1

0 d
+ / xfzsa log (1 —2e**® cos(y,) + e **) dx.
I
Therefore, splitting {;(s) =22 [* x> 4 Jog F;(ix) dx into integrals from 0 to 1 and from
1 to oo, we have

sinmts 2R
n 2s—1

sin Ts

1
d .
G(s) = /0 o S log (i) dv +

T

. g
4T / x 2 —log (1 —2e *®cos(y,) + e **) dx.
T 1 dx

Taking ¢ _, and using that F;(i) = & (1 — 2e 2R cos(y;) + e ) and F,(0) = sin’ (%), we
get
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o0

, Id d
£.(0) = / o log Fy(ix) dx — 2R +/ o log (1 — 2 *®cos(y;) +e**) dx
0
= log F(i) — log F1(0) — 2R — log (1 — 2¢** cos(y;) + ¢~ *)
2R
= log (eT (1 —2e*Fcos(y,) + e_4R)> log sin (7;‘) —2R
—log (1 —2e*Fcos(y,) +e *)

= —log <4 sin (g‘))
Therefore,

/2 _ *1‘/(/2 ) — Wy _ e—in
al 'yk) ek € €
—(.(0) _ 4 — 4 = 4 .
€ x (0 sin ( < i >

Combining this formula with the y, = 0 case in (4.4), we get

— e i e —iy hy 2 _ ei"fk _ e‘”’k
det-D? = 4. = QR4 T2~
e’ = e ] et [ 2
V%70 7#0
where /£ is the number of y,’s equal to 0 and /2y = dim ker(Dy). Thus, we have proved

Lemma 4.2. The zeta function {;(s) has a meromorphic extension to the whole complex
plane with only a single pole at s =1, and

-1
dethz — Rthhydet* (21d — (0'10'2)7 — (0-10-2)7 )

4

with h the number of (+1)-eigenvalues of (¢,65)_, hy = dim ker(Dy), and where det” means
to take the determinant on the orthogonal complement of the kernel.

4.3. Determinant on the nonzero mode

We now find the zeta function for the square of
0=G(0,+Dy) over [0,R]x7Y
on the orthogonal complement of ker(Dy) with the boundary conditions
II. at {0} x7, II. at {R} x7Y.

Let {¢;} be an eigenbasis of the positive eigenvectors of Dy, so that { Gy} is an eigenbasis
of the negative eigenvectors of Dy,

Dy¢, = ¢y and DyGo = —i,Go,.

Let us fix a k; then with respect to the basis {¢;, G ¢}, we can write

0 —1 0 0 -d,
o= (7 )@+ (5 S))-( )
1 0 0 — Ou+ Iy 0

over span{¢y, Go,}. Hence, the eigenvalues of & over span{¢;, Go,} are obtained by
solving
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< 0 6u+m)(f>:)<f>¢:g%0+u$W)&ﬂw
Ou + My 0 g g I () + e f (u) = 2g(u)
with f(0) = 0 (from the boundary condition I1-) and g(R) = 0 (from the boundary condition
I1.). To solve these equations, apply —0,, + uy to the second line and use the first line to get

(=0 + ) (" () + i f () = 2(=0, + w)g(u) <= — f"(u) + 12f () = 221 (u).
Solving this equation for f{u) and using that f{0) = 0, we see that

f(u) = sinh (\/ w— /lzu> (modulo a constant).

Now the equation f'(u) + wf(u) = 2g(u) implies that

wﬁ—fmm(w@—ﬁ0+mmm(w@—fo:Jg@

Therefore, from the condition g(R) = 0, and the fact that 2 = 0 cannot be an eigenvalue as
can be easily checked, we conclude that

Z or — Ais an eigenvalue of 8 over span{¢,, G¢,}

<= 2% is an eigenvalue of &> over span{¢,, G, }

sinh ( w— JVZR)
<= F;(1) := cosh (\/uﬁ - JVZR) + 1 : =0.
\V 1 — 4

Now to evaluate the zeta function of 8% over span{¢y, Gy }:

o) =2 [T L og iin) d
L &

T

we need to find Fy(ix). To do so, observe that

. inh 2 1+ x2R
Fy(ix) =cosh <\/,ui+x2R> Jr,uk—sm ( 5k+x )
V T+ x?
B eR /ﬂi+x2 + e,R /#’E+x2 ,le eR, /,ui+x2 . e—R\ //41%+x2

_|_
2 Vg +x 2

_eR 122 . " +e—R 12+ 1 I
2 Vi + ¥ 2 %+ﬁ

/LZ xZ
e | (i =)}
2 Hi t e

Simplifying the right-hand formula, we get

e ( ) eRq/ykerz <1 Ly ) - e —2R ;t +x2
i) = " [ 1+
2 VI X (w/uk+x2+uk
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Substituting the right-hand side into Fj(ix), we see that

2sinms [ _,. d .
Gels) =— /0 x*zéalong(vc)dx

25 00 Ry/i2+x 00
_ oS / glog ¢ dx+/ x~ —log 1+ ——t | dx
T 0 2 0 W+ x?
x2€72R ,u+7c2

o d
> 1 dx
+/0 X . og +

(\/ 1 + X7+ uk
By Lemma A.1, the first integral is equal to

. o o
2sin s / o d log (eR\/ﬂﬁr )dx R I'(s—1)
0

T dx 2 N EOR

dx
The second integral is not so easy to find, but can be done as follows:

00 00 1 2 27319
/ xfzsilog 1+7 dx:/ x 2'“"('uk+x) (x)dx
0 dx Vg 4 x? 0 1+

\//1 +x2

00 -1

— ,uk/ x72s+l (:ui +x2) dx
0 Vg 4+ X+

— M;ZS/ x—23+1(1 +x2)*1 .
0

1
—_—dx X X
T+ 1 (X x)

o Vi+x?—1
__ ,u,:z"/ X2 () +32C dx
0

—2s = —2s5— 1 > —2s5— 1
=— 2 / x2 171—/ x 2 11 sdx |.
0 (1+x2)2 0 +x

Recall the formula (A.1):

/ch,szrzCH 1 I'la—s)I'(s—a+w)
0 (1 '

—|—x2)wdx B 2I(w)

Thus,

> 5 d My Y I(=s)I(s+3%) I(=s)I(s+1)
/Ox &log<1+ /‘—“*M%Hz)dx__“k( oy 2r(h) )

3 NG —I'(—=s)I(s+ l))
By the Reflection Formula (A.2), we have
P(=s)l(s+1) = F(=9)I'(1 = (=5)) = sin nTE(—s) - sir?ns

SO
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2sinms [* . d W 2( I(s+1) )
o (14— Y= (22T ),
T /(; . dx g< +,/'u%—|—x2 'uk \/EF(S+1)+

Therefore,

2sin s d I'(s—1 I'(s+1)
— _1 F dX R —2v+1 -\ 2 —2s 1= I
Cels) . /0 a4 o8 k(i) Val(s) ~H < /il (s + 1)>
: 00 20 —2R\/ 17+
+2512"S / w2 L jog |14 X dx.
0

dx 2
(Vi +5 + u)
In conclusion, we have proved the following theorem (the meromorphy statements follow

just as in Theorem 3.1):

Theorem 4.3. Denoting by 3 the restriction of & to ker(Dy)* with the boundary conditions
given by II-,I1-, we have

50 =ragara(s-3) -3 (1 -G o 2 5 5 [

14:>0
d 20— 2Ry / 12+
% log | 14— dx.

d (\/WHQZ

In particular, ng () has a meromorphic extension to the whole complex plane except for poles
at s =55 where k=0,1,2,3, ... and "5* ¢ {0} U —N. In particular, &5, (s) has the double
poles at s = -1, —3 3 . and the szmple poles at other places.

297 29T 29
[1, p. 259], we find that

Using known values of y(z) = r()

d 1(1_L+%>) o2
as| 2\ T vArs+ ) T %
Therefore,
, R d| (T(s—Y e Vi
G (0) ==+ ( 2 gb’( )) log 2 (0 +2Z —log dx
52 2y/mds| o\ I'(s) M>0/ ( /Hk+xz+llk>

_Rd
T 2y/mds|_

I(s—1 1 B
, < (If(s) ) él)ly <S - 5)) —log 2€D§, (0).
Thus, we have

—ZL(0) _ eCRzg')zy (0) 1 d

° ’ C:‘Mdsso(r(;()_)@”( D)

Combining this formula with Lemma 4.2, we get

Theorem 4.4. The zeta funcllon Céz (8) has a meromorphic extension to the whole complex
plane except for poles at s = "5~ where k=0,1,2,3,... and % ¢ {0} U —N. In particular,

éé%] () has the double poles at s = %, — % ,— %, . and the simple poles at other places. For

the {-determinant of o2 we have
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-1
detcééa _ theczezlsz(O)Jrhydet* <21d — (0162)4_ —(a105)" )7

where h is the number of (+1)-eigenvalues of (o105)_, hy=dimker(Dy) and

I(s—Y)
C= _21% % s:o(Tv)zCDZY(S - %))

This theorem was proved in [53] using the method of adiabatic decomposition
[23,60,61]. The contour integral method presented here to prove Theorem 4.4 is much sim-
pler and more direct than the proof presented in [53]. For further results in a similar con-
text see [43,54]. We also remark that the constant C in [53,54] was accidentally stated
incorrectly as C = %|S:0(F(S)_ICD§I (s —1/2)).

4.4. Chiral boundary conditions

We now consider our operator
0=G(0,+Dy) over [0,R]xY
with chiral Dirichlet boundary conditions. Over ker(Dy), just as before, we fix involutions

a1,0, anticommuting with G and we put boundary conditions given by vanishing on the
+1 eigenspaces of g and og,, respectively:

1+ 0, l1+o0,

II, at {0} x Y,

II, at {R} x7Y.

Over ker(Dy)*, we put chiral Dirichlet conditions:

For ¢ = ¢, + ¢_ with ¢, € H'([0,R]x Y,S%), we require ¢4 (0) =0 and ¢_(R) = 0.
Note that, by Proposition 4.1, we cannot use these ‘“‘chiral” boundary conditions over
ker(Dy). (In fact, one can check that these ‘““chiral” conditions are not even elliptic bound-
ary conditions over ker(Dy)!)

We denote by dp, the resulting operator with the above boundary conditions.

By Lemma 4.2, we know the zeta-determinant of 37 over V, so we shall now
focus on V*. As with the non-local APS conditions, let {¢,} be an eigenbasis of
the positive eigenvectors of Dy, so that {G¢,} is an eigenbasis of the negative eigen-
vectors of Dy,

Dy, = ¢, and DyGeo, = —p,Go,.
Let us fix a k, and define

o = ¢ —iGP, € C*(Y,S7), ¢ = ¢ +1Gp, € C*(Y,S7).
Then observe that

G, = G, TiG §, = G, iy, = £i(¢, FiG,) = gy
and

Dydy = ety F (=) Gy = 1y £1Gdy) = ;7

Therefore, with respect to the basis {¢, , ¢, }, we can write

(0 )62 ) (5 %)
0 —i1 W, 0 —ip, —10,
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over span{¢y, G¢}. Hence, the eigenvalues of 8 over span{¢;, ¢, } are obtained by
solving

(i ) () =10) = S it

with f(0) = 0 (from the boundary condition ¢ (0) = 0) and g(R) = 0 (from the boundary
condition ¢_(R)=0). To solve these equations, apply 10, to the first line

if (u) + g (u) = Af(u) and multiply iy to the second line —igflu) — ig'(u) = Ag(u), then
add, and then use the first line to get

—f"(u) + 1 () = 2GS () + g () = —f"(u) + 18/ (u) = 221 (u).

Solving this equation for f(#) and using that f(0) = 0, we see that

f(u) = sinh (\/ w— /12u> (modulo a constant).

Now the equation if’ (u) + g (u) = Af(u) implies that

i/ 12 — 2* cosh (\/ug - m) +iu,g(u) = Asinh (\/ﬂg — ;ﬁ:).

Substituting # = R, using that g(R) =0, and then squaring both sides, we see that

— (2 — 2*)cosh’ <\/,u,% - 12R> = }’sinh’ (\/,u,% — )?R),

Using that cosh’z = 1 + sinh?z, we obtain

— (1} = 2*) — igsinh’® (w/#g - ;313) =0.

It is easily checked that 4 cannot equal +p, therefore we conclude that

Jor — 1 is an eigenvalue of 8 over span{¢,, ¢, } < /2 is an eigenvalue of &

2
t sinh(y/ 2 — 2°R)

over span{¢,, ¢, } = Fi(1) =1+ =0

As should be obvious by now, to evaluate the zeta function of 8> over span{¢;, ¢, }:

2sinms [ d )
Lls) = - /0 xfzsalong(lx)dx

we need to find Fy(ix). To do so, observe that
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2
SN M .12
Fr(ix) =1+ g sinh <\/,uﬁ +x2R>

k
2
2 2 2
]% (eR‘ [+ e /uk+x’>

1 er2 2
_1 + ( 2R g 24 x2 2+672RW)
wﬁw
2 2R\/ 12 +x2
etV VKt (1 N <2+ ) SR\ i 4R /i2 +x2)
4(p +x2) 1

Substituting this formula for Fi(ix) into 2s0m [ x=2 4 Jog F7 (ix) dx, we see that

~ 2sinms [ 0 d 2R\ JiTTE ZSmTcs 5 d 2
Le(s) = - /Ox dxlog(e i )dx - /Ox dxlog(uk+x)dx

+ 2sin s / x‘zsi log < <2 + > SRV e4R\/“kT> dx.
T 0 dx 1

By Lemma A.1, the first integral is equal to

2si o0 . r(s—1
sin Tcs/ foSi log (eZRW> dx = 2Ru 725+1 (S z)
T Jo dx VI (s)

and the second integral is equal to

2sin 7S d oy
- /o alog(uker)dx 2.

Summing over all k, we have proved the following theorem (the meromorphy statements
follow just as in Theorem 3.1):

Theorem 4.5. Denoting by 59 the restriction of 0p, to ker (Dy)*" with the chiral Dirichlet
conditions, we have

G =R 3—%@

Vl'(s)
2y Sin s / -~ log (1 (2 + ) SR e“RW) dx.
1450 1

In particular, Cg% (8) has a meromorphic extension to the whole complex plane except for
simple poles at s = 5% where k=0,1,2, ... and "5* ¢ {0} U —N.

Therefore,

, R d I'(s—3) 1 ,

i f®m(ﬂ)%< 1)) -0
4x? 3 5

+2 Z / — log (1 + (2 +i2> e RV | g 4Ry it ) dx
My
>0
=—2CR — CDz -2 Z log (1 4 2e 2/ 4 ¢=*Rm)
>0

=—2CR -} (0) -2 > log (1 + e 2Rm)?,

>0
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1 d
2y/m ds =0
of

eik{;z(o) _ detDzyeZCR H (1 + e_zR“k)4.

>0
Combining this formula with Lemma 4.2, we get

where C = — (%j) {pz (s —3)). Thus, we have

Theorem 4.6. The zeta function Céz (s) has a meromorphlc extension to the whole complex
plane except for simple poles at s = Tk, where k=0,1,2, ... and % ¢ {0} U —N and

21d — — -
det;d;,, = R*e**2" det Dj, H (1+e2)* . det” ( (010)_ = (0102) ),

4

>0

where h s lhIf_,’( number of  (+1)-eigenvalues of (0102)-, hy=dimker(Dy) and
C=—5r&loat 2 o (s —3)-

5. Conclusions

In this article, we have performed an analysis of zeta functions of Laplace and Dirac-
type operators over finite cylinders M = [0, R]x Y, where different boundary conditions
have been imposed at the boundary. The general structure of the results is that answers
for operators over M are expressed in terms of data coming solely from Y. As long as
the manifold Y is not specified this is the best that can be achieved.

All problems considered are solved in a unified framework, in which the starting point
is a contour integral representation of the zeta function involving an implicit eigenvalue
equation for the Laplacian or the Dirac operator on M. The method uses the Argument
Principle, or Cauchy’s formula, and the analysis proceeds along very natural and elegant
lines. It is clearly not restricted to the present setting, but whenever eigenvalues are solu-
tions of implicit equations, this strategy can be applied.

Appendix A. Some simple formulas

Lemma A.1. We have

sinzs (%, d Ry/12 42 et T —3)
—1 He R
T /0 Yo 8 (e )dx My mr(s)

and

sin 1ts o ,Sd a —2s
- /0 xzalog((ui—l—xz))dx—a,ukz.

Proof. Without the factor %, the first integral is equal to

—2s 2 2 _ —2s —2s+1
x 7 — Rq/u(—l—x)dx—R/ x / —dx
/0 dv : 0 Vg2 e (1 +x2)*

— Ru;Z,v+l /oox72s+l ldx
0 (1+ )}
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Modifying the well-known formula for the Beta function (cf. [1, p. 258])

 eioa 1 I'la—s)I(s—a+w)
25+2a—1 dx — Al
o 20(w) A
and the fact that I'(}) = /m [1, p. 255], we see that
/"fozﬁl 1 :F(l—s)F(s—%):F(l—s)F(s—%).
0 (1 —|—x2)% 2r(3) 2yn
Therefore,
sinms [, d Ry g sinms T(1—s)I'(s —3)
- /0 X dxlog(e i )dx—R,uk - NG .
By the Reflection Formula [1, p. 256]
b sin 1ts 1
sinms Fer=s) = . I(s)[(1—5) (A-2)
we see that
sinms (%, d Ry/1 a2 ot T =)
il | " —R Y
- /o X P og(e i )dx n SNCIRD
as claimed.
Now the second integral is equal to
o d o 1
a x 2 —log (12 + x*)dx = Za/ X B
| o+ ) e

1

_ —2s = —2s5+1
= 2a,uk A x5t m dx.
By (A.1), we see that

/” TR T —s)I'(s)  I'(1—s)I(s)
X ————dx= = .
0 (1 +x2) 2r(1) 2
Therefore, by the Reflection Formula,
sints [, d p Ly sinms I'(1 —$)I(s) Y
- /0 x 2alog((,u,zc—&—xz))dsza,uk2 - 3 = ap;*

This proves the second integral and completes our proof. [

Note added in proof

Results related to Theorems 3.1 and 3.2 have also been obtained by Dowker and Apps
in [73,74].
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