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Abstract. In this article we consider the zeta regularized determinant of Laplace-type oper-
ators on the generalized cone. For arbitrary self-adjoint extensions of a matrix of singular
ordinary differential operators modelled on the generalized cone, a closed expression for
the determinant is given. The result involves a determinant of an endomorphism of a finite-
dimensional vector space, the endomorphism encoding the self-adjoint extension chosen.
For particular examples, like the Friedrich’s extension, the answer is easily extracted from
the general result. In combination with (Bordag et al. in Commun. Math. Phys. 182(2):371–
393, 1996), a closed expression for the determinant of an arbitrary self-adjoint extension of
the full Laplace-type operator on the generalized cone can be obtained.

1. Introduction

Motivated by endeavors to give answers to some fundamental questions in quan-
tum field theory there has been significant interest in the problem of calculating the
determinants of second order Laplace-type elliptic differential operators; see for
example [6,58,96,97,100]. In case the operator � in question has regular coeffi-
cients and is acting on sections of a vector bundle over a smooth compact manifold,
it will have a discrete eigenvalue spectrum λ1 ≤ λ2 ≤ · · · → ∞. If all eigenvalues
are different from zero the determinant, formally defined by det� = ∏i λi , is
generally divergent. In order to make sense out of it different procedures like Pauli-
Villars regularization [93] or dimensional regularization [104] have been invented.
Mathematically the probably most pleasing regularization is the zeta function pre-
scription introduced by Ray and Singer [98] (see also [48,72]) in the context of
analytic torsion; see i.e. [7–9,89,90].
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In this method, one uses the zeta function ζ(s,�) associated with the spectrum
λi of �. In detail, for the real part of s large enough one has

ζ(s,�) =
∞∑

i=1

λ−s
i .

In the briefly described smooth setting, one can show that ζ(s,�) is analytic about
s = 0 [67,101,108], which allows to define a zeta regularized determinant via

detζ (�) = e−ζ ′(0,�).

This definition has been used extensively in quantum field theory, see i.e. [18,22,51–
54,72,74], as well as in the context of the Reidemeister–Franz torsion [98,99]. In
particular, in one dimension rather general and elegant results may be obtained,
which has attracted the interest of mathematicians especially in the last decade or
so [20,21,50,59,60,83–85]. In higher dimensions known results are restricted to
highly symmetric configurations [13–15,22,43–45,49] or conformally related ones
[10,11,15,46,47].

Whereas most analysis has been done in the smooth setting, relevant situations
do not fall into this category. For example, in order to compute quantum corrections
to classical solutions in Euclidean Yang–Mills theory [25,103] singular potentials
need to be considered. They also serve for the description of physical systems like
the Calogero Model [3,4,26–28,55,92] and conformal invariant quantum mechan-
ical models [2,19,29,30,38,61,95]. More recently they became popular among
physicists working on space-times with horizons. There, for a variety of black
holes, singular potentials are used to describe the dynamics of quantum particles
in the asymptotic near-horizon region [5,35,63,68,88].

A similar situation occurs when manifolds are allowed to have conical singular-
ities [31,34]. Under these circumstances, in general, ζ ′(0,�) will not be defined,
although for special instances this definition still makes sense; nearly all of the
literature has concentrated on these special instances. In order to describe these
instances in more detail, let us consider a bounded generalized cone. As we will
see below, the Laplacian on a bounded generalized cone has the form

� = − ∂2

∂r2 + 1

r2 A�,

where A� is defined on the base of the cone. If A� has eigenvalues in the interval
[ 3

4 ,∞) only, one can show that � is essentially self-adjoint and no choices for
self-adjoint extensions exist. Spectral functions, in particular the determinant, have
been analyzed in detail in [13]. In case A� has one or more eigenvalues in the inter-
val [− 1

4 ,
3
4 ) different self-adjoint extensions exist; see for example [34,87]. Most

literature is concerned with the so-called Friedrich’s extension [16,23,24,34,36,
37,41,42,82,83,102] and homogeneous or scale-invariant extensions [34,82,86].
Exceptions are [55–57] where general self-adjoint extensions associated with one
eigenvalue in [− 1

4 ,
3
4 ) have been considered. For recent and ongoing work involving

resolvents of general self-adjoint extensions of cone operators, see e.g. Gil et al.
[65,66] and Coriasco et al. [40]. Only recently, properties of spectral functions for
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arbitrary self-adjoint extensions over the generalized cone have been understood
[77]; a summary of the results is given in Sect. 2. In particular, the zeta function
is shown to have a logarithmic branch point at s = 0, in addition to the standard
simple pole at s = 0. A natural construct for the determinant is to subtract off these
singular terms and to consider the derivative of the finite remainder. This also is
explained in Sect. 2.

The details of the singular behavior as s → 0, as well as of the finite terms,
strongly depend on the self-adjoint extension. In Sect. 3 we therefore briefly review
the construction of self-adjoint extensions on the generalized cone using the Hermi-
tian symplectic extension theory [70,71,73,78–81,91,94]. This, finally, provides
the set-up for the analysis of the zeta function for arbitrary self-adjoint extensions.
Even in the most general case eigenvalues are determined by an implicit or tran-
scendental equation, a perfect starting point for the contour integration method
described in detail in [12–14,74–76]. This method allows us to find the determi-
nant for arbitrary self-adjoint extensions, the main result, see Theorem 2.3, being
derived in Sect. 4. In Sect. 5 we apply the answer for the general case to certain
natural self-adjoint extensions. The conclusions provide a brief summary.

2. Zeta functions on generalized cones and their ζ -determinants

In this section we review the notion of Laplace-type operators over generalized
cones and we discuss the pathological properties of their zeta functions, which may
have poles of arbitrary multiplicity and countably many logarithmic singularities.
We state a natural procedure to define the ζ -regularized determinant and finally, we
state the main formulas of this paper.

2.1. Generalized cones and regular singular operators

Let � be a smooth (n − 1)-dimensional compact manifold (with or without bound-
ary). Then the generalized cone with base �, also called a cone over �, is the
n-dimensional manifold

M = [0, R]r × �,

where R > 0 and the metric of M is of the type dr2 + r2h with h a metric over �.
Let E be a Hermitian vector bundle over M and let

�M : C∞
c (M \ {0} × �, E) → C∞

c (M \ {0} × �, E)

be a Laplace-type operator with the Dirichlet condition at r = R having the form

�M = −∂2
r − n − 1

r
∂r + 1

r2��,

where �� is a Laplace-type operator acting on C∞(�, E�) where E� := E |�; if
� has a boundary we put Dirichlet conditions (for example) at ∂�. By introducing
a Liouville transformation, we can write �M in an equivalent way that is more
convenient for analysis. Writing φ ∈ L2(M, E, rn−1drdh) as

φ = r− n−1
2 φ̃, (2.1)
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where φ̃ := r
n−1

2 φ, we have
∫

M

〈φ,ψ〉 rn−1 dr dh =
∫

M

〈φ̃, ψ̃〉 dr dh,

and a short computation shows that

�Mφ =
(

−∂2
r − n − 1

r
∂r + 1

r2��

)

φ = r− n−1
2 � φ̃,

where

� := −∂2
r + 1

r2 A� (2.2)

with A� := �� + n−1
2

( n−1
2 − 1

)
. In conclusion: Under the isomorphism (2.1),

L2(M, E, rn−1dr dh) is identified with L2(M, E)with the standard measure dr dh,
and �M is identified with the operator � in (2.2). It turns out that for analytical
purposes, the operator� is somewhat more natural to work with. Notice that if��
happens to be nonnegative, then

A� = �� + n − 1

2

(
n − 1

2
− 1

)

≥ �� − 1

4
≥ −1

4
,

where we used the fact that the function x(x −1) has the minimum value − 1
4 (when

x = 1
2 ). In fact, it is both a necessary and sufficient condition that A� ≥ − 1

4 in
order that�M (or�) be bounded below [16,23,24]. For this reason, we henceforth
assume that A� ≥ − 1

4 . The operator � is called a second order regular singular
operator [16].

Let {λ�} denote the spectrum of A� . Then Weyl’s alternative [107] immediately
shows that 0 is in the limit case if and only if −1/4 ≤ λ� < 3/4 [106]. Consider
only those eigenvalues in [− 1

4 ,
3
4 ):

− 1

4
= λ1 = λ2 = · · · = λq0︸ ︷︷ ︸

=− 1
4

< λq0+1 ≤ λq0+2 ≤ · · · ≤ λq0+q1︸ ︷︷ ︸
− 1

4<λ�<
3
4

, (2.3)

where each eigenvalue is counted according to its multiplicity. Then, as a conse-
quence of von Neumann’s theory of self-adjoint extensions the self-adjoint exten-
sions of� are in a one-to-one correspondence to the Lagrangian subspaces in C

2q

where q = q0 + q1 and where C
2q has the symplectic form described in (3.3)

[32–34,64,81,82,87]. A concrete description of these Lagrangian subspaces is as
follows (see Proposition 3.2). A subspace L ⊂ C

2q is Lagrangian if and only if
there exists q ×q complex matrices A and B such that the rank of the q ×2q matrix(A B) is q, A′ B∗ is self-adjoint where A′ is the matrix A with the first q0 columns
multiplied by −1, and

L = {v ∈ C
2q | (A B) v = 0}. (2.4)

Given such a subspace L ⊂ C
2q there exists a canonically associated domain

DL ⊂ H2(M, E) such that

�L := � : DL −→ L2(M, E)

is self-adjoint (see Proposition 3.3).
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2.2. Exotic zeta functions

�L has pure discrete spectrum [82], and hence, if {µ j } denotes the spectrum of
�L , then we can form the zeta function

ζ(s,�L) :=
∑

µ j �=0

1

µs
j
.

The meromorphic structure of ζ(s,�L) (or the corresponding heat trace) has been
extensively studied for special self-adjoint extensions, as for example the Fried-
richs extension [13,16,23,24,34,36,37,41,42,62,102], which corresponds to tak-
ing A = 0 and B = Id in (2.4) [16], and the homogeneous or scale-invariant
extensions [34,82,86], which corresponds to taking A and B to be diagonal matri-
ces with 0’s and 1’s along the diagonal such that the first q0 entries along the diagonal
of B are 1’s and A+B = Id [86]. In these cases, the zeta function has the “regular”
meromorphic structure; that is, the same structure as on a smooth manifold with one
exception, ζ(s,�L)might have a pole at s = 0. For general self-adjoint extensions,
the meromorphic structure has been studied in [55–57,77,87]. The papers [55–57]
are devoted to one-dimensional Laplace-type operators over the unit interval and
[77,87] study the general case of operators over manifolds. The papers [55–57,87]
show that ζ(s,�L) has, in addition to the “regular" poles, additional simple poles
at “unusual" location. In [77] it was shown that the zeta function ζ(s,�L) has, in
the general case, in addition to the “unusual" poles, meromorphic structures that
remained unobserved and which are unparalleled in the zeta function literature such
as poles of arbitrary order and logarithmic singularities.

The main result of [77] not only states the existence of such exotic singularities
but it also gives an algebraic-combinatorial algorithm that finds these singularities
explicitly. Although the algorithm is described in detail there, we have to provide a
summary in order to set up the notation used in the rest of the paper. The algorithm
is described as follows.

Step 1: Let A and B be as in (2.4) and define the function

p(x, y) := det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A B
x Idq0 0 0 0

0 τ1 y2ν1 0 0

0 0
. . . 0

0 0 0 τq1 y2νq1

Idq

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (2.5)

where Idk denotes the k × k identity matrix and where

ν j :=
√

λq0+ j + 1

4
, τ j = 22ν j

�(1 + ν j )

�(1 − ν j )
, j = 1, . . . , q1,

with q0, q1, λ j as in (2.3). Expanding the determinant, we can write p(x, y) as a
finite sum

p(x, y) =
∑

a jα x j y2α,
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where the α’s are linear combinations of ν1, . . . , νq1 and the a jα’s are constants.
Let α0 be the smallest of all α’s with a jα �= 0 and let j0 be the smallest of all j’s
amongst the a jα0 �= 0. Then factoring out the term a j0α0 x j0 y2α0 in p(x, y)we can
write p(x, y) in the form

p(x, y) = a j0α0 x j0 y2α0
(

1 +
∑

bkβ xk y2β
)

(2.6)

for some constants bkβ (equal to akβ/a j0α0 ).
Step 2: Second, putting z =∑ bkβ xk y2β into the power series log(1 + z) =

∑∞
k=1

(−1)k−1

k zk and formally expanding, we can write

log
(

1 +
∑

bkβxk y2β
)

=
∑

c�ξ x� y2ξ (2.7)

for some constants c�ξ . By construction, the ξ ’s appearing in (2.7) are nonnegative,
countable, and approach +∞ unless β = 0 is the only β in (2.6), in which case
only ξ = 0 occurs in (2.7). Also, for a fixed ξ , the �’s with c�ξ �= 0 are bounded
below.

Step 3: Third, for each ξ appearing in (2.7), define

pξ := min{� ≤ 0 | c�ξ �= 0} and �ξ := min{� > 0 | c�ξ �= 0}, (2.8)

whenever the sets {� ≤ 0 | c�ξ �= 0} and {� > 0 | c�ξ �= 0}, respectively, are non-
empty. Let P , respectively L , denote the set of ξ values for which the respective
sets are nonempty. The following theorem is our main result [77, Theorem 2.1].

Theorem 2.1. The ζ -function ζ(s,�L) extends from Res > n
2 to a meromorphic

function on C \ (−∞, 0]. Moreover, ζ(s,�L) can be written in the form

ζ(s,�L) = ζreg(s,�L)+ ζsing(s,�L),

where ζreg(s,�L) has possible “regular" poles at the “usual" locations s = n−k
2

with s /∈ −N0 for k ∈ N0 and at s = 0 if dim � > 0, and where ζsing(s,�L) has
the following expansion:

ζsing(s,�L) = sin(πs)

π

⎧
⎨

⎩
( j0 − q0)e

−2s(log 2−γ ) log s

+
∑

ξ∈P

fξ (s)

(s + ξ)|pξ |+1 +
∑

ξ∈L

gξ (s) log(s + ξ)

⎫
⎬

⎭
, (2.9)

where j0 appears in (2.6) and fξ (s) and gξ (s) are entire functions of s such that

fξ (−ξ) = (−1)|pξ |+1cpξ ξ
|pξ |!
2|pξ | ξ

and

gξ (s) =
⎧
⎨

⎩

c�0,0
2�0

(�0−1)! s
�0 + O(s�0+1) if ξ = 0,

−c�ξ ξ
ξ 2�ξ
(�ξ−1)! (s + ξ)�ξ−1 + O((s + ξ)�ξ ) if ξ > 0.
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Remark 2.2. The expansion (2.9) means that for any N ∈ N,

ζsing(s,�L) = sin(πs)

π

⎧
⎨

⎩
( j0 − q0)e

−2s(log 2−γ ) log s +
∑

ξ∈P, ξ≤N

fξ (s)

(s + ξ)|pξ |+1

+
∑

ξ∈L , ξ≤N

gξ (s) log(s + ξ)

⎫
⎬

⎭
+ FN (s),

where FN (s) is holomorphic for Res ≥ −N . Note that the leading terms as s → 0
are contained in ζreg(s,�L) and the first term of ζsing(s,�L).

2.3. ζ -determinant formulæ

For a general self-adjoint extension, Theorem 2.1 shows that the ζ(s,�L) may
not only have a simple pole at s = 0 (from ζreg(s,�L)) but also a logarithmic
singularity at s = 0. Needless to say, the zeta function is rarely regular at s = 0
except for special self-adjoint extensions. In particular, the usual definition of the
zeta-regularized determinant is ill-defined via taking the derivative of ζ(s,�L) at
s = 0. However, we can still associate a natural definition of a determinant by
subtracting off the singularities. Thus, let us define

ζ0(s,�L) := ζ(s,�L) − c

s
− ( j0 − q0)s log s,

where c = Ress=0ζreg(s,�L). The term c/s cancels the possible pole of ζreg(s,�L)

at s = 0 and by the explicit formula (2.9) for ζsing(s,�L), the term ( j0 −q0)s log s
cancels the logarithmic singularity of ζsing(s,�L) at s = 0 up to a term that is
O(s2 log s) at s = 0. It follows that lims→0+ ζ ′

0(s,�L) exists. Therefore, we can
define

detζ (�L) := exp

(

− lim
s→0+ζ

′
0(s,�L)

)

This definition of course agrees with the standard definition in case ζ(s,�L ) is regu-
lar at s = 0. In Theorem 2.3 below, we find an explicit formula for this determinant.
Because of some unyielding constants, it is elegant to write our main formula as
a relative formula in terms of the Neumann extension. The Neumann extension is
given by choosing A and B to be the diagonal matrices with the q0 + 1, . . . , q
entries in A equal to 1 and the 1, . . . , q0 entries in B equal to 1 with the rest of the
entries 0. By Corollary 4.7 (or [86]), we find the explicit formula

detζ (�N ) = (2πR)
q
2

q1∏

j=1

2ν j R−ν j

�(1 − ν j )
· detζ (�̃) (2.10)

where �̃ is the (essentially self-adjoint) operator obtained by projecting� onto the
eigenvalues of A� in [ 3

4 ,∞) (see (3.1) for a more precise definition of �̃). The
determinant detζ (�̃) is given explicitly in Equation (9.8) of [13] when R = 1, with
a similar formula holding for arbitrary R > 0. We refer the reader to [13] for the
appropriate details on detζ (�̃). The following theorem is our main result.
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Theorem 2.3. For a Lagrangian L ⊂ C
2q such that the operator obtained by

projecting � onto the eigenvalues of A� in [− 1
4 ,

3
4 ) is invertible, we have

detζ (�L)

detζ (�N )
= (−2eγ )q0− j0

a j0α0

det

⎛

⎝
A B

Idq0 0
0 R2ν

(log R)Idq0 0
0 Idq1

⎞

⎠,

where a j0α0 is the coefficient in (2.6) and R2ν is the q1 × q1 diagonal matrix with
entries R2ν� for 1 ≤ � ≤ q1.

Combining this formula with (2.10), we get an explicit formula for detζ (�L).
The next result follows from an application of Theorem 2.3 to a particular class

of matrices A and B.

Theorem 2.4. Let q − r = rank(A) and assume that A has r rows and columns
identically zero. Let i1, . . . , iq be a permutation of the numbers 1, . . . , q such that
the rows and columns i1, . . . , ir of A are zero. Choose j0 ∈ {0, 1, . . . , q0} such
that

1 ≤ i1 < i2 < · · · < i j0 ≤ q0 < i j0+1 < · · · < ir ≤ q.

Let Ir denote the q × q matrix which is zero everywhere except along the diagonal
where the entries i1, . . . , ir equal 1, and let Iq−r denotes the q × q matrix which is
zero everywhere except along the diagonal where the entries ir+1, . . . , iq equal 1.
Then for a Lagrangian L having A as a first component and satisfying the condition
in Theorem 2.3, we have:

detζ (�L)

detζ (�N )
= (−2eγ )q0− j0

r∏

j= j0+1

[

2−2νi j
�(1 − νi j )

�(1 + νi j )

]

det

(A B
Ir Iq−r

)−1

×det

⎛

⎝
A B

Idq0 0
0 R2ν

(log R)Idq0 0
0 Idq1

⎞

⎠.

See Sect. 5 for more special cases including one-dimensional operators.

3. The Hermitian symplectic theory of self-adjoint extensions

In this section we briefly explain the correspondence between self-adjoint exten-
sions and the Lagrangian subspaces described by (2.4). This correspondence is a
direct consequence of von Neumann’s classical theory of self-adjoint extensions; a
partial list of relevant references is [32–34,64,70,71,73,78–82,87,91,94,105,106].
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3.1. Reduction to the model problem

Let {λ�} denote the set of all eigenvalues of A� and let E� denote the span of the
λ�th eigenvector. Let� and�⊥ denote, respectively, the orthogonal projections of
L2(�, E�) onto W :=⊕− 1

4 ≤λ�< 3
4

E� ∼= C
q and W ⊥. Using the isometry between

L2([0, R] × �, E) ∼= L2([0, R], L2(�, E�)),

we obtain the corresponding projections on L2([0, R] × �, E), which we denote
with the same notations � and �⊥. Since A� preserves W and W ⊥, we can write

� = L ⊕ �̃,

where

�̃ := �⊥��⊥ = −∂2
r + 1

r2 A�
∣
∣
W⊥ , (3.1)

and L is the (matrix) ordinary differential operator

L := ��� = − d2

dr2 + 1

r2 A,

where A is the q × q diagonal matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1
4 Idq0 0

0

λq0+1 0 0 · · · 0
0 λq0+2 0 · · · 0
0 0 λq0+3 · · · 0

0 0 0
. . . 0

0 0 0 · · · λq0+q1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

here we write A with respect to the basis of W = ⊕− 1
4 ≤λ�< 3

4
E� ∼= C

q . It is

well-known that the operator �̃ is essentially self-adjoint [16,17,23,24,87] There-
fore, the various self-adjoint extensions of � are simply the various self-adjoint
extensions of the “toy model operator" L, which we now study.

3.2. Self-adjoint extensions of the model operator

The key to determining the self-adjoint extensions of L is to first characterize the
maximal domain of L:

Dmax :=
{
φ ∈ L2([0, R],Cq) | Lφ ∈ L2([0, R],Cq) and φ(R) = 0

}
,

which is the largest set of L2 functions on which L can act and stay within L2. As
an immediate consequence of Cheeger [33,34] we have
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Proposition 3.1. φ ∈ Dmax if and only if φ(R) = 0 and φ has the following form:

φ =
q0∑

�=1

{
c�(φ) r

1
2 e� + cq+�(φ) r

1
2 log re�

}

+
q1∑

�=1

{
cq0+�(φ) rν�+

1
2 eq0+� + cq+q0+�(φ) r−ν�+ 1

2 eq0+�
}

+ φ̃, (3.2)

where

ν� :=
√

λq0+� + 1

4
> 0,

e� is the column vector with 1 in the �th slot and 0’s elsewhere, the c j (φ)’s are con-

stants, and the φ̃ is continuously differentiable on [0, R] such that φ̃(r) = O(r 3
2 )

and φ̃′(r) = O(r 1
2 ) near r = 0, and Lφ̃ ∈ L2([0, R],Cq).

We next want to formulate the correspondence between self-adjoint extensions
and Lagrangian subspaces with respect to a suitable symplectic form. Let

J :=
(

0 −Idq

Idq 0

)

,

and recall that

C
2q × C

2q � (v,w) �→ 〈Jv,w〉 ∈ C

is the standard Hermitian symplectic form on C
2q ; that is, this form is Hermitian

antisymmetric and nondegenerate. Now defining T : C
2q → C

2q by

T (v1, . . . , v2q) = (−v1, . . . ,−vq0 , vq0+1, . . . , v2q)

and putting �φ = (c1(φ), c2(φ), . . . , c2q(φ))
t , �ψ = (c1(ψ), c2(ψ), . . . , c2q(ψ))

t ,
one has

〈Lφ,ψ〉 − 〈φ,Lψ〉 = 〈J T �φ, T �ψ 〉 =: ω( �φ, �ψ), (3.3)

where

ω(v,w) := 〈J T v, Tw〉 for all v,w ∈ C
2q

defines a symplectic form on C
2q . We say that a subspace L ⊂ C

2q is Lagrangian
(with respect to ω) if

{w ∈ C
2q | ω(v,w) = 0 for all v ∈ L} = L .

Self-adjoint extensions of L are then in one-to-one correspondence with Lagrang-
ian subspaces of (C2q , ω) in the sense that given any Lagrangian subspace L ⊂ C

2q

and defining

DL := {φ ∈ Dmax | �φ ∈ L},
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the operator

LL := L : DL −→ L2([0, R],Cq)

is self-adjoint and any self-adjoint extension of L is of the form LL for some
Lagrangian subspace L ⊂ C

2q . The fact that any Lagrangian subspace L ⊂ C
2q

with respect to the standard symplectic form can be described by a system of equa-
tions

L =
{
v ∈ C

2q | (A B) v = 0
}

⊂ C
2q , (3.4)

where A and B are q × q matrices such that
(A B) has full rank and AB∗ is

self-adjoint translates into the following result when the symplectic form ω is used.

Proposition 3.2. The set in (3.4) is a Lagrangian subspace of (C2q , ω) if and only
if the rank of

(A B) is q and A′ B∗ is self-adjoint where A′ is the matrix A with
the first q0 columns of A multiplied by −1.

The following proposition concludes our summary of basically known results.

Proposition 3.3. The self-adjoint extensions of�are in one-to-one correspondence
with Lagrangian subspaces of (C2q , ω). More, precisely, self-adjoint extensions are
of the form

�L = LL ⊕ �̃,

where

LL := L : DL → L2([0, R],Cq) , DL := {φ ∈ Dmax | �φ ∈ L}.
Here, L ⊂ C

2q is given by (3.4) where A and B are q ×q matrices such that
(A B)

has rank q and A′ B∗ is self-adjoint.

4. Proof of Theorem 2.3

In this section we prove Theorem 2.3 using the contour integration method
[12–14,74–76]. We begin by reducing our computation to the model operator.

4.1. Reduction to the model problem

From the results in Sect. 3 it is clear that the zeta function of �L splits according
to

ζ(s,�L) = ζreg(s,�L)+ ζsing(s,�L), (4.1)

where

ζreg(s,�L) := ζ(s, �̃) and ζsing(s,�L) := ζ(s,LL).

The properties of �̃, including the spectral functions, have been studied extensively,
see for example [13,34,37,42]. In particular, ζreg(s,�L) has possible poles at the
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usual locations s = n−k
2 with s /∈ −N0 for k ∈ N0 and at s = 0 if dim � > 0. The

residue of ζreg(s,�L) at s = 0 is given by

c := Ress=0ζreg(s,�L) = −1

2
Ress=− 1

2
ζ(s, A�).

In particular, this vanishes if ζ(s, A�) is in fact analytic at s = − 1
2 . Furthermore,

the determinant

detζ (�̃) := exp

(

− d

ds

∣
∣
∣
∣
s=0

{
ζ(s, �̃)− c

s

})

is thoroughly studied in [13]. The meromorphic structure of the singular function
ζsing(s,�L) := ζ(s,LL) has the properties stated in Theorem 2.1, which was
proved in [77]. In particular,

ζ0(s,LL) := ζ(s,LL) − ( j0 − q0)s log s,

is differentiable at s = 0 and so

detζ (LL) := exp

(

− lim
s0→0+

d

ds

∣
∣
∣
∣
s0=0

ζ0(s,LL)

)

is defined. Also, by (4.1), we have

detζ (�L) = detζ (LL) · detζ (�̃)

Therefore, we have reduced to computing detζ (LL). We shall compute this in Prop-
osition 4.5, but first we need to review some fundamental results from [77].

4.2. Properties of the implicit eigenvalue equation

In order to analyze detζ (LL), we need to understand the behavior of the eigenvalue
equation for LL . In order to write down the eigenvalue equation, we need some
notation. Define the q × q matrices

J+(µ) :=

⎛

⎜
⎜
⎝

J0(µR)Idq0 0 · · · 0

0 2ν1�(1 + ν1) µ
−ν1 Jν1 (µR) · · · 0

0 0 · · · 0

0 0
.
.
. 0

0 0 · · · 2
νq1 �(1 + νq1 ) µ

−νq1 Jνq1
(µR)

⎞

⎟
⎟
⎠

and

J−(µ) :=

⎛

⎜
⎜
⎝

J̃0(µR)Idq0 0 · · · 0

0 2−ν1�(1 − ν1) µ
ν1 J−ν1 (µR) · · · 0

0 0 · · · 0

0 0
.
.
. 0

0 0 · · · 2−νq �(1 − νq ) µ
νq1 J−νq1

(µR)

⎞

⎟
⎟
⎠

where Jv(z) denotes the Bessel function of the first kind and

J̃0(µr) := π

2
Y0(µr)− (logµ− log 2 + γ ) J0(µr), (4.2)
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with Y0(z) the Bessel function of the second kind. Now we define

F(µ) := det

( A B
J+(µ) J−(µ)

)

. (4.3)

Then F(µ) is an even function of µ. Indeed, to see this observe that, by definition,
F(µ) is expressed in terms of µv J−v(µR) with appropriate v’s and the function
J̃0(µR). The following equation [1, p. 360]

z−v Jv(z) =
∞∑

k=0

(−1)k z2k

2v+2kk!�(v + k + 1)
(4.4)

shows that µ−v Jv(µR) is even while the equality [1, p. 360]:

π

2
Y0(z) = (log z − log 2 + γ ) J0(z)−

∞∑

k=1

Hk(− 1
4 z2)k

(k!)2 , (4.5)

where Hk := 1 + 1
2 + · · · + 1

k , and the definition of J̃0(µr) in (4.2) show that
J̃0(µR) is even.

The importance of F(µ) lies in the following Proposition.

Proposition 4.1. µ2 is an eigenvalue of LL if and only if F(µ) = 0. Moreover,

F(0) = det

⎛

⎝
A B

Idq0 0
0 Rν

(log R)Idq0 0
0 R−ν

⎞

⎠,

where R±ν are the q1 × q1 diagonal matrices with entries R±ν� for 1 ≤ � ≤ q1.

The first statement is straightforward to prove by solving the equation (LL −
µ2)φ = 0 for φ and using the fact that L = {v ∈ C

2q | (A B) v = 0
}

and that
φ ∈ DL . The details are provided in Proposition 4.2 of [77]. The formula for F(0)
follows directly from Equations (4.2), (4.4) and (4.5).

The following lemma analyzes the asymptotics of F(µ) as |µ| → ∞ and is
proved in Proposition 4.3 of [77].

Lemma 4.2. Let ϒ ⊂ C be a sector (closed angle) in the right-half plane. Then
we can write

F(i x) = (2πR)−
q
2

q1∏

j=1

2−ν j�(1 − ν j ) x |ν|− q
2 eqx R (γ̃ − log x)q0

×p
(
(γ̃ − log x)−1 , x−1

)
(1 + f (x)) , (4.6)

where γ̃ = log 2 − γ , p(x, y) is the function in (2.5), and where as |x | → ∞ with
x ∈ ϒ , f (x) is a power series in x−1 with no constant term.

Using this lemma, we prove the following Proposition.
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Proposition 4.3. Let ϒ ⊂ C be a sector in the right-half plane. Then we can write

F(i x) = Cx |ν|− q
2 −2α0 eqx R(γ̃ − log x)q0− j0 (1 + G(x)) , (4.7)

where

C = a j0α0(2πR)−
q
2

q1∏

j=1

2−ν j�(1 − ν j ), (4.8)

with a j0α0 the coefficient in (2.6), and G(x) = O
(

1
log x

)
and G ′(x) = O

(
1

x(log x)2

)

as |x | → ∞ with x ∈ ϒ .

Proof. Recall that α0 is the smallest of all α’s with a jα �= 0 and j0 is the smallest
of all j’s amongst the a jα0 �= 0 in the expression

p(x, y) =
∑

a jα x j y2α,

which is obtained by expanding the determinant in the definition of p(x, y). Fac-
toring out a j0α0 x j0 y2α0 in p(x, y) we can write p(x, y) in the form (see (2.6))

p(x, y) = a j0α0 x j0 y2α0
(

1 +
∑

bkβ xk y2β
)
,

where we may assume that all bkβ �= 0. By definition of α0, all the β’s in this
expression are nonnegative real numbers and the k’s can be nonpositive or nonneg-
ative integers except when β = 0, when the k’s can only be positive by definition
of j0. Now observe that

p
(
(γ̃ − log x)−1 , x−1

)
= a j0α0 (γ̃ − log x)− j0 x−2α0 (1 + g(x)) , (4.9)

where g(x) =∑ bkβ (γ̃ − log x)−k x−2β . Notice that as x → ∞,

(γ̃ − log x)−k = O
(

1

log x

)

for k > 0,

and, because log x increases slower than any positive power of x ,

(γ̃ − log x)−k x−2β = O
(

1

log x

)

for k ∈ Z and β > 0.

Therefore, g(x) = O
(

1
log x

)
. A similar argument shows that g′(x) = O

(
1

x(log x)2

)
.

Finally, replacing the formula (4.9) into the formula (4.6), we obtain

F(i x) ∼ Cx |ν|− q
2 −2α0 eqx R(γ̃ − log x)q0− j0 (1 + g(x)) (1 + f (x))

∼ Cx |ν|− q
2 −2α0 eqx R(γ̃ − log x)q0− j0 (1 + G(x)) ,

where C is given in (4.8) and G(x) = f (x) + g(x) + f (x) g(x). The “big-O"
properties of g(x) we discussed above and the fact that f (x) is a power series in
x−1 with no constant term shows that G(x) has the desired properties. ��
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4.3. Computation of detζ (LL)

In order to facilitate the computation, we first need to establish the following

Lemma 4.4. For any constants c and |t | such that log |t | > c, we have

∞∫

|t |
x−2s−1 1

c − log x
dx = e−2sc log s + e−2sc (γ + log(2(log |t | − c))+ O(s)) ,

where O(s) is an entire function of s that is O(s) at s = 0.

Proof. To analyze this integral we make the change of variables u = log x − c or
x = ec eu , and obtain

∞∫

|t |
x−2s−1 1

c − log x
dx = −e−2sc

∞∫

log |t |−c

e−2su du

u
.

Making the change of variables y = 2su, we get

∞∫

|t |
x−2s−1 1

c − log x
dx = −e−2sc

∞∫

2s(log |t |−c)

e−y dy

y

= e−2scEi (−2s(log |t | − c)) ,

where Ei(z) := − ∫∞
−z e−y dy

y is the exponential integral (see [1, Chap. 5] or [69,

Sect. 8.2]). From [69, p. 877], we have

Ei(z) = γ + log(−z)+
∞∑

k=1

zk

k · k! ,

therefore
∞∫

|t |
x−2s−1 1

c − log x
dx = e−2sc (γ + log(2s(log |t | − c))+ O(s))

= e−2sc log s + e−2sc (γ + log(2(log |t | − c))+ O(s)) ,
where O(s) is an entire function of s that is O(s) at s = 0. ��

We now compute detζ (LL) explicitly.

Proposition 4.5. If ker LL = {0},

detζ (LL) = (2πR)
q
2

a j0α0

q1∏

j=1

2ν j

�(1 − ν j )
(−2eγ )q0− j0

×det

⎛

⎝
A B

Idq0 0
0 Rν

(log R)Idq0 0
0 R−ν

⎞

⎠.
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Fig. 1. The contour γ for the zeta function. The ×’s represent the zeros of F(µ) and squaring
these ×’s are the eigenvalues of LL . Here, t is on the imaginary axis and |t |2 is larger than
the largest absolute value of a negative eigenvalue of LL (if it has any). The contour γt goes
from t to −t

Proof. First, applying the Argument Principle (which is really a form of Cauchy’s
formula) [39, p. 123], the ζ -function of LL is given by

ζ(s,LL) = 1

2π i

∫

γ

µ−2s d

dµ
log F(µ)dµ = 1

2π i

∫

γ

µ−2s F ′(µ)
F(µ)

dµ,

where γ is a contour in the plane shown in Fig. 1. Breaking up our integral into
three parts, one from t to i∞, another from −i∞ to −t , and then another over γt ,
which is the part of γ from t to −t , we obtain

ζ(s,LL) = 1

2π i

∫

γ

µ−2s d

dµ
log F(µ) dµ

= 1

2π i

⎧
⎪⎨

⎪⎩
−

∞∫

|t |
(i x)−2s d

dx
log F(i x) dx+

∞∫

|t |
(−i x)−2s d

dx
log F(−i x) dx

⎫
⎪⎬

⎪⎭

+ 1

2π i

∫

γt

µ−2s F ′(µ)
F(µ)

dµ

= 1

2π i

(
−e−iπs + eiπs

) ∞∫

|t |
x−2s d

dx
log F(i x) dx

+ 1

2π i

∫

γt

µ−2s F ′(µ)
F(µ)

dµ,



Functional determinants on the generalized cone 111

or,

ζ(s,LL) = sin πs

π

∞∫

|t |
x−2s d

dx
log F(i x) dx + 1

2π i

∫

γt

µ−2s F ′(µ)
F(µ)

dµ. (4.10)

The first step to compute detζ (LL) is to construct the analytical continuation of the
first integral in (4.10) to s = 0; the second term (being entire since it is an integral
over a finite contour) is already regular at s = 0. To do so, recall Proposition 4.3
(see (4.7)), which states that we can write

F(i x) = Cx |ν|− q
2 −2α0 eqx R(γ̃ − log x)q0− j0 (1 + G(x)) ,

where

C = a j0α0(2πR)−
q
2

q1∏

j=1

2−ν j�(1 − ν j ),

and where G(x) = O
(

1
log x

)
and G ′(x) = O

(
1

x(log x)2

)
as |x | → ∞. Hence,

∞∫

|t |
x−2s d

dx
log F(i x) dx

=
∞∫

|t |
x−2s d

dx
log (1 + G(x)) dx

+
∞∫

|t |
x−2s d

dx
log
(

Cx |ν|− q
2 −2α0 eqx R(γ̃ − log x)q0− j0

)
dx .

The second integral can be computed explicitly:

∞∫

|t |
x−2s d

dx
log
(

x |ν|− q
2 −2α0 eqx R(γ̃ − log x)q0− j0

)
dx

=
∞∫

|t |
x−2s

(
|ν| − q

2 − 2α0

x
+ q R − (q0 − j0)

x(γ̃ − log x)

)

dx

=
(
|ν| − q

2
− 2α0

) |t |−2s

2s
+ q R

|t |−2s+1

2s − 1
+ ( j0 − q0)

∞∫

|t |
x−2s−1 1

γ̃ − log x
dx .

From Lemma 4.4 we know that
∞∫

|t |
x−2s−1 1

γ̃ − log x
dx = e−2sγ̃ log s + g(s),
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where g(s) is entire such that

g(0) = γ + log(2(log |t | − γ̃ )). (4.11)

Therefore,

ζ(s,LL) = sin πs

π

(
|ν| − q

2
− 2α0

) |t |−2s

2s
+ sin πs

π
q R

|t |−2s+1

2s − 1

+ sin πs

π
( j0 − q0)e

−2sγ̃ log s + sin πs

π
( j0 − q0)g(s)

+ sin πs

π

∞∫

|t |
x−2s d

dx
log (1 + G(x)) dx + 1

2π i

∫

γt

µ−2s F ′(µ)
F(µ)

dµ.

Since

sin πs

π
( j0 − q0)e

−2sγ̃ log s ≡ ( j0 − q0)s log s

modulo a function that is O(s2 log s), it follows that

ζ0(s,LL) =ζ(s,LL)− ( j0 − q0)s log s

≡ sin πs

π

(
|ν| − q

2
− 2α0

) |t |−2s

2s
+ sin πs

π
q R

|t |−2s+1

2s − 1

+ sin πs

π
( j0 − q0)g(s)+ sin πs

π

∞∫

|t |
x−2s d

dx
log (1 + G(x)) dx

+ 1

2π i

∫

γt

µ−2s F ′(µ)
F(µ)

dµ (4.12)

modulo a function that is O(s2 log s). The derivative of the fourth term on the right
in (4.12) is equal to

cosπs

∞∫

|t |
x−2s d

dx
log (1 + G(x)) dx

−2 sin πs

π

∞∫

|t |
x−2s(log x)

d

dx
log (1 + G(x)) dx . (4.13)

Since G(x) = O
(

1
log x

)
and G ′(x) = O

(
1

x(log x)2

)
as |x | → ∞ we can put s = 0

into the first term in (4.13) and get

∞∫

|t |

d

dx
log (1 + G(x)) dx = − log (1 + G(|t |)) .
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Also using the asymptotics of G(x) and G ′(x), we see that the second term in (4.13)
satisfies, for s ∈ R with s → 0+,

2 sin πs

π

∞∫

|t |
x−2s(log x)

d

dx
log (1 + G(x)) dx

= O

⎛

⎜
⎝s

∞∫

|t |
x−2s (log x)

x(log x)2
dx

⎞

⎟
⎠

= O

⎛

⎜
⎝s

∞∫

|t |
x−2s 1

x(log x)
dx

⎞

⎟
⎠ = O (s log s) ,

where we used Lemma 4.4 with c = 0. In conclusion,

lim
s→0+

d

ds

⎧
⎪⎨

⎪⎩

sin πs

π

∞∫

|t |
x−2s d

dx
log (1 + G(x)) dx

⎫
⎪⎬

⎪⎭
= − log (1 + G(|t |)) .

Now, using that

sin(πs)

π

∣
∣
∣
s=0

= 0 ,
d

ds

sin(πs)

π

∣
∣
∣
s=0

= 1 ,
sin(πs)

πs

∣
∣
∣
s=0

= 1 ,
d

ds

sin(πs)

πs

∣
∣
∣
s=0

= 0,

and the formula (4.11) for g(0), we can take the derivatives of the other terms in
(4.12) and set s = 0 to conclude that

lim
s→0+ ζ

′
0(s,LL) = −

(
|ν| − q

2
− 2α0

)
log |t | − q R|t | + ( j0 − q0)g(0)

− log (1 + G(|t |))− 1

π i

∫

γt

logµ
F ′(µ)
F(µ)

dµ

= −
(
|ν| − q

2
− 2α0

)
log |t | − q R|t |

+ ( j0 − q0) (γ + log(2(log |t | − γ̃ )))

− log (1 + G(|t |))− 1

π i

∫

γt

logµ
F ′(µ)
F(µ)

dµ.
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By definition of G(x), we have

log (1 + G(|t |)) = log

(
F(i |t |)

C |t ||ν|− q
2 −2α0 eq|t |R(γ̃ − log |t |)q0− j0

)

= log

(
F(i |t |)

C(−1)q0− j0

)

− log
(
|t ||ν|− q

2 −2α0 eq|t |R(log |t | − γ̃ )q0− j0
)

= log

(
F(i |t |)

C(−1)q0− j0

)

−
(
|ν| − q

2
− 2α0

)
log |t | − q R|t |

+ ( j0 − q0) log(log |t | − γ̃ ).

Replacing this expression into the preceding expression for lims→0+ ζ ′
0(s,LL),

cancelling appropriate terms, and using that F(i |t |) = F(t) since t = i |t |, we
obtain

lim
s→0+ ζ

′
0(s,LL) = − log

(
F(t)

C(−1)q0− j0

)

+ ( j0 − q0) (γ + log 2)

− 1

π i

∫

γt

logµ
F ′(µ)
F(µ)

dµ

= − log

(

(−1)q0− j0 2q0− j0 e(q0− j0)γ F(t)

C

)

− 1

π i

∫

γt

logµ
F ′(µ)
F(µ)

dµ.

Therefore,

detζ (LL) = (−1)q0− j0 2q0− j0 e(q0− j0)γ F(t)

C
· exp

⎛

⎝ 1

π i

∫

γt

logµ
F ′(µ)
F(µ)

dµ

⎞

⎠ .

(4.14)

This formula is derived, a priori, when t is on the upper half part of the imaginary
axis. However, the right-hand side is a holomorphic function of t ∈ D , where D
is the set of complex numbers minus the negative real axis and the zeros of F(µ).
Therefore (4.14) holds for all t ∈ D . Note that this equality holds in general even
if LL has a nontrivial kernel. But to control the factor exp( 1

π i

∫
γt

· dµ), we need the
condition that ker LL = {0}. Under this condition, recalling that γt is any curve in
D from t to −t , the trick now is to let t → 0 in (4.14), that is, taking t → 0 in D
from the upper half plane as shown in Fig. 2, it follows that

exp

⎛

⎝ 1

π i

∫

γt

logµ
F ′(µ)
F(µ)

dµ

⎞

⎠→ exp (0) = 1.
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Fig. 2. The contour γt as we let t → 0 in D from the upper half plane

We also have

F(0) = det

⎛

⎝
A B

Idq0 0
0 Rν

(log R)Idq0 0
0 R−ν

⎞

⎠

from Proposition 4.1.
In conclusion, taking t → 0 on the right side of (4.14), we see that

detζ (LL) = (−2eγ )q0− j0

C
det

⎛

⎝
A B

Idq0 0
0 Rν

(log R)Idq0 0
0 R−ν

⎞

⎠ .

Finally, using that C = a j0α0(2πR)−
q
2
∏q1

j=1 2−ν j�(1 − ν j ), we get

detζ (LL) = (2πR)
q
2

a j0α0

q1∏

j=1

2ν j

�(1 − ν j )
(−2eγ )q0− j0

×det

⎛

⎝
A B

Idq0 0
0 Rν

(log R)Idq0 0
0 R−ν

⎞

⎠. (4.15)

This completes the proof of Proposition 4.5. ��
Remark 4.6. In the case that LL is not invertible, F(t) → F(0) = 0 as t → 0
since 0 is an eigenvalue of LL . On the other hand, the left side detζ (LL) does not
depend on t . This means that the factor exp( 1

π i

∫
γt

· dµ) blows up as t → 0. (Here
γt should not contain the zero as in Fig. 1.) Therefore, to get the value of detζ (LL),
we need to know the exact form of the asymptotics of F(t) and exp( 1

π i

∫
γt

· dµ) as
t → 0.

Recall that the Neumann extension is given by choosing A and B to be the
diagonal matrices with the q0 + 1, . . . , q entries in A equal to 1 and the 1, . . . , q0
entries in B equal to 1 with the rest of the entries 0. Then the resulting operator
LN has the trivial kernel. This can be shown as follows: First, by the simple form
of A,B, we may assume that q0 = 1, q1 = 0 or q0 = 0, q1 = 1. For the first

case, the solution of LLφ = 0 should have the form φ = c1r
1
2 if it exists since the
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term r
1
2 log r should vanish by the condition of A,B at r = 0. But, the Dirichlet

condition at r = R implies that φ = c1r
1
2 can not be the solution of LL either. The

second case can be treated in a similar way. Now we have

Corollary 4.7. The following equality holds

detζ (LN ) = (2πR)
q
2

q1∏

j=1

2ν j R−ν j

�(1 − ν j )
.

Proof. This proof is just a direct application of the formula (4.15). Observe that
for A and B defining the Neumann extension,

p(x, y) := det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A B
x Idq0 0 0 0

0 τ1 y2ν1 0 0

0 0
. . . 0

0 0 0 τq1 y2νq1

Idq

⎞

⎟
⎟
⎟
⎟
⎟
⎠

[6pt] = det

(
0 Idq0

x Idq0 Idq0

)

· det

⎛

⎜
⎜
⎜
⎝

Idq1 0
τ1 y2ν1 0 0

0
. . . 0

0 0 τq1 y2νq1

Idq1

⎞

⎟
⎟
⎟
⎠

= (−1)q0 xq0 .

Therefore, j0 = q0, α0 = 0, and a j0α0 = (−1)q0 for the Neumann extension. In
the same way we simplified p(x, y), we can simplify

det

⎛

⎝
A B

Idq0 0
0 Rν

(log R)Idq0 0
0 R−ν

⎞

⎠

= det

(
0 Idq0

Idq0 (log R)Idq0

)

· det

(
Idq1 0
Rν R−ν

)

= (−1)q0

q1∏

j=1

R−ν j .

Therefore, by (4.15), we have

detζ (LN ) = (2πR)
q
2

(−1)q0

q1∏

j=1

2ν j

�(1 − ν j )
(−2eγ )0(−1)q0

q1∏

j=1

R−ν j

= (2πR)
q
2

q1∏

j=1

2ν j R−ν j

�(1 − ν j )
.

��



Functional determinants on the generalized cone 117

This corollary agrees with the result in [86]. In particular, for an extension L
with ker LL = {0}, we have

detζ (LL)

detζ (LN )
= (−2eγ )q0− j0

a j0α0

det

⎛

⎝
A B

Idq0 0
0 R2ν

(log R)Idq0 0
0 Idq1

⎞

⎠,

and this formula completes the proof of Theorem 2.3.

5. Special cases of Theorem 2.3

In this section we derive various consequences of Theorem 2.3.

5.1. Row and column conditions

We begin by proving Theorem 2.4. Actually, the proof of Theorem 2.4 follows
directly from Theorem 2.3 and the following lemma, which computes a j0α0 in
(2.6) explicitly under the row and columns condition of Theorem 2.4.

Lemma 5.1. Let q − r = rank(A) and assume that A has r rows and columns
identically zero. Let i1, . . . , iq be a permutation of the numbers 1, . . . , q such that
the rows and columns i1, . . . , ir of A are zero. Choose j0 ∈ {0, 1, . . . , r} such that

1 ≤ i1 < i2 < · · · < i j0 ≤ q0 < i j0+1 < · · · < ir ≤ q.

Let Ir denote the q × q matrix which is zero everywhere except along the diagonal
where the entries i1, . . . , ir equal 1, and let Iq−r denote the q × q matrix which is
zero everywhere except along the diagonal where the entries ir+1, . . . , iq equal 1.

Then det

(A B
Ir Iq−r

)

�= 0 and

p(x, y) = a j0,α0 x j0 y2α0 (1 + O(|(x, y)|)
where

a j0α0 =
r∏

j= j0+1

22νi j
�(1 + νi j )

�(1 − νi j )
· det

(A B
Ir Iq−r

)

and α0 = νi j0+1 + νi j0+2 · · · + νir .

Proof. Assume for the moment that j0 ≥ 1. Let A1 denote the matrix A with the
i1th column removed, let J1(x, y) denote the matrix

⎛

⎜
⎜
⎜
⎝

x Idq0 0 0 0
0 τ1 y2ν1 0 0

0 0
. . . 0

0 0 0 τq1 y2νq1

⎞

⎟
⎟
⎟
⎠

(5.1)
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with the i1 column and row removed, and finally, let C1 denote the q1 × q1 identity
matrix with the i1th row removed. Then expanding the determinant of the matrix
in the definition of p(x, y):

p(x, y) := det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A B
x Idq0 0 0 0

0 τ1 y2ν1 0 0

0 0
. . . 0

0 0 0 τq1 y2νq1

Idq

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

about the i1th column, recalling that the i1th column of A is zero, we get

p(x, y) = ±x det

( A1 B
J1(x, y) C1

)

(5.2)

(for an appropriate choice of sign, which happens to equal (−1)2i1+q in this case).
Assume for the moment that j0 ≥ 2. Let A2 denote the matrix A with the i1 and i2
columns removed, let J2(x, y) denote the matrix (5.1) with the i1 and i2 columns
and rows removed, and finally, let C2 denote the q1 × q1 identity matrix with the i1
and i2 rows removed. Then expanding the determinant of the matrix in (5.2) about
the column containing the zero i2th column of A, we get

p(x, y) = ±x2 det

( A2 B
J2(x, y) C2

)

. (5.3)

At this point, we see the general pattern: We expand the determinant in (5.3) about
the column containing the zero i3th column of A and then we continue the process
of expanding about each column containing the zero i4, i5, i6, . . . , ir columns of
A. At the end, we arrive at

p(x, y) = ±τ̃ x j0 y2ν̃ det

( Ar B
Jr (x, y) Cr

)

, (5.4)

where Ar denotes the matrix A with the i1, . . . , ir columns removed, Jr (x, y)
denotes the matrix (5.1) with the i1, . . . , ir columns and rows removed, and Cr

denotes the q × q identity matrix with the i1, . . . , ir rows removed.
Now observe that

± det

( Ar B
Jr (0, 0) Cr

)

= ± det

(Ar B
0 Cr

)

= det

(A B
Ir Iq−r

)

;

indeed, the first equality is obvious because Jr (0, 0) is the zero matrix while the

second equality can be easily verified by expanding the determinant det

(A B
Ir Iq−r

)

about the zero i1, i2, . . . , ir columns of A just as we did in the previous paragraph.

It remains to prove that det

(A B
Ir Iq−r

)

�= 0. To see this, recall that the i1, . . . , ir

rows of A are identically zero. This implies that, since the rank of A is q − r , the
rows of A complementary to i1, . . . , ir , namely the ir+1, . . . , iq rows where we use
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the notation as in the statement of this lemma, are linearly independent. Therefore,
since the matrix

(A B) has rank q, the i1, . . . , ir rows of A are identically zero, and
the ir+1, . . . , iq rows of A are linearly independent, it follows that the i1, . . . , ir
rows of B are linearly independent and these rows, together with the ir+1, . . . , iq

rows of A span all of C
q . Now recall that the i1, . . . , ir columns of A are identi-

cally zero; in particular, the span of the ir+1, . . . , iq rows of A does not contain any
ei1 , . . . , eir , where e j denote the unit vector in C

q with j th slot equal to 1 and 0’s
elsewhere. It follows that the span of the ir+1, . . . , iq rows of A (which are linearly
independent) is contained in the span of eir+1 , . . . , eiq . Therefore, by the property
of dimension,

the span of the ir+1, . . . , iq rows of A = the span of eir+1 , . . . , eiq . (5.5)

Hence, as the i1, . . . , ir rows of B plus the ir+1, . . . , iq rows of A span all of C
q ,

it follows that

the span of the i1, . . . , ir rows of B = the span of ei1 , . . . , eir . (5.6)

We are now ready to prove our lemma. The nonzero rows of
(A

Ir

)

are linearly independent by (5.5). The rows in the matrix
( B

Iq−r

)

that are complementary to the nonzero rows of

(A
Ir

)

are therefore linearly inde-

pendent by (5.6). It follows that the matrix

(A B
Ir Iq−r

)

has full rank, which is

equivalent to det

(A B
Ir Iq−r

)

�= 0. Now the formula of a j0α0 follows from (2.6)

and (5.4). This completes the proof. ��

5.2. Decomposable Lagrangians

Because the − 1
4 eigenvalues and the eigenvalues in (− 1

4 ,
3
4 ) of A� result in rather

different analytic properties, it is natural to separate these eigenvalues. With this
discussion in mind, we shall call a Lagrangian subspace L ⊂ V decomposable if
L = L0 ⊕ L1 where L0 is a Lagrangian subspace of

⊕
λ�=− 1

4
E� ⊕ E� and L1 is

a Lagrangian subspace of
⊕

− 1
4<λ�<

3
4

E� ⊕ E�. As described in Proposition 3.2,
the Lagrangian subspace L0 is determined by two q0 × q0 matrices A0, B0 where
q0 = dim L0, that is, the multiplicity of the eigenvalues λ� = − 1

4 . Similarly, the
Lagrangian subspace L1 is determined by two q1 × q1 matrices A1, B1 where
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q1 = dim L1, that is, the multiplicity of the eigenvalues λ� with − 1
4 < λ� <

3
4 .

Thus, the function p(x, y) in (2.5) takes the form

p(x, y) := det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0 0
0 A1

B0 0
0 B1

x Idq0 0 0 0
0 τ1 y2ν1 0 0

0 0
. . . 0

0 0 0 τq1 y2νq1

Idq

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= det

( A0 B0
x Idq0 Idq0

)

· det

⎛

⎜
⎜
⎜
⎝

A1 B1

τ1 y2ν1 0 0

0
. . . 0

0 0 τq1 y2νq1

Idq1

⎞

⎟
⎟
⎟
⎠

=: p0(x) · p1(y),

where p0 and p1 are the corresponding determinants in the second line. Expanding
the determinants, we can write

p0(x) =
∑

a j x j and p1(y) =
∑

bα y2α. (5.7)

The next theorem follows immediately from Proposition 4.5 and Theorem 2.3.

Theorem 5.2. For a decomposable Lagrangian L ⊂ C
2q such that ker LL = {0},

we have

detζ (LL) = (2πR)
q
2

a j0 bα0

q1∏

j=1

2ν j

�(1 − ν j )
(−2eγ )q0− j0

×det

(A0 B0
Idq0 (log R)Idq0

)

det

(A1 B1
Rν R−ν

)

, (5.8)

where a j0 and bα0 are the coefficients in (5.7) corresponding to the smallest j and
α with a nonzero coefficient in p0(x) and p1(y), respectively. In particular, for the
generalized cone we have

detζ (�L)

detζ (�N )
= (−2eγ )q0− j0

a j0 bα0

det

(A0 B0
Idq0 (log R)Idq0

)

det

( A1 B1

R2ν Idq1

)

.

5.3. The one-dimensional case

Consider now the one-dimensional operator

L := − d2

dr2 + 1

r2 λ over [0, R], where −1

4
≤ λ <

3

4
.

In this one-dimensional case, Lagrangians are given by two 1×1 matrices (numbers)
A = α and B = β whereαβ ∈ R. One can check that (see e.g. [77, Proposition 3.7])
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that we can take α, β ∈ R with α2 + β2 = 1. We shall compute detζ (LL) using
Theorem 5.2 under the assumption ker LL = {0}. Assume that λ = − 1

4 . Then

p0(x) = det

(
α β

x 1

)

= α − β x,

which implies that j0 = 0 and a j0 = α if α �= 0 and j0 = 1 and a j0 = −β if
α = 0, and by (5.8), we have

detζ (LL) = (2πR)
1
2

a j0
(−2eγ )1− j0 det

(
α β

1 (log R)

)

=
√

2πR

a j0
(−2eγ )1− j0 (α log R − β) .

In conclusion, we see that in the case λ = − 1
4 , we have

detζ (LL) =
{

2
√

2πR eγ
(
β
α

− log R
)

if α �= 0√
2πR if α = 0.

Assume now that − 1
4 < λ < 3

4 . Then with ν :=
√
λ+ 1

4 and τ = 22ν �(1+ν)
�(1−ν) , we

have

p1(y) = det

(
α β

τ y2ν 1

)

= α − β τ y2ν,

which implies that α0 = 0 and bα0 = α if α �= 0 and α0 = 2ν and bα0 = −β τ if
α = 0, and by (5.8), we have

detζ (LL) = (2πR)
1
2

bα0

2ν

�(1 − ν)
det

(
α β

Rν R−ν
)

=
√

2πR

bα0

2ν

�(1 − ν)

(
αR−ν − βRν

)
.

In conclusion, we see that in the case − 1
4 < λ < 3

4 , we have

detζ (LL) =
{

2ν+1/2
√
πR �(1 − ν)−1

(
R−ν − β

α
Rν
)

if α �= 0

2−ν+1/2
√
πR �(1 + ν)−1 Rν if α = 0.

6. Conclusions and final remarks

In this article we have considered zeta functions and zeta regularized determinants
for arbitrary self-adjoint extensions of Laplace-type operators over conic manifolds.
In general, the zeta function will have a logarithmic branch point as well as a simple
pole at s = 0. In order to get a well-defined notion of a determinant we propose
to use the natural prescription (2.10). Within this prescription, Theorem 2.3 is the
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central theorem proven in this article. It gives a closed form for the determinant of
the Laplacian over the cone associated with an arbitrary self-adjoint extension. As
we have seen, it is easily applied to particular cases and known results have been
easily reproduced.

For convenience we have chosen to work with Dirichlet boundary conditions at
r = R, emphasizing the role of the self-adjoint extension for the analytic structure
of the zeta function and for the determinant. Equally well other boundary conditions
at r = R can be considered along the same lines.
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