The very unusual properties of the resolvent, heat kernel, and zeta function for the operator $-d^2/dr^2 - 1/(4r^2)$

Klaus Kirstena)
Department of Mathematics, Baylor University, Waco, Texas 76798

Paul Loyab)
Department of Mathematics, Binghamton University, Vestal Parkway East, Binghamton, New York 13902

Jinsung Parkc)
School of Mathematics, Korea Institute for Advanced Study, 207-43, Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-722, Korea

(Received 31 October 2005; accepted 28 February 2006; published online 19 April 2006)

In this paper we analyze the resolvent, the heat kernel and the spectral zeta function of the operator $-d^2/dr^2 - 1/(4r^2)$ over the finite interval. The structural properties of these spectral functions depend strongly on the chosen self-adjoint realization of the operator, a choice being made necessary because of the singular potential present. Only for the Friedrichs realization standard properties are reproduced, for all other realizations highly nonstandard properties are observed. In particular, for $k \in \mathbb{N}$ we find terms like $(\log t)^{-k}$ in the small-t asymptotic expansion of the heat kernel. Furthermore, the zeta function has $s=0$ as a logarithmic branch point.

I. INTRODUCTION

A. Zeta functions and an unusual example

It is well known that the zeta function of a Laplacian over a smooth compact manifold, with or without boundary, defines a meromorphic function on \mathbb{C} with simple poles at prescribed half-integer values depending on the dimension of the manifold. 21 (For a manifold with boundary, we put local boundary conditions, e.g., Dirichlet conditions.) These properties have far reaching applications in physics as well as mathematics, e.g., in the context of Casimir energies, effective actions and analytic torsion; see, for example, Refs. 12–14, 25, 28, and 41.

Surprisingly, there is a completely natural example of a zeta function for which the described properties break down and which has no meromorphic extension to \mathbb{C}. Let $\Omega \subset \mathbb{R}^2$ be any compact region and take polar coordinates $(x, y) \rightarrow (r, \theta)$ centered at any fixed point in Ω. Then in these coordinates, the standard Laplacian on \mathbb{R}^2 takes the form

$$\Delta_{\mathbb{R}^2} = -\partial_x^2 - \partial_y^2 = -\partial_r^2 - \frac{1}{r} \partial_r - \frac{1}{r^2} \partial_\theta^2,$$

and the measure transforms to $dx\,dy = r\,dr\,d\theta$. A short computation shows that

a) Electronic mail: klaus.Kirsten@baylor.edu
b) Electronic mail: paul@math.binghamton.edu
c) Electronic mail: jinsung@kias.re.kr
\[\Delta_{B^2} \phi = \left(-\frac{\partial^2}{r} - \frac{1}{r} \partial_r - \frac{1}{r^2} \partial_\theta^2 \right) \phi = \mathcal{R}^{-1} \left(-\frac{\partial^2}{r^2} + \frac{1}{r^2} \left(-\frac{\partial_\theta^2}{2} - \frac{1}{4} \right) \right) \mathcal{R} \phi, \]

where \(\mathcal{R} \) is the multiplication map by \(r^{1/2} \), which is an isometry from \(L^2(\Omega, r \, dr \, d\theta) \) to \(L^2(\Omega, \, dr \, d\theta) \). Hence, the following two operators are equivalent under \(\mathcal{R} \):

\[\Delta_{B^2} \leftrightarrow -\frac{\partial^2}{r^2} + \frac{1}{r^2} A, \quad \text{where} \quad A = -\frac{\partial_\theta^2}{2} - \frac{1}{4}. \]

In the zero eigenspace of \(-\partial_\theta^2 \), we obtain the operator of the form \(-\partial^2 - (1/4r^2) \). Then this Laplace type operator has many different self-adjoint realizations parametrized by angles \(\theta \in [0, \pi] \); the angle \(\theta = \pi/2 \) corresponds to the so-called Friedrichs realization. Each realization has a discrete spectrum. Consider any one of the realizations, say \(\Delta_\theta \), with \(\theta \neq \pi/2 \) and form the corresponding zeta function,

\[\xi(s, \Delta_\theta) := \sum_{\lambda_j \neq 0} \frac{1}{\lambda_j^s}, \]

where the \(\lambda_j \)'s are the eigenvalues of \(\Delta_\theta \). The shocking fact is that every such zeta function corresponding to an angle \(\theta \in [0, \pi] \), except \(\theta = \pi/2 \), does not have a meromorphic extension to \(\mathbb{C} \); in fact each such zeta function has a logarithmic branch cut with \(s = 0 \) as the branch point.

B. Self-adjoint realizations

The properties of the Laplace operator considered above boil down to the main object of consideration in this paper,

\[\Delta := -\frac{d^2}{dr^2} - \frac{1}{4r^2} \quad \text{over} \quad [0, R]. \tag{1.1} \]

In Sec. II we work out an explicit description of the maximal domain of \(\Delta \). In order to choose a self-adjoint realization of \(\Delta \), we first fix a boundary condition for \(\Delta \) at \(r=R \); it turns out that any such boundary condition for \(\phi \in \mathcal{D}_{\max}(\Delta) \) must be of the form (see Sec. IV)

\[\cos \theta_2 \phi'(R) + \sin \theta_2 \phi(R) = 0. \tag{1.2} \]

In other words, the boundary conditions we can choose at \(r=R \) are parametrized by angles \(\theta_2 \in [0, \pi] \). Note that the Dirichlet condition is when \(\theta_2 = \pi/2 \) and the Neumann condition is when \(\theta_2 = 0 \). Let us henceforth fix an angle \(\theta_2 \in [0, \pi] \) and consider \(\Delta \) with the condition in (1.2). At \(r = 0 \), the operator \(\Delta \) is singular and a limiting procedure \(r \to 0 \) must be used to define boundary conditions. As shown in Sec. III (see also Sec. IV), the self-adjoint realizations of \(\Delta \) with the condition (1.2) are again parametrized by angles \(\theta_1 \in [0, \pi] \); the paper by Kochubei\(^\text{31} \) is perhaps one of the earliest references to contain such a parametrization. It turns out that \(\theta_1 = \pi/2 \) corresponds to the Friedrichs realization.

As we will show in Theorem 2.1, \(\phi \in \mathcal{D}_{\max}(\Delta) \) if and only if it can be written in the form

\[\phi = c_1(\phi) r^{1/2} + c_2(\phi) r^{1/2} \log r + \mathcal{O}(r^{3/2}), \]

where \(c_1(\phi) \) and \(c_2(\phi) \) are constants depending on \(\phi \). In terms of these constants, given angles \(\theta_1, \theta_2 \in [0, \pi] \), we consider the operator

\[\Delta_{\mathcal{L}} := \Delta : \mathcal{D}_{\mathcal{L}} \to L^2([0, R]), \]

where
\[D_L = \{ \phi \in D_{\max}(\Delta) | \cos \theta_1 c_1(\phi) + \sin \theta_1 c_2(\phi) = 0, \cos \theta_2 \phi'(R) + \sin \theta_2 \phi(R) = 0 \}. \]

Here, the subscript “L” represents the two-dimensional subspace \(L \subset \mathbb{C}^4 \) defined by
\[L = \{ (z_1, z_2, z_3, z_4) \in \mathbb{C}^4 | \cos \theta_1 z_1 + \sin \theta_1 z_2 = 0, \cos \theta_2 z_3 + \sin \theta_2 z_4 = 0 \}. \]

This vector space is a Lagrangian subspace of \(\mathbb{C}^4 \) with respect to a natural Hermitian symplectic form intimately related to self-adjoint realizations of \(\Delta \); see Sec. III. For general references on this relation see; Refs. 23, 24, 27, and 31–34. For a study of adjoints of “cone operators” (in the sense of Schulze) see Ref. 19. For properties of resolvents of cone operators see, for example, Refs. 20 and 42.

C. The resolvent, heat kernel, and zeta function

When \(\theta_1 = \pi/2 \) (the Friedrichs realization), the following properties concerning the resolvent, heat kernel, and zeta function are well known; see for example, Brüning and Seeley,7,8 Falomir et al.,15 or Mooers.38 With \(\theta_1 = \pi/2 \), the following properties hold.

Theorem 1.1 (cf. Refs. 8, 15, and 38): Fixing a boundary condition \((1.2) \) at \(r=R \), let \(\Delta_L \) denote the corresponding Friedrichs realization (that is, take \(\theta_1 = \pi/2 \)). Then

1. **Let \(\Lambda \subset \mathbb{C} \) be any sector (solid angle) not intersecting the positive real axis. Then as \(|\lambda| \to \infty \) with \(\lambda \in \Lambda \), we have**

 \[
 \text{Tr}(\Delta_L - \lambda)^{-1} \sim \sum_{k=0}^{\infty} a_k (-\lambda)^{-k/2}.
 \]

2. **As \(t \to 0 \), we have**

 \[
 \text{Tr}(e^{-t\Delta_L}) \sim \sum_{k=0}^{\infty} b_{k\pi/2} (t^{k-1/2}).
 \]

3. **The zeta function**

 \[
 \zeta(s, \Delta_L) = \text{Tr}(\Delta_L^{-s})
 \]

 extends from \(\Re s > 1/2 \) to a meromorphic function on \(\mathbb{C} \) with poles at \(s=1/2-k \) for \(k = 0, 1, 2, \ldots \).

These properties are “usual” in that they remain valid, with appropriate changes, to Laplace-type operators on compact manifolds (with or without boundary); see for example, Gilkey’s book for a thorough treatment. The first result of this paper shows that for any other realization, these properties are completely destroyed; see also Ref. 29.

Theorem 1.2: With any boundary condition \((1.2) \) fixed at \(r=R \), choose a self-adjoint realization \(\Delta_L \) of the resulting operator that is not the Friedrichs realization. (That is, take \(\theta_1 \neq \pi/2 \) or \(\theta_1 = \pi/2 \).) Let \(\kappa = \log 2 - \gamma - \tan \theta_1 \) where \(\gamma \) is the Euler constant. Then the following properties hold:

1. **Let \(\Lambda \subset \mathbb{C} \) be any sector (solid angle) not intersecting the positive real axis. Then as \(|\lambda| \to \infty \) with \(\lambda \in \Lambda \), we have**

 \[
 \text{Tr}(\Delta_L - \lambda)^{-1} \sim \frac{1}{(\lambda)(\log(-\lambda) - 2\kappa)} + \sum_{k=1}^{\infty} b_k (-\lambda)^{-k/2}.
 \]

2. **As \(t \to 0 \), we have (here \(\Im \) denotes “imaginary part of”)**

 \[
 \text{Tr}(e^{-t\Delta_L}) \sim \frac{1}{\pi} \left(\int_1^\infty e^{-tx} \frac{1}{x(\log x + i\pi - 2\kappa)} \, dx \right) + \sum_{k=0}^{\infty} b_k t^{(k-1)/2}.
 \]
(3) The zeta function \(\zeta(s, \Delta_L) \) can be written in the form

\[
\zeta(s, \Delta_L) = -\frac{e^{-2\pi \kappa \sin \pi s}}{\pi} \log s + \zeta_{\kappa}(s),
\]

where \(\zeta_{\kappa}(s) \) extends from \(\Re s > 1/2 \) to a holomorphic function on \(C \) with poles at \(s=1/2-k \) for \(k=0,1,2,\ldots \). In particular, \(\zeta(s, \Delta_L) \) has \(s=0 \) as a logarithmic branch point.

Remark 1.3: The authors have never seen a natural geometric differential operator with discrete spectrum on a compact manifold having a spectral zeta function with properties of the sort described in this theorem.

Remark 1.4: The first term in assertion (1) can be expanded further if needed. In the formulation of this theorem we leave it in this more useful compact form.

Remark 1.5: The same kind of remark holds for the first term in assertion (2). Expanding further we obtain the following expansion: As \(t \to 0 \), we have

\[
\text{Tr}(e^{-t\Delta_L}) \sim \sum_{k=1}^{\infty} \alpha_k (\log t)^{-k} + \sum_{k=0}^{\infty} \beta_k t^{(k-1)/2}
\]

with the \(\alpha_k \)'s depending on \(\kappa \) via (here \(\Im \) denotes “imaginary part of”)

\[
\alpha_k = -\frac{1}{k\pi} \left(\int_0^t e^{-t}(\log x + i\pi - 2\kappa)^k dx \right), \quad k = 1, 2, 3, \ldots.
\]

The expansion (1.3) is misleading as written because for \(k > 1 \), the terms \(\beta_k t^{(k-1)/2} \) are subleading to any of the inverse log terms. However, we interpret the first sum in the expansion (1.3) to mean that for all \(N \), we have

\[
\frac{1}{\pi} \left(\int_1^\infty \frac{e^{-t}}{x(\log x + i\pi - 2\kappa)} dx \right) = \sum_{k=1}^{N} \alpha_k (\log t)^{-k} + O((\log t)^{-N-1}).
\]

D. Explicit formula for the zeta determinant

Our second result is an explicit formula for a regularized determinant. For concreteness, we shall impose the Dirichlet boundary condition at \(r=R \). That is, given an angle \(\theta \in [0, \pi) \) with \(\theta \neq \pi/2 \), we consider the operator

\[
\Delta_\theta := \Delta : \mathcal{D}_\theta \to L^2([0,R]),
\]

where

\[
\mathcal{D}_\theta = \{ \phi \in \mathcal{D}_{\max}(\Delta) | \cos \theta c_1(\phi) + \sin \theta c_2(\phi) = 0, \phi(R) = 0 \}.
\]

Then from Theorem 1.2, the zeta function \(\zeta(s, \Delta_\theta) \) has the following form:

\[
\zeta(s, \Delta_\theta) = -\frac{e^{-2\pi \kappa \sin \pi s}}{\pi} \log s + \zeta_{\kappa}(s),
\]

where \(\zeta_{\kappa}(s) \) extends from \(\Re s > 1/2 \) to a holomorphic function on \(C \) with poles at \(s=1/2-k \) for \(k=0,1,2,\ldots \).
In particular, \(\zeta(s, \Delta_\omega) \) has the form

\[
\zeta(s, \Delta_\omega) \sim - s \log s + O(s^2 \log s) + \text{holomorphic as } s \to 0. \tag{1.4}
\]

In particular,

\[
\zeta'(s, \Delta_\omega) \sim - \log s + O(s \log s) + \text{holomorphic as } s \to 0,
\]

so the \(\zeta \)-regularized determinant \(\det(\Delta_\omega) := \exp(-\zeta'(0, \Delta_\omega)) \) is not defined. However, from (1.4), we see that

\[
\zeta_{\text{reg}}(s, \Delta_\omega) := \zeta(s, \Delta_\omega) + s \log s
\]
does have a well-defined derivative at \(s = 0 \). For this reason, we define

\[
\det_{\text{reg}}(\Delta_\omega) := \exp(- \zeta'_{\text{reg}}(0, \Delta_\omega)).
\]

In the following theorem, we give a beautiful explicit formula for this regularized determinant.

Theorem 1.6: For any \(\theta \in [0, \pi) \) with \(\theta \neq \pi/2 \), we have

\[
\det_{\text{reg}}(\Delta_\omega) = \left\{ \begin{array}{ll}
2 \sqrt{2} \pi e^{\gamma R^2} \tan(\tan \theta - \log R), & \tan \theta \neq \log R, \\
\pi R e^{\gamma R^2/2}, & \tan \theta = \log R.
\end{array} \right.
\]

We remark that when \(\theta = \pi/2 \), the zeta function \(\zeta(s, \Delta_\omega) \) is regular at \(s = 0 \) and we can also compute the (usual) \(\zeta \)-regularized determinant: For \(\theta = \pi/2 \), we have

\[
\det(\Delta_\omega) = \sqrt{2} \pi R,
\]
a well known result, see, e.g., Theorem 2.3 of Ref. 36, Proposition 5.2 of Ref. 37.

We now outline this article. In Secs. II–IV we study the self-adjoint realizations of our main operator using the Hermitian symplectic theory due to Gelfand (Ref. 39, p. 1); cf. also Refs. 15, 31–33, 37, 38, and 40. Although some of this material can be found piecemeal throughout the literature, we present all the details here in order to keep our paper elementary, self-contained, and “user-friendly.” In Secs. V–VIII we prove Theorem 1.2 in the special case that the Dirichlet boundary condition is chosen at \(r = R \) and in Sec. IX we prove Theorem 6, all using the contour integration method developed in Refs. 3–5. In Sec. X we prove Theorem 1.2 in full generality. Finally, in the Appendix, we explicitly calculate the resolvent of \(\Delta_\omega \) which is needed at various places in our analysis.

II. THE MAXIMAL DOMAIN

Our first order of business is to characterize the self-adjoint realizations of the operator in (1.1); for general references on self-adjoint realizations and their applications to physics see, e.g., Refs. 2, 6, 10, 11, 16–18, 31–34, 40, and 44. To do so, we first need to determine the maximal domain of \(\Delta \):

\[
\mathcal{D}_{\text{max}}(\Delta) := \{ \phi \in L^2([0, R]) | \Delta \phi \in L^2([0, R]) \}.
\]

For a quick review, \(\Delta \phi \) is understood in the distributional sense; thus, \(\Delta \phi \) is the functional on test functions \(C_c^\infty((0, R)) \) defined by

\[
(\Delta \phi)(\xi) := \int_0^R \Delta \xi(r) \phi(r) \, dr \quad \text{for all } \xi \in C_c^\infty((0, R)).
\]

Then \(\Delta \phi \in L^2([0, R]) \) means that the distribution \(\Delta \phi : C_c^\infty((0, R)) \to \mathbb{C} \) is represented by an \(L^2 \) function in the sense that there is a function \(f \in L^2([0, R]) \) such that

\[
(\Delta \phi)(\xi) = \int_0^R \xi(r) \, df(r)
\]
\[
\int_0^R \Delta \xi(r) \overline{\phi(r)} dr = \langle \xi, f \rangle \quad \text{for all } \xi \in C_0^\infty((0,R)),
\]

where \(\langle \cdot, \cdot \rangle\) denotes the \(L^2\) inner product (conjugate linear in the second slot) on \(L^2([0,R])\). The following theorem is inspired by Falomi et al. (Ref. 15, Lemma 2.1).

Theorem 2.1: \(\phi \in D_{\text{max}}(\Delta)\) if and only if \(\phi\) can be written in the form

\[
\phi = c_1(\phi) r^{1/2} + c_2(\phi) r^{1/2} \log r + \bar{\phi},
\]

where \(c_1(\phi), c_2(\phi)\) are constants and \(\bar{\phi}\) is a continuously differentiable function on \([0,R]\) such that \(\overline{\bar{\phi}}(r) = O(r^{3/2})\), \(\bar{\phi}'(r) = O(r^{1/2})\), and \(\Delta \bar{\phi} \in L^2([0,R])\).

Proof: Since

\[
\Delta(c_1 r^{1/2} + c_2 r^{1/2} \log r) = 0,
\]

it follows that any \(\phi\) of the stated form is in \(D_{\text{max}}(\Delta)\). Now let \(\phi \in D_{\text{max}}(\Delta)\); then \(\Delta \phi = f \in L^2([0,R])\). Let us define \(\psi := r^{-1/2} \phi\) so that \(\phi = r^{1/2} \psi\). Then

\[
f = -\phi'' - \frac{1}{4r^2} \phi = \frac{1}{4} r^{-3/2} \psi - r^{-1/2} \psi' - r^{1/2} \psi'' - \frac{1}{4} r^{-3/2} \psi = -r^{-1/2} \psi' - r^{1/2} \psi''.
\]

After multiplication by \(r^{1/2}\), we get

\[
\psi' + r \psi'' = -r^{1/2} f \Rightarrow (r \psi')' = -r^{1/2} f.
\]

Since \(r^{1/2}\) and \(f\) are in \(L^2([0,R])\), by the Cauchy-Schwartz inequality, we know that \(r^{1/2} f\) is in \(L^1([0,R])\), therefore we can conclude that

\[
\psi' = \frac{c_2}{r} - \frac{1}{r} \int_0^r t^{1/2} f(t) dt.
\]

Notice that by Cauchy-Schwartz,

\[
\left| \int_0^r t^{1/2} f(t) dt \right| \leq \sqrt{\int_0^r t dt} \cdot \|f\|_2 = \frac{r}{\sqrt{2}} \|f\|_2.
\]

Thus, the second term on the right-hand side in (2.2) is in \(L^1([0,R])\). Therefore, from (2.2) we see that

\[
\psi(r) = c_1 + c_2 \log r - \int_0^r \frac{1}{x} \int_0^x t^{1/2} f(t) dt dx,
\]

or, since \(\phi = r^{1/2} \psi\), we get

\[
\phi(r) = c_1 r^{1/2} + c_2 r^{1/2} \log r + \bar{\phi}, \quad \bar{\phi} := -r^{1/2} \int_0^r \frac{1}{x} \int_0^x t^{1/2} f(t) dt dx.
\]

By (2.3), we have

\[
\left| \int_0^r \frac{1}{x} \int_0^x t^{1/2} f(t) dt dx \right| \leq \int_0^r \frac{1}{x} \|f\|_2 dx = \frac{r}{\sqrt{2}} \|f\|_2.
\]

From this estimate, it follows that \(\bar{\phi}(r) = O(r^{3/2})\) and \(\bar{\phi}'(r) = O(r^{1/2})\). \(\square\)
III. SELF-ADJOINT REALIZATIONS

Choosing a linear subspace \(D \subset D_{\text{max}}(\Delta) \), we say that

\[
\Delta_D := \Delta: D \to L^2([0,R])
\]

is self-adjoint (in which case \(\Delta_D \) is called a self-adjoint realization of \(\Delta \)) if

\[
\{ \psi \in D_{\text{max}}(\Delta) | (\Delta \phi, \psi) = (\phi, \Delta \psi) \text{ for all } \phi \in D \} = D.
\]

In other words, \(\Delta \) is symmetric on \(D \) and adding any elements to \(D \) will destroy this symmetry.

In order to determine if \(\Delta \) has any self-adjoint realization, we need to analyze the quadratic form

\[
(\phi, \Delta \psi) - (\Delta \phi, \psi) \text{ for } \phi, \psi \in D_{\text{max}}(\Delta).
\]

It turns out that this difference is related to finite-dimensional symplectic linear algebra. Let us define

\[
\omega: \mathbb{C}^4 \times \mathbb{C}^4 \to \mathbb{C}
\]

by

\[
\omega(v, w) := v_1\overline{w_2} - v_2\overline{w_1} + v_3\overline{w_4} - v_4\overline{w_3}.
\]

(3.1)

The function \(\omega \) is Hermitian antisymmetric and nondegenerate; for this reason, \(\omega \) is called a Hermitian symplectic form.

Theorem 3.1: Let \(\phi, \psi \in D_{\text{max}}(\Delta) \) be written in the form (2.1), i.e.,

\[
\phi = c_1(\phi) r^{1/2} + c_2(\phi) r^{1/2} \log r + \overline{\phi},
\]

where \(\overline{\phi} \) is continuously differentiable with \(\overline{\phi}(r) = O(r^{3/2}) \), \(\overline{\phi}'(r) = O(r^{1/2}) \), and \(\Delta \overline{\phi} = L^2([0,R]) \), and with a similar formula holding for \(\psi \). Then,

\[
(\phi, \Delta \psi) - (\Delta \phi, \psi) = \omega(\overline{\phi}, \overline{\psi}),
\]

where \(\omega \) is the Hermitian symplectic form defined above and \(\overline{\phi}, \overline{\psi} \in \mathbb{C}^4 \) are the vectors

\[
\overline{\phi} := (c_1(\phi), c_2(\phi), \phi'(R), \phi(R)), \quad \overline{\psi} := (c_1(\psi), c_2(\psi), \psi'(R), \psi(R)).
\]

Proof: We have

\[
(\phi, \Delta \psi) - (\Delta \phi, \psi) = \lim_{\varepsilon \to 0} R \int_{-\varepsilon}^{\varepsilon} \left(\phi(r) \overline{\Delta \psi(r)} - \Delta \phi(r) \overline{\psi(r)} \right)dr = \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \frac{d}{dr} \left(\phi(r) \overline{\psi'(r)} + \phi'(r) \overline{\psi(r)} \right)dr
\]

\[
= \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \left(c_1(\phi) \overline{\phi'(\varepsilon)} + c_2(\phi) r^{1/2} \overline{\phi(r)} \right)dr
\]

\[
= \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \left(c_1(\psi) \overline{\phi'(\varepsilon)} + c_2(\psi) r^{1/2} \overline{\phi(r)} \right)dr
\]

\[
(3.2)
\]

Recall that

\[
\phi = c_1(\phi) r^{1/2} + c_2(\phi) r^{1/2} \log r + \overline{\phi}, \quad \psi = c_1(\psi) r^{1/2} + c_2(\psi) r^{1/2} \log r + \overline{\psi},
\]

where \(\overline{\phi} \) and \(\overline{\psi} \) are continuously differentiable functions on \([0,R] \) such that \(\overline{\phi}(r), \overline{\phi}'(r) = O(r^{3/2}) \), \(\overline{\psi}'(r), \overline{\psi}'(r) = O(r^{1/2}) \). Taking derivatives, we get

\[
\phi' = \frac{c_1(\phi)}{2} r^{-1/2} + \frac{c_2(\phi)}{2} r^{-1/2} (\log r + 2) + \overline{\phi}'
\]

and similarly for \(\psi' \). It follows that
implies that given any complement of \(w \), we can find a \(L \) such that \(L \) is self-adjoint and define \(D \) by \(D \) means \(L \) is Lagrangian; we shall prove that \(L \) is Lagrangian means \(\{ w \in C^4 \mid \omega(v, w) = 0 \text{ for all } v \in L \} = L. \)

We now have our main result.

Theorem 3.2: Self-adjoint realizations of \(\Delta \) are in one-to-one correspondence with Lagrangian subspaces of \(C^4 \) in the sense that given any Lagrangian subspace \(L \subset C^4 \), defining

\[
D_L := \{ \phi \in D_{\max}(\Delta) \mid \phi \in L \}
\]

the operator

\[
\Delta_L := \Delta : D_L \to L^2([0, R])
\]

is self-adjoint and any self-adjoint realization of \(\Delta \) is of the form \(D_L \) for some Lagrangian \(L \subset C^4 \).

Proof: By definition,

\[
\Delta_D := \Delta : D \to L^2([0, R])
\]

is self-adjoint means

\[
\{ \psi \in D_{\max}(\Delta) \mid \langle \Delta \phi, \psi \rangle = \langle \phi, \Delta \psi \rangle \text{ for all } \phi \in D \} = D.
\]

By Theorem 3.1, we can write this as: \(\Delta_D \) is self-adjoint if and only if

\[
\omega(\tilde{\phi}, \tilde{\psi}) = 0 \text{ for all } \phi \in D \Leftrightarrow \psi \in D.
\]

Suppose that \(\Delta_D \) is self-adjoint and define \(L := \{ \phi \in C^4 \mid \phi \in D \} \); we shall prove that \(L \) is Lagrangian. Let \(w \in L \) and choose \(\psi \in D \) such that \(\tilde{\psi} = w \). Then by (3.3), \(\omega(\tilde{\phi}, w) = 0 \) for all \(\phi \in D \). Therefore, \(\omega(v, w) = 0 \) for all \(v \in L \). Conversely, let \(w \in C^4 \) and assume that \(\omega(v, w) = 0 \) for all \(v \in L \). Choose \(\psi \in D_{\max}(\Delta) \) such that \(\psi = w \); e.g., if \(w = (w_1, w_2, w_3, w_4) \), then

\[
\psi := w_1 r^{1/2} + w_2 r^{1/2} \log r + (w_3 - w_4)(r - R) + w_4
\]

will do. Then \(\omega(v, w) = 0 \) for all \(v \in L \) implies that \(\omega(\tilde{\psi}, \tilde{\phi}) = 0 \) for all \(\phi \in D \), which by (3.3), implies that \(\psi \in D \), which further implies that \(w = \tilde{\phi} \in L \).

Now let \(L \subset C^4 \) be Lagrangian; we shall prove that \(\Delta_L \) is self-adjoint, that is, (3.3) holds. Let \(\psi \in D_L \). Then, since \(L \) is Lagrangian, we automatically have \(\omega(\tilde{\phi}, \tilde{\psi}) = 0 \) for all \(\phi \in D_L \). Conversely, let \(\psi \in D_{\max}(\Delta) \) and assume that \(\omega(\tilde{\phi}, \tilde{\psi}) = 0 \) for all \(\phi \in D_L \). By the construction (3.4) given any \(v \in L \) we can find a \(\phi \in D_{\max}(\Delta) \) such that \(\tilde{\phi} = v \). Therefore, \(\omega(\tilde{\phi}, \tilde{\psi}) = 0 \) for all \(\phi \in D_L \) implies that \(\omega(v, \psi) = 0 \) for all \(v \in L \), which by the Lagrangian condition on \(L \), implies that \(\psi \in L \). This shows that \(\psi \in D_L \) and our proof is complete.

IV. MORE ON LAGRANGIAN SUBSPACES

The symplectic form \(\omega : C^4 \times C^4 \to \mathbb{C} \) defined in (3.1) is naturally separated into two parts:
\[\omega(v, w) = \omega_0((v_1, v_2), (w_1, w_2)) + \omega_0((v_3, v_4), (w_3, w_4)), \]

(4.1)

where

\[\omega_0: \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C} \]

is defined by \[\omega_0(v, w) = v_1w_2 - v_2w_1. \]

The first \(\omega_0 \) appearing in (4.1) corresponds to the singularity at \(r=0 \) and the second \(\omega_0 \) in (4.1) corresponds to the boundary \(r=R \). For this reason, it is natural to focus on Lagrangian subspaces \(L \subset \mathbb{C}^2 \) of the form \(L = L_1 \oplus L_2 \), where \(L_i \subset \mathbb{C}^2 \) is Lagrangian with respect to \(\omega_0 \). With this in mind, let us characterize all such Lagrangian subspaces of \(\mathbb{C}^2 \). First, we observe the following.

Lemma 4.1: We can write

\[\omega_0(v, w) = \langle Gv, w \rangle \quad \text{for all } v, w \in \mathbb{C}^2, \]

where \(\langle \cdot, \cdot \rangle \) denotes the inner product on \(\mathbb{C}^2 \) and \(G = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \).

Recalling that \(L \subset \mathbb{C}^2 \) is Lagrangian means that

\[\{ w \in \mathbb{C}^2 | \omega_0(v, w) = 0 \text{ for all } v \in L \} = L, \]

from this lemma, it is straightforward to show that

\[L \subset \mathbb{C}^2 \] is Lagrangian if and only if \(GL^\perp = L \),

where \(L^\perp \) is the orthogonal complement of \(L \) with respect to the inner product \(\langle \cdot, \cdot \rangle \). From this, one can easily prove the following main result in this section.

Theorem 4.2: \(L \subset \mathbb{C}^2 \) is Lagrangian if and only if \(L = L_\theta \) for some \(\theta \in \mathbb{R} \) where

\[L_\theta = \{ (x, y) \in \mathbb{C}^2 | \cos \theta x + \sin \theta y = 0 \}. \]

Notice that we can restrict to \(0 \leq \theta < \pi \) in Theorem 4.2. Let \(\theta_1, \theta_2 \) be two such angles and set \(L := L_{\theta_1} \oplus L_{\theta_2} \). As in (2.1), we write \(\phi \in D_{\max}(\Delta) \) as

\[\phi = c_1(\phi)r^{1/2} + c_2(\phi)r^{-1/2} \log r + \tilde{\phi}, \]

where \(\tilde{\phi} \) is continuously differentiable with \(\tilde{\phi}(r) = O(r^{1/2}), \tilde{\phi}'(r) = O(r^{1/2}), \) and \(\Delta \tilde{\phi} \in L^2([0, R]) \).

Then as a consequence of Theorem 3.2, we know that

\[\Delta_L := \Delta : D_L \to L^2([0, R]) \]

(4.2)

is self-adjoint, where

\[D_L = \{ \phi \in D_{\max}(\Delta) | \cos \theta_1 c_1(\phi) + \sin \theta_1 c_2(\phi) = 0, \cos \theta_2 \phi'(R) + \sin \theta_2 \phi(R) = 0 \}. \]

When \(\theta_1 = \pi/2 \), then we are requiring \(c_2(\phi) \) vanish so that near \(r=0 \), we have

\[\phi = c_1(\phi)r^{1/2} + \tilde{\phi}, \]

that is, no log terms; in Ref. 8, Brüning and Seeley prove that \(\theta_1 = \pi/2 \) is the Friedrichs realization of the operator \(\Delta \) acting on smooth functions supported away from \(r=0 \) with the boundary condition \(\cos \theta_2 \phi'(R) + \sin \theta_2 \phi(R) = 0 \) at \(r=R \). As seen in Theorem 1.1 in the Introduction, this self-adjoint realization gives rise to the “usual” resolvent, heat kernel, and zeta function properties. When \(\theta_1 \neq \pi/2 \), we get very pathological properties as shown in Theorem 1.2. In the following sections we enter in the proof of Theorem 1.2.
V. EIGENVALUES WITH DIRICHLET CONDITIONS AT \(r=R \)

As shown in detail in Sec. X, the strange behaviors depicted in Theorem 1.2 do not depend on the choice of the Lagrangian \(L_2 \) (that is, the choice of boundary condition at \(r=R \)). For this reason, we shall use \(\theta_2=0 \) for the Lagrangian \(L_2 \) in (4.2); thus, we shall consider the self-adjoint operator \(\Delta_\theta := \Delta : D_\theta \rightarrow L^2([0,R]) \), where \(0 \leq \theta < \pi \) and \(\theta \neq \pi/2 \), and

\[
D_\theta = \{ \phi \in D_{\text{max}}(\Delta) | \cos \theta \phi_1(\phi) + \sin \theta \phi_2(\phi) = 0, \phi(R) = 0 \};
\]

so we now are simply imposing the Dirichlet condition at \(r=R \).

We now find an explicit formula for the eigenfunctions and a transcendental equation, which determines the spectrum of \(\Delta_\theta \). We begin with the following eigenvalue equation:

\[
(\Delta_\theta - \mu^2)\phi = 0 \iff \phi'' + \frac{1}{4r^2}\phi + \mu^2\phi = 0.
\]

We can turn this into a Bessel equation via the usual trick by setting \(\phi = r^{1/2}\psi(\mu r) \). Then,

\[
\phi'' = -\frac{1}{4}r^{-3/2}\psi(\mu r) + \mu r^{-1/2}\psi'(\mu r) + \mu^2 r^{1/2}\psi(\mu r),
\]

so

\[
\phi'' + \frac{1}{4r^2}\phi + \mu^2\phi = 0 \iff \mu r^{-1/2}\psi'(\mu r) + \mu^2 r^{1/2}\psi(\mu r) = 0,
\]

or

\[
(\mu r)^2\psi''(\mu r) + (\mu r)\psi'(\mu r) + (\mu r)^2\psi(\mu r) = 0.
\]

For fixed \(\mu \), the solutions to this equation are linear combinations of \(J_0 \) and \(Y_0 \) (with \(Y_0 \) the Bessel function of the second kind), so

\[
\phi = C_1 r^{1/2}J_0(\mu r) + C_2 r^{1/2}Y_0(\mu r).
\]

Using that (Ref. 1, p. 360)

\[
\frac{\pi}{2} Y_0(z) := (\log z - 2 + \gamma)J_0(z) - \sum_{k=1}^{\infty} \frac{H_k \left(\frac{1}{4}z^2 \right)^k}{(k!)^2}, \tag{5.1}
\]

where \(H_k := 1 + \frac{1}{2} + \cdots + (1/k) \), the form (2.1) for \(\phi \in D_{\text{max}}(\Delta) \) is obtained by choosing the constants \(C_1 \) and \(C_2 \) in such a way that

\[
\phi = c_1(\phi)r^{1/2}J_0(\mu r) + c_2(\phi)r^{1/2} \left(\frac{\pi}{2} Y_0(\mu r) - (\log \mu - 2 + \gamma)J_0(\mu r) \right).
\]

By definition of the Bessel function (Ref. 1, p. 360) we have as \(z \to 0 \),

\[
J_v(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^k k! \Gamma(v+k+1)} = \frac{z^v}{2^v \Gamma(1+v)} \left(1 - \frac{z^2}{4(1+v)} + \frac{z^4}{32(1+v)(2+v)} - \cdots \right) \tag{5.2}
\]

and by (5.1)), we see that
\[\phi = c_1(\phi) r^{1/2} + c_2(\phi) r^{1/2} \log r + O((\mu r)^2), \]

where \(O((\mu r)^2)\) is a power series in \((\mu r)^2\) vanishing like \((\mu r)^2\) as \(r \to 0\). Therefore, by definition of \(D_\rho\), we have

\[
\cos \theta c_1(\phi) + \sin \theta c_2(\phi) = 0. \tag{5.3}
\]

To satisfy the Dirichlet condition at \(r=R\), we must have

\[
c_1(\phi) J_0(\mu R) + c_2(\phi) \left(\frac{\pi}{2} Y_0(\mu R) - (\log \mu - \log 2 + \gamma) J_0(\mu R) \right) = 0.
\]

It follows that

\[
\det \begin{pmatrix} \cos \theta & \sin \theta \\ J_0(\mu R) & \frac{\pi}{2} Y_0(\mu R) - (\log \mu - \log 2 + \gamma) J_0(\mu R) \end{pmatrix} = 0,
\]

or \((\pi/2) Y_0(\mu R) - (\log \mu - \log 2 + \gamma) J_0(\mu R) = \tan \theta J_0(\mu R)\). We summarize our findings in the following proposition.

Proposition 5.1: The transcendental equation,

\[
F(\mu) := \frac{\pi}{2} Y_0(\mu R) - (\log \mu - \kappa) J_0(\mu R) = 0, \quad \kappa = \log 2 - \gamma - \tan \theta, \tag{5.4}
\]

determines the eigenvalues of \(\Delta_\rho\).

In the following theorem we state various properties of the eigenvalues of \(\Delta_\rho\); note that in Ref. 15, p. 4572 it is stated that there are no negative eigenvalues; however, it turns out that, for example, when \(\pi/2 < \theta < \pi\) and \(R \geq 1\), there is always a negative eigenvalue.

Theorem 5.2: For \(0 \leq \theta < \pi\) with \(\theta \neq \pi/2\),

1. \(\Delta_\rho\) has a zero eigenvalue if and only if \(\log R = \tan \theta\).
2. \(\Delta_\rho\) has a unique negative eigenvalue if and only if \(\tan \theta < \log R\).

Proof: Using (5.1) and the expansion

\[
J_0(z) = \sum_{k=0}^{\infty} \frac{\left(- \frac{z^2}{4} \right)^k}{(k!)^2}, \tag{5.5}
\]

the eigenvalue equation \((\pi/2) Y_0(\mu R) - (\log \mu - \log 2 + \gamma) J_0(\mu R) = \tan \theta J_0(\mu R)\) can be written as

\[
- \sum_{k=1}^{\infty} \frac{H_k \left(- \frac{1}{4} \mu^2 R^2 \right)^k}{(k!)^2} = (- \log R + \tan \theta) \sum_{k=0}^{\infty} \frac{\left(- \frac{1}{4} \mu^2 R^2 \right)^k}{(k!)^2}. \tag{5.6}
\]

Thus, \(\mu = 0\) solves this equation if and only if \(\log R = \tan \theta\).

Now \(\Delta_\rho\) has a negative eigenvalue means that \(\mu = ix\) for \(x\) real solves (5.6):

\[
- \sum_{k=1}^{\infty} \frac{H_k \left(\frac{1}{4} x^2 R^2 \right)^k}{(k!)^2} = (- \log R + \tan \theta) \sum_{k=0}^{\infty} \frac{\left(\frac{1}{4} x^2 R^2 \right)^k}{(k!)^2}. \tag{5.7}
\]

If \((- \log R + \tan \theta) > 0\), then (5.7) has no solutions because the right-hand side of (5.7) will be strictly positive for all real \(x\) while the left-hand side of (5.7) is nonpositive. Thus, we may assume that \(x := \log R - \tan \theta > 0\). Then we can write (5.7) as
Thus, we just have to prove that \(f(x) = 0 \) has a unique solution. To prove this, observe that since the harmonic series \(1 + \frac{1}{2} + \frac{1}{3} + \cdots \) diverges, we can choose \(N \in \mathbb{N} \) such that \(H_N > \alpha > H_{N-1} \). We now write

\[
f(x) = \sum_{k=N}^{\infty} \frac{(H_k - \alpha)x^{2k}}{4^k(k!)^2} - \sum_{k=0}^{N-1} \frac{(\alpha - H_k)x^{2k}}{4^k(k!)^2},
\]

where \(H_0 := 0 \), and note that \(f(x) = 0 \) if and only if \(g(x) = 0 \) where

\[
g(x) := x^{2N}f(x) = \sum_{k=N}^{\infty} \frac{(H_k - \alpha)x^{2(k-N)}}{4^k(k!)^2} - \left(\sum_{k=0}^{N-1} \frac{(\alpha - H_k)x^{2k}}{4^k(k!)^2} \right). \]

Because of the powers of \(x \) in the denominator the second sum on the right-hand side, we see that \(g(0+) = -\infty \) while because of the first sum on the right-hand side, we see that \(\lim_{x \to -\infty} g(x) = \infty \). In particular, by the intermediate value theorem, \(g(x) = 0 \) for some \(0 < x < \infty \). Since

\[
g'(x) = \sum_{k=N+1}^{\infty} \frac{(H_k - \alpha)(2(k-N)x^{2(k-N)-1})}{4^k(k!)^2} + \left(\sum_{k=0}^{N-1} \frac{2(N-k)(\alpha - H_k)}{4^k(k!)^2} x^{2(N-k)+1} \right) > 0
\]

the function \(g \) is strictly increasing, so there is only one \(x > 0 \) such that \(g(x) = 0 \). It follows that \(f(x) = 0 \) for a unique \(x > 0 \) and our proof is now complete. A graph of \(f(x) \) for \(R = 1 \) and \(\theta = -2 \) is shown in Fig. 1.

\[
\text{VI. THE } \zeta \text{-FUNCTION WITH DIRICHLET CONDITIONS AT } r = R
\]

Let \(0 \leq \theta < \pi \) with \(\theta \neq \pi/2 \). We now analyze the zeta function using the contour integral techniques developed in Refs. 4, 5, 28, and 30.

In the Appendix, Theorem A.1, we have shown that

\[
\text{Tr}(\Delta_\theta - \mu^2)^{-1} = -\frac{1}{2\pi i} \int \mu^{-2s} d\mu \log F(\mu).
\]

Therefore, for \(\Re s > 1/2 \), by definition the zeta function is given by

\[
\zeta(s, \Delta_\theta) = \frac{1}{2\pi i} \int_\gamma \mu^{-2s} d\mu \log F(\mu) = \frac{1}{2\pi i} \int_\gamma \mu^{-2s} \frac{F'(\mu)}{F(\mu)} d\mu,
\]

(6.1)

where \(\gamma \) is a contour in the plane shown in Fig. 2.

To analyze properties of the zeta function, we need the following technical lemma.
Lemma 6.1: Let $0 \leq \theta < \pi$ with $\theta \neq \pi/2$ and $Y \subset \mathbb{C}$ be a sector (closed angle) in the right-half plane. Then as $|x| \to \infty$ with $x \in Y$, we have

$$F(ix) \sim -\frac{1}{\sqrt{2\pi}}(\log x - \kappa)(xR)^{-1/2}e^{-3} \left(1 + \frac{1}{8xR} + \frac{9}{2(8xR)^2} + O(x^{-3})\right),$$

(6.2)

where $O(x^{-3})$ is a power series in x^{-1} starting from x^{-3}, and

$$\frac{d}{dx} \log F(ix) - \frac{1}{x(x \log x - \kappa)} + R - \frac{1}{2xR} - \frac{1}{8x^2R} + O(x^{-3}),$$

with the same meaning for $O(x^{-3})$. Finally, $F(\mu)$ is an even function of μ, and as $\mu \to 0$, we have

$$F(\mu) \sim (\log R - \tan \theta) + \frac{1}{4}\mu^2R^2(1 + \tan \theta - \log R) + O(\mu^4).$$

(6.4)

Proof: From (5.1), we have

$$\frac{\pi}{2} Y_0(ix) = (\log(ix) - \log 2 + \gamma)J_0(ix) - \sum_{k=1}^{\infty} \frac{H_k\left(-\frac{1}{4}(ix)^2\right)^k}{(k!)^2}$$

$$= \left(\log x + i\frac{\pi}{2} - \log 2 + \gamma\right)I_0(x) - \sum_{k=1}^{\infty} \frac{H_k\left(\frac{1}{4}x^2\right)^k}{(k!)^2} = i\frac{\pi}{2}I_0(x) - K_0(x),$$

where $I_0(x)$ is the modified Bessel function of the first kind, and

$$K_0(x) := -(\log x - \log 2 + \gamma)I_0(x) + \sum_{k=1}^{\infty} \frac{H_k\left(\frac{1}{4}x^2\right)^k}{(k!)^2}$$

is the modified Bessel function of the second kind. Therefore,

$$F(ix) = \frac{\pi}{2} Y_0(ixR) - (\log(ix) - \kappa)J_0(ixR) = i\frac{\pi}{2}I_0(xR) - K_0(xR) - \left(\log x + i\frac{\pi}{2} - \kappa\right)I_0(xR)$$

$$= -(\log x - \kappa)I_0(xR) - K_0(xR).$$

By Ref. 1, p. 377, as $|x| \to \infty$ for $x \in Y$, we have
\[I_0(x) \sim \frac{e^x}{\sqrt{2\pi x}} \left(1 + \frac{1}{8x} + \frac{9}{2(8\pi)^2} + \mathcal{O}(x^{-3}) \right). \]

where \(\mathcal{O}(x^{-3}) \) is a power series in \(x^{-1} \) starting with \(x^{-3} \); furthermore (Ref. 1, p. 378), as \(|x| \to \infty \) for \(x \in \mathbb{Y} \),

\[K_0(x) \sim \sqrt{\frac{2}{\pi x}} e^{-x} \left(1 - \frac{1}{8x} + \frac{9}{2(8\pi)^2} + \mathcal{O}(x^{-3}) \right). \]

Therefore, as \(|x| \to \infty \) for \(x \in \mathbb{Y} \), we have

\[F(ix) \sim -(\log x - \kappa)I_0(xR) - \frac{1}{\sqrt{2\pi}} (\log x - \kappa)(xR)^{-1/2} e^{xR} \left(1 + \frac{1}{8xR} + \frac{9}{2(8\pi R)^2} + \mathcal{O}(x^{-3}) \right), \]

which proves (6.2). Taking logarithms, we see that as \(|x| \to \infty \) for \(x \in \mathbb{Y} \), we have

\[\log F(ix) \sim c + \log(\log x - \kappa) - \frac{1}{2} \log x + xR + \log \left(1 + \frac{1}{8xR} + \frac{9}{2(8\pi R)^2} + \mathcal{O}(x^{-3}) \right), \]

where \(c \) is a constant. Since \(\log(1+z)=z-(z^2/2)+(z^3/3)-\ldots \), we have

\[\log F(ix) \sim c + \log(\log x - \kappa) - \frac{1}{2} \log x + xR + \frac{1}{8xR} + \mathcal{O}(x^{-2}). \]

Taking the derivative of this we get (6.3).

To determine the asymptotics as \(\mu \to 0 \), recalling that \(\kappa = \log 2 - \gamma - \tan \theta \), we see that

\[F(\mu) = \frac{\pi}{2} Y_0(\mu R) - (\log \mu - \kappa)I_0(\mu R) = \frac{\pi}{2} Y_0(\mu R) - (\log \mu - \log 2 + \gamma)I_0(\mu R) - \tan \theta I_0(\mu R) \]

\[= \frac{1}{4} \mu^2 R^2 + (\log R - \tan \theta) + \tan \theta - \log R \cdot \frac{1}{4} \mu^2 R^2 + \mathcal{O}(\mu^4) \]

\[= (\log R - \tan \theta) + \frac{1}{4} \mu^2 R^2(1 + \tan \theta - \log R) + \mathcal{O}(\mu^4), \]

where we used (5.1) and (5.5) in passing from the second to the third line. In particular, the second line with (5.1) and (5.5) shows that \(F(\mu) \) is an even function of \(\mu \). This completes our proof. \(\square \)

We need one more lemma.

Lemma 6.2: We have

\[\int_{|t|}^{\infty} x^{-2s} \frac{1}{x(\log x - \kappa)} \, dx = -e^{-2s \kappa} \log s - e^{-2s \kappa} (\gamma + \log(2(|t| - \kappa)) + \mathcal{O}(s)), \]

where \(\mathcal{O}(s) \) is an entire function of \(s \) that is \(\mathcal{O}(s) \) at \(s=0 \).

Proof: In the integral we assume that \(|t| > \kappa \) so that the integral is well defined. Now to analyze this integral we make the change of variables \(u = \log x - \kappa \) or \(x = e^{ue^u} \), and obtain

\[\int_{|t|}^{\infty} x^{-2s} \frac{1}{x(\log x - \kappa)} \, dx = e^{-2s \kappa} \int_{\log|t|+\kappa}^{\infty} \frac{e^{-2su}}{u} \, du. \]

Making the change of variables \(y = 2su \), we get

\[\int_{|t|}^{\infty} x^{-2s} \frac{1}{x(\log x - \kappa)} \, dx = e^{-2s \kappa} \int_{2s(|t|+\kappa)}^{\infty} \frac{e^{-y}}{y} \, dy. \]

Recall that the exponential integral is defined by (see Ref. 22, Sec. 8.2)
Therefore,
\[
\int_{|z|}^\infty x^{-2s} \frac{1}{x(\log x - \kappa)} \, dx = - e^{-2\kappa} \mathrm{Ei}(-2s(\log|z| - \kappa)).
\]

Also from Ref. 22, p. 877, we have
\[
\mathrm{Ei}(z) = \gamma + \log(-z) + \sum_{k=1}^{\infty} \frac{z^k}{k\cdot k!},
\]

therefore
\[
\int_{|z|}^\infty x^{-2s} \frac{1}{x(\log x - \kappa)} \, dx = - e^{-2\kappa} \log s - e^{-2\kappa}(\gamma + \log(2(\log|z| - \kappa)) + O(s)),
\]

where \(O(s)\) is an entire function of \(s\) that is \(O(s)\) at \(s=0\). This completes our proof.

We now determine the structure of the zeta function.

Proposition 6.3: The zeta function \(\zeta(s, \Delta_\theta)\) can be written in the form
\[
\zeta(s, \Delta_\theta) = -\frac{e^{-2\kappa \sin \frac{\pi s}{2}}}{\pi} \log s + \xi_\theta(s),
\]

where \(\kappa = \log 2 - \gamma - \tan \theta\) and \(\xi_\theta(s)\) extends from \(\Re s > 1/2\) to a holomorphic function on \(\mathbb{C}\) with poles at \(s = 1/2 - k\) for \(k = 0, 1, 2, \ldots\). In particular, \(\zeta(s, \Delta_\theta)\) has \(s = 0\) as a logarithmic branch point.

Proof: Recalling (6.1), we write
\[
\int_{\gamma} = \int_{0+i\infty} + \int_{0-i\infty} + \int_{\gamma_i},
\]

where \(\gamma_i\) is the part of \(\gamma\) from \(t\) to \(-t\), and using that
\[
t^{-2s} = (e^{i\pi/2})^{-2s} = e^{-i\pi s} \text{ and } (-i)^{-2s} = (e^{-i\pi/2})^{-2s} = e^{i\pi s},
\]

we obtain the integral
\[
\zeta(s, \Delta_\theta) = \frac{1}{2\pi i} \int_{\gamma} \mu^{-2s} \frac{d}{d\mu} \log F(\mu) d\mu = \frac{1}{2\pi i} \left\{ - \int_{|z|}^\infty (ix)^{-2s} \frac{d}{dx} \log F(ix) dx
\right.
+ \int_{|z|}^\infty (-ix)^{-2s} \frac{d}{dx} \log F(-ix) dx
\right.
+ \left. \frac{1}{2\pi i} \int_{\gamma_i} \mu^{-2s} \frac{F'(\mu)}{F(\mu)} d\mu
\right.
\]

or,
\[
\zeta(s, \Delta_\theta) = \frac{1}{2\pi} \left(-e^{-i\pi s} + e^{i\pi s} \right) \int_{|z|}^\infty x^{-2s} \frac{d}{dx} \log F(ix) dx + \frac{1}{2\pi i} \int_{\gamma_i} \mu^{-2s} \frac{F'(\mu)}{F(\mu)} d\mu.
\]
\(\zeta(s, \Delta_0) = \frac{\sin \pi s}{\pi} \int_{|r|}^\infty x^{-2r} \frac{d}{dx} \log F(ix) dx + \frac{1}{2\pi i} \int_{\gamma} \mu^{-2r} F'(\mu) \frac{d\mu}{F(\mu)}, \) (6.6)

a formula that will be analyzed in a moment. The second integral here is over a finite contour so an entire function of \(s \in \mathbb{C} \), so we are left to analyze the analytic properties of the first integral. To do so, recall from (6.3) that for \(x \to \infty \), we have

\[
\frac{d}{dx} \log F(ix) \sim \frac{1}{x(\log x - \kappa)} + \sum_{k=0}^\infty \beta_k x^{-k},
\]

for some constants \(\beta_k \). Since

\[
\frac{\sin \pi s}{\pi} \int_{|r|}^\infty x^{-2r-k} \frac{d}{dx} = \frac{\sin \pi s}{\pi} \frac{x^{-2r-k+1}}{-2s-k+1} \bigg|_{x=|r|}^\infty = \frac{\sin \pi s}{\pi} \frac{|r|^{-2r-k+1}}{-2s-k+1}
\]

which has poles at \(s=(1-k)/2 \) for \(s \in \mathbb{Z} \), it follows that the expansion \(\sum_{k=0}^\infty \beta_k x^{-k} \) will contribute to the function \(\zeta_\phi(s) \) in the statement of this proposition where \(\zeta_\phi(s) \) extends from \(\Re s > 1/2 \) to a holomorphic function on \(\mathbb{C} \) with poles at \(s=1/2-k \) for \(k=0, 1, 2, \ldots \). Lemma 6.2 applied to the integral

\[
\frac{\sin \pi s}{\pi} \int_{|r|}^\infty x^{-2r} \frac{1}{x(\log x - \kappa)} dx
\]

now completes our proof.

Remark 6.4: The existence of the logarithmic branch point at \(s=0 \) has been missed in Ref. 15. The error occurs in Eq. (A13) where certain antiderivatives [specifically \(xy_1(x) \) and \(x^2y_1(x) \)] were accidentally set equal to zero at \(s=0 \).

VII. TRACE OF THE RESOLVENT WITH DIRICHLET CONDITIONS AT \(r=R \)

Using the Theorem A.1, we can now prove Theorem 1.2 (1) for \(\Delta_0 \). We have chosen to present the results in a form where the first term has been expanded further; Theorem 1.2 (1) is contained in Eq. (7.1) of the proof and the explanation of the meaning of the expansion is similar to that found in Remark 1.5.

Proposition 7.1: Let \(\theta \neq \pi/2 \) and \(\kappa = \log 2 - \gamma - \tan \theta \), furthermore let \(\Lambda \subset \mathbb{C} \) be any sector (solid angle) not intersecting the positive real axis. Then as \(|\lambda| \to \infty \) with \(\lambda \in \Lambda \), we have

\[
\text{Tr}(\Delta_0 - \lambda)^{-1} \sim (-\lambda)^{-1} \sum_{k=0}^\infty a_k (\log(-\lambda))^{-k-1} + \sum_{k=1}^\infty b_k (-\lambda)^{-k/2},
\]

where \(a_k = (2\kappa)^k \) for \(k=0, 1, 2, \ldots \) (in particular, \(a_0 = 1 \neq 0 \)).

Proof: Setting \(\lambda = x^2 \) with \(x \in Y \subset \mathbb{C} \) a sector in the right-half plane, it suffices to prove that as \(|x| \to \infty \) with \(x \in Y \), we have

\[
\text{Tr}(\Delta_0 + x^2)^{-1} \sim x^{-2} \sum_{k=0}^{\infty} \frac{\kappa^k}{2} (\log x)^{-k-1} + x^{-1} \sum_{k=0}^{\infty} b_k x^{-k},
\]

or after multiplication by \(2x \), we just have to prove that

\[
2x \text{Tr}(\Delta_0 + x^2)^{-1} \sim x^{-1} \sum_{k=1}^{\infty} \kappa^k (\log x)^{-k-1} + \sum_{k=0}^{\infty} \beta_k x^{-k}.
\]

To prove this, we recall from Theorem A.1 that
\[2x \text{Tr}(\Delta_\phi + x^2)^{-1} = \frac{d}{dx} \log F(ix). \]

By Lemma 6.1 [see (6.3)] we know that as \(|x| \to \infty \) for \(x \in Y \),

\[
\frac{d}{dx} \log F(ix) \sim \frac{1}{x(\log x - \kappa)} + \sum_{k=0}^{\infty} \beta_k x^{-k}. \tag{7.1}
\]

Finally, the expansion

\[
\frac{1}{x(\log x - \kappa)} = \frac{1}{x \log x} \cdot \frac{1}{1 - \kappa(\log x)^{-1}} = \frac{1}{x \log x} \sum_{k=0}^{\infty} \kappa^k (\log x)^{-k} = x^{-1} \sum_{k=0}^{\infty} \kappa^k (\log x)^{-k-1},
\]

concludes our result. \(\square \)

As shown in the proof, for \(|x| \to \infty \) with \(x \in Y \), where \(Y \) is a sector in the right-half plane, we have

\[
2x \text{Tr}(\Delta_\phi + x^2)^{-1} = \frac{d}{dx} \log F(ix) \sim \frac{1}{x(\log x - \kappa)} + \sum_{k=0}^{\infty} \beta_k x^{-k}, \tag{7.2}
\]

or with \(\lambda = -x^2 \), as \(|\lambda| \to \infty \) with \(\lambda \in \Lambda \subset \mathbb{C} \), a sector not intersecting the positive real axis, we have

\[
\text{Tr}(\Delta_\phi - \lambda)^{-1} \sim \frac{1}{(-\lambda)(\log(-\lambda) - 2\kappa)} + \sum_{k=1}^{\infty} b_k (-\lambda)^{-k/2}. \tag{7.3}
\]

This fact will be used in the next section.

VIII. THE HEAT TRACE WITH DIRICHLET CONDITIONS AT \(r = R \)

To determine the small-time heat asymptotics, we write

\[
\text{Tr}(e^{-t\Delta_\phi}) = \frac{i}{2\pi} \int_{\gamma} e^{-\lambda} \text{Tr}(\Delta_\phi - \lambda)^{-1} d\lambda,
\]

where \(\gamma \) is a counter-clockwise contour in the plane surrounding the eigenvalues of \(\Delta_\phi \); see Fig. 3.

This is the starting point to show Theorem 1.2 (2) for \(\Delta_\phi \). Again we have chosen to present the results in a form where the first term has been expanded further. This makes the actual structure of the small-\(t \) expansion more explicit; Theorem 1.2 (2) is contained in Eq. (8.2) of the proof.

Proposition 8.1: As \(t \to 0 \), we have

\[
\text{Tr}(e^{-t\Delta_\phi}) \sim \sum_{k=1}^{\infty} \alpha_k (\log t)^{-k} + \sum_{k=0}^{\infty} \beta_k t^{(k-1)/2}
\]

with the \(\alpha_k \)'s depending on \(\kappa \) via

\[
\begin{align*}
&2x \text{Tr}(\Delta_\phi + x^2)^{-1} = \frac{d}{dx} \log F(ix). \\
&\text{By Lemma 6.1 [see (6.3)] we know that as } |x| \to \infty \text{ for } x \in Y, \\
&\frac{d}{dx} \log F(ix) \sim \frac{1}{x(\log x - \kappa)} + \sum_{k=0}^{\infty} \beta_k x^{-k}. \tag{7.1}
\end{align*}
\]
Proof: The small-time asymptotics are determined by the large-spectral parameter asymptotics of the resolvent. Now recall from (7.3) that as $|\lambda| \to \infty$ with λ in a sector not intersecting the positive real axis, we have

$$\text{Tr}(\Delta_0 - \lambda)^{-1} \sim \frac{1}{(-\lambda)(\log(-\lambda) - 2\kappa)} + \sum_{k=1}^{\infty} b_k(-\lambda)^{-k/2}.$$

Since (making the change of variables $\lambda \mapsto \Gamma\lambda$)

$$\int e^{-\lambda}(-\lambda)^{-k/2} \, d\lambda = \Gamma^{-1+k/2} \int e^{-\lambda}(-\lambda)^{-k/2} \, d\lambda$$

the series $\sum_{k=1}^{\infty} b_k(-\lambda)^{-k/2}$ gives rise to a small time expansion

$$\sum_{k=1}^{\infty} \beta_k t^{1+k/2}.$$

Therefore, we just have to analyze the behavior of

$$i \frac{1}{2 \pi} \int_{\gamma} e^{-i\lambda} \frac{1}{(-\lambda)(\log(-\lambda) - 2\kappa)} \, d\lambda.$$

Deforming γ to the real line, the integral here is, modulo a term that is a smooth function of t at $t=0$, equal to

$$-\int_{-\infty}^{\infty} e^{-ix} \frac{1}{(-x)(\log(-x + i0)) - 2\kappa} \, dx + \int_{-\infty}^{\infty} e^{-ix} \frac{1}{(-x)(\log(-x - i0)) - 2\kappa} \, dx,$$

or after simplification, this sum becomes

$$\int_{-\infty}^{\infty} e^{-ix} \frac{1}{x(\log x - i\pi - 2\kappa)} \, dx - \int_{-\infty}^{\infty} e^{-ix} \frac{1}{x(\log x + i\pi - 2\kappa)} \, dx.$$

(The reason we start at $x=1$ is that $1/(x[\log x + i\pi - 2\kappa])$ is not integrable near $x=0$.) Since for any complex number z, we have $i(\bar{z}-z)=2\bar{z}z$, we see that modulo a term that is a smooth function of t at $t=0$,

$$i \frac{1}{2 \pi} \int_{\gamma} e^{-i\lambda} \frac{1}{(-\lambda)(\log(-\lambda) - 2\kappa)} \, d\lambda = \frac{3}{\pi} \left(\int_{-\infty}^{\infty} e^{-ix} \frac{1}{x(\log x - i\pi - 2\kappa)} \, dx \right) = \frac{3}{\pi} \ell(t), \quad (8.1)$$

where

$$\ell(t) := \int_{-\infty}^{\infty} e^{-ix} \frac{1}{x(\log x + i\pi - 2\kappa)} \, dx.$$

In summary, we have proved that

$$\text{Tr}(e^{-t\Delta_0}) \sim \frac{1}{\pi} \frac{3}{\pi} \ell(t) + \sum_{k=0}^{\infty} \beta_k t^{(k-1)/2}, \quad (8.2)$$

which is exactly the statement of Theorem 1.2 (2).

We shall compute the asymptotics of $\ell(t)$ as $t \to 0$. To do so, observe that
\[^{\ell'}(t) := - \int_1^{\infty} \frac{e^{-ix}}{(\log x + i \pi - 2\kappa)} \, dx.\]

Now \(1/\log x\) is integrable near \(x=0\), so we can write

\[^{\ell'}(t) = f(t) + g(t),\]

where

\[^{f(t)} := - \int_0^{\infty} \frac{e^{-ix}}{(\log x + i \pi - 2\kappa)} \, dx, \quad g(t) := \int_0^{1} \frac{1}{1 - \frac{x}{\log t}} \, dx.\]

Note that \(g(t)\) is smooth at \(t=0\). We will now determine the asymptotics of \(f(t)\) near \(t=0\). To this end, we make the change of variables \(x \to r^{-1}x\),

\[^{f(t) = -r^{-1} \int_0^{\infty} e^{-ix} \left(1 - \frac{x}{\log t}
ight) \, dx = r^{-1} \int_0^{\infty} e^{-ix} \frac{1}{\log t + i \pi - 2\kappa} \, dx.}\]

Since \((1-r)^{-1} = \sum_{k=0}^{N} r^k k + r^{N+1} (1-r)^{-1}\) for any \(N \in \mathbb{N}\), we see that for any \(N \in \mathbb{N}\),

\[^{f(t) = r^{-1} (\log t)^{-1} \sum_{k=0}^{N} (\log t)^{-k} \int_0^{\infty} e^{-x} (\log x + i \pi - 2\kappa)^k \, dx}
+ r^{-1} (\log t)^{-1} \cdot (\log t)^{-N-1} \int_0^{\infty} e^{-x} (\log x + i \pi - 2\kappa)^{N+1} \, dx.}\]

The last integral here is bounded in \(t\) as \(t \to 0\). Since \(N\) is arbitrary, it follows that

\[^{f(t) \sim r^{-1} \sum_{k=0}^{\infty} (\log t)^{-k-1} \int_0^{\infty} e^{-x} (\log x + i \pi - 2\kappa)^k \, dx.}\]

Therefore, since \(\ell'(t) = f(t) + g(t)\), as \(t \to 0\) we have

\[^{\ell'(t) \sim r^{-1} \sum_{k=0}^{\infty} (\log t)^{-k-1} \int_0^{\infty} e^{-x} (\log x + i \pi - 2\kappa)^k \, dx + \sum_{k=0}^{\infty} \gamma_k t^k.}\]

Integrating both sides, using that

\[^{\int r^{-1} (\log t)^{-1} \, dt = \log \log t, \quad \int r^{-1} (\log t)^{-k-1} \, dt = -\frac{1}{k} (\log t)^{-k} \quad \text{for } k > 0,}\]

we get

\[^{\ell(t) \sim \log \log t - \sum_{k=1}^{\infty} \frac{1}{k} (\log t)^{-k} \int_0^{\infty} e^{-x} (\log x + i \pi - 2\kappa)^k \, dx + \sum_{k=0}^{\infty} \delta_k t^k.}\]

Finally, in view of (8.1), we see that as \(t \to 0\),
\[i \frac{1}{2\pi} \int_{\gamma} e^{-\lambda} \frac{1}{(-\lambda)(\log(-\lambda) - 2\kappa)} d\lambda \sim \frac{1}{\pi} 2\ell(t) \sim -\sum_{k=0}^{\infty} \frac{1}{k\pi} (\log t)^{-k} \left(\int_{0}^{\infty} e^{-x}(\log x + i\pi - 2\kappa)^k dx \right) + \sum_{k=0}^{\infty} \epsilon^j t^k. \]

IX. THE ZETA DETERMINANT

By Proposition 6.3, we have

\[\zeta(s, \Delta_\theta) = -\frac{e^{-2s\kappa}}{\pi} \sin \pi s \log s + \zeta_\text{reg}(s), \]

where \(\zeta_\text{reg}(s) \) extends from \(\Re s > 1/2 \) to a holomorphic function on \(\mathbb{C} \) with poles at \(s = 1/2 - k \) for \(k = 0, 1, 2, \ldots \). Since \(e^{-2s\kappa} \sin \pi s \) is already regular at \(s = 0 \), as the second term (being entire) is already regular at \(s = 0 \). In order to analytically continue the first term, we add and subtract off the leading asymptotics of \(F(ix) \) at \(s = 0 \). Thus, recalling Lemma 6.1 [see (6.3)]

\[F(ix) \sim C_0(\log x - \kappa)x^{-1/2}e^{R}\left(1 + O\left(\frac{1}{x}\right) \right) \text{ as } x \to \infty, \]

where \(C_0 = -1/\sqrt{2\pi R} \), we consider

\[\int_{|x|}^{\infty} x^{-2s} \frac{d}{dx} \log F(ix) dx = \int_{|x|}^{\infty} x^{-2s} \frac{d}{dx} \log \left(\frac{F(ix)}{C_0(\log x - \kappa)x^{-1/2}e^{R}} \right) dx + \int_{|x|}^{\infty} x^{-2s} \frac{d}{dx} \log(C_0(\log x - \kappa)x^{-1/2}e^{R}) dx. \]

The second integral can be computed explicitly,

\[\int_{|x|}^{\infty} x^{-2s} \frac{d}{dx} \log(C_0(\log x - \kappa)x^{-1/2}e^{R}) dx = \int_{|x|}^{\infty} x^{-2s} \frac{1}{x(\log x - \kappa)} dx = \frac{|x|^{-2s}}{4s} + \frac{|x|^{-2s+1}}{2s-1}R. \]

Therefore,
\[\zeta(s, \Delta_0) = \frac{\sin \pi s}{\pi} \int_{|t|}^{\infty} x^{-2s} \frac{d}{dx} \log \left(\frac{F(ix)}{C_0(\log x - \kappa)x^{-1/2}e^{i \theta}} \right) dx + \frac{\sin \pi s}{\pi} \int_{|t|}^{\infty} x^{-2s} \frac{1}{x(\log x - \kappa)} dx \]

\[- \frac{\sin \pi s}{\pi} \frac{|t|^{-2s}}{4s} + \frac{\sin \pi s}{\pi} \frac{|t|^{-2s+1}}{2s-1} R + \frac{1}{2\pi i} \int_{\gamma_i} \mu^{-2s} \frac{F'(\mu)}{F(\mu)} d\mu. \]

Hence, as \(\zeta_{\text{reg}}(s, \Delta_0) = \zeta(s, \Delta_0) + s \log s \), we see that

\[\zeta_{\text{reg}}(s, \Delta_0) = \frac{\sin \pi s}{\pi} \int_{|t|}^{\infty} x^{-2s} \frac{d}{dx} \log \left(\frac{F(ix)}{C_0(\log x - \kappa)x^{-1/2}e^{i \theta}} \right) dx + \frac{\sin \pi s}{\pi} \int_{|t|}^{\infty} x^{-2s} \frac{1}{x(\log x - \kappa)} dx \]

\[+ s \log s - \frac{\sin \pi s}{\pi} \frac{|t|^{-2s}}{4s} + \frac{\sin \pi s}{\pi} \frac{|t|^{-2s+1}}{2s-1} R + \frac{1}{2\pi i} \int_{\gamma_i} \mu^{-2s} \frac{F'(\mu)}{F(\mu)} d\mu. \]

By Lemma 6.2, we have

\[\frac{\sin \pi s}{\pi} \int_{|t|}^{\infty} x^{-2s} \frac{1}{x(\log x - \kappa)} dx = \frac{e^{-2\pi k} \sin \pi s}{\pi} \log s - \frac{e^{-2\pi k} \sin \pi s}{\pi} (\gamma + \log(2(\log|t| - \kappa)) + O(s)) \]

\[= -s \log s - s(\gamma + \log(2(\log|t| - \kappa)) + O(s \log s)). \]

Thus,

\[\zeta_{\text{reg}}(s, \Delta_0) = \frac{\sin \pi s}{\pi} \int_{|t|}^{\infty} x^{-2s} \frac{d}{dx} \log \left(\frac{F(ix)}{C_0(\log x - \kappa)x^{-1/2}e^{i \theta}} \right) dx - s(\gamma + \log(2(\log|t| - \kappa)) \]

\[+ O(s^2 \log s) \]

\[- \frac{\sin \pi s}{\pi} \frac{|t|^{-2s}}{4s} + \frac{\sin \pi s}{\pi} \frac{|t|^{-2s+1}}{2s-1} R + \frac{1}{2\pi i} \int_{\gamma_i} \mu^{-2s} \frac{F'(\mu)}{F(\mu)} d\mu. \]

The first integral on the right-hand side is regular at \(s=0 \) due to the asymptotics found in Lemma 6.1. Therefore, using that

\[\left. \frac{\sin(\pi s)}{\pi} \right|_{s=0} = 0, \quad \left. \frac{d}{ds} \frac{\sin(\pi s)}{\pi} \right|_{s=0} = 1, \quad \left. \frac{\sin(\pi s)}{\pi s} \right|_{s=0} = 1, \quad \left. \frac{d}{ds} \frac{\sin(\pi s)}{\pi s} \right|_{s=0} = 0, \]

we see that

\[\zeta_{\text{reg}}'(0, \Delta_0) = \int_{|t|}^{\infty} \frac{d}{dx} \log \left(\frac{F(ix)}{C_0(\log x - \kappa)x^{-1/2}e^{i \theta}} \right) dx - (\gamma + \log(2(\log|t| - \kappa)) + \frac{1}{2} \log|t| - |t|R \]

\[- \frac{1}{\pi i} \int_{\gamma_i} \log \mu \frac{F'(\mu)}{F(\mu)} d\mu = -\log \left(\frac{F(|t|)}{C_0} \right) - \gamma - 2 - \frac{1}{\pi i} \int_{\gamma_i} \log \mu \frac{F'(\mu)}{F(\mu)} d\mu. \]

Therefore,

\[\det_{\text{reg}}(\Delta_0) = 2e^{-\pi} \frac{F(t)}{C_0} \cdot \exp \left(-\frac{1}{\pi i} \int_{\gamma_i} \log \mu \frac{F'(\mu)}{F(\mu)} d\mu \right). \]

This formula is derived, \textit{a priori}, when \(t \) is on the upper half of the imaginary axis. However, the right-hand side is a \textit{holomorphic} function of \(t \in \mathcal{D} \), where \(\mathcal{D} \) is the set of complex numbers minus the negative real axis and the zeros of \(F(\mu) \). Therefore (9.1) holds for all \(t \in \mathcal{D} \). Here, we recall that \(\gamma_i \) is any curve in \(\mathcal{D} \) from \(t \) to \(-t \). As before, the trick now is to let \(t \to 0 \) in (9.1).

First, assume that \(\log R - \tan \theta \neq 0 \) so that \(\Delta_0 \) has no zero eigenvalue by Theorem 5.2. We determine the limit as \(t \to 0 \) of the exponential \(\exp(1/\pi i) \int_{\gamma_i} \log \mu [F'(\mu)/F(\mu)] d\mu \). Let’s take \(t \to 0 \) in \(\mathcal{D} \) from the upper half plane as shown in Fig. 4. In view of Fig. 4, it follows that
Recalling (6.4), as \(\mu \to 0 \), we have
\[
F(\mu) \sim (\log R - \tan \theta) + \frac{1}{2} \mu^2 R^2 (1 + \tan \theta - \log R) + \mathcal{O}(\mu^2).
\]
In this case \(F(0) = \log R - \tan \theta \). In conclusion, taking \(t \to 0 \) in (9.1), we see that
\[
\det_{\text{reg}}(\Delta_\theta) = 2 \sqrt{\pi R} e^{\gamma}(\tan \theta - \log R).
\]
(9.2)
Second, assume now that \(\log R - \tan \theta = 0 \) so that as \(\mu \to 0 \), we have
\[
F(\mu) \sim \frac{1}{2} \mu^2 R^2 (1 + \mathcal{O}(\mu^2)).
\]
Let us set
\[
\tilde{F}(\mu) := \frac{F(\mu)}{\mu^2};
\]
then \(\tilde{F}(\mu) \) is nonzero at \(\mu = 0 \) with value \(R^2/4 \), and
\[
\xi(s, \Delta_\theta) = \frac{\sin \frac{\pi s}{2}}{\pi} \int_{|x|}^{\infty} x^{-2s} \frac{d}{dx} \log \tilde{F}(ix) dx + \frac{1}{2 \pi i} \int_{\gamma_t} \mu^{-2s} \tilde{F}'(\mu) \frac{d}{F(\mu)} d\mu.
\]
By Lemma 6.1 [see (6.2)], we have
\[
\tilde{F}(ix) \sim \frac{C_0(\log x - \kappa)x^{-s'} \varepsilon^R}{-x^2} = \tilde{C}_0(\log x - \kappa)x^{-s' \varepsilon^R}, \quad \text{where} \quad \tilde{C}_0 = \frac{1}{2 \sqrt{\pi R}}.
\]
Now following the argument above used to prove (9.1), we can show
\[
\det_{\text{reg}}(\Delta_\theta) = 2 e^{\gamma} \tilde{C}_0 \cdot \exp \left(\frac{1}{\pi i} \int_{\gamma_t} \log \frac{\tilde{F}'(\mu)}{\tilde{F}(\mu)} d\mu \right).
\]
Finally, taking \(t \to 0 \) as we did before, yields in the \(\tan \theta = \log R \) case, the result
\[
\det_{\text{reg}}(\Delta_\theta) = 2 e^{\gamma} \frac{R^2}{4 \tilde{C}_0} = \frac{R^2}{2} e^{\gamma} \sqrt{2 \pi R} = \sqrt{\frac{\pi R}{2}} e^{\gamma} R^2.
\]

X. GENERAL BOUNDARY CONDITIONS AT \(\mathcal{r} = R \)

We now prove Theorem 1.2. Let us briefly recall the setup. Let \(0 \leq \theta_1, \theta_2 < \pi \) with \(\theta_1 \neq \pi/2 \) and set \(L := L_{\theta_1} \oplus L_{\theta_2} \). Then as a consequence of Theorem 3.2, we know that
Is self-adjoint, where
\[D_L = \{ \phi \in D_{\text{max}}(\Delta) | \cos \theta_1 c_1(\phi) + \sin \theta_1 c_2(\phi) = 0, \cos \theta_2 \phi'(R) + \sin \theta_2 \phi(R) = 0 \}. \]

The trick to proving Theorem 1.2 is to write the resolvent \((\Delta_L - \lambda)^{-1}\) in terms of \((\Delta_{\theta_1} - \lambda)^{-1}\) (same self-adjoint condition at \(r=0\) but with the Dirichlet condition at \(r=R\)). To do so, let \(q(r) \in C^\infty((-\infty, \infty))\) be a nondecreasing function such that \(q(r)=0\) for \(r \leq 1/4\) and \(q(r)=1\) for \(r \geq 3/4\). Given any real numbers \(\alpha < \beta\), we define
\[q_{\alpha, \beta}(r) := q((r - \alpha)/(\beta - \alpha)). \]
(10.1)

Then \(q_{\alpha, \beta}(r)=0\) on a neighborhood of \(\{r \leq \alpha\}\) and \(q_{\alpha, \beta}(r)=1\) on a neighborhood of \(\{r \geq \beta\}\). We define
\[\psi_1(r) = q_{R/2, 3R/4}(r), \quad \psi_2(r) = 1 - \psi_1(r), \]
\[\varphi_1(r) = q_{R/4, R/2}(r), \quad \varphi_2(r) = 1 - q_{3R/4, R}(r). \]
(10.2)

Let \(\Delta' := -(d^2/dr^2)-(1/4r^2)\) over \([R/4, R]\) with the Dirichlet condition at \(r=R/4\) and the condition \(\cos \theta_2 \phi'(R) + \sin \theta_2 \phi(R) = 0\) at \(r=R\); note that since \(r \geq R/4\) over \([R/4, R]\), the operator \(\Delta'\) is a true smooth elliptic operator over this interval with no singularities. We define
\[Q(\lambda) := \varphi_1(\Delta' - \lambda)^{-1}\psi_1 + \varphi_2(\Delta_{\theta_1} - \lambda)^{-1}\psi_2. \]
(10.3)

It follows that \(Q(\lambda)\) maps into the domain \(D_L\) of \(\Delta_L\), and
\[(\Delta_L - \lambda)Q(\lambda) = (\Delta_L - \lambda) \varphi_1(\Delta' - \lambda)^{-1}\psi_1 + (\Delta_L - \lambda) \varphi_2(\Delta_{\theta_1} - \lambda)^{-1}\psi_2 \]
\[= \varphi_1(\Delta' - \lambda)(\Delta' - \lambda)^{-1}\psi_1 + \varphi_2(\Delta_{\theta_1} - \lambda)(\Delta_{\theta_1} - \lambda)^{-1}\psi_2 + K_0(\lambda) \]
\[= \psi_1 + \psi_2 + K_0(\lambda) = \text{Id} + K_0(\lambda), \]

where
\[K_0(\lambda) = [\Delta, \varphi_1](\Delta' - \lambda)^{-1}\psi_1 + [\Delta, \varphi_2](\Delta_{\theta_1} - \lambda)^{-1}\psi_2. \]

Because the supports of \([\Delta, \varphi_i]\) and \(\psi_i\), where \(i=1, 2\), are disjoint, using the explicit formula (A3) for the resolvent \((\Delta_{\theta_1} - \lambda)^{-1}\) and the properties of the resolvent of \((\Delta' - \lambda)^{-1}\) found in the work of Seeley\(^{43}\) it is straightforward to check that \(K_0(\lambda)\) is trace-class operator that vanishes to infinite order as \(|\lambda| \to \infty\) for \(\lambda\) in any sector \(\Lambda\) of \(\mathbb{C}\) not intersecting the positive real axis; we shall fix such a sector \(\Lambda\) from now on. In particular, forming the Neumann series, it follows that \(\text{Id} + K_0(\lambda)\) is invertible for \(|\lambda|\) large with \(\lambda \in \Lambda\) with
\[(\text{Id} + K_0(\lambda))^{-1} = \text{Id} + K(\lambda), \]
where \(K(\lambda)\) has the same properties as \(K_0(\lambda)\). Thus, multiplying both sides of \((\Delta_L - \lambda)Q(\lambda) = \text{Id} + K_0(\lambda)\) by \(\text{Id} + K(\lambda)\), we see that
\[(\Delta_L - \lambda)^{-1} = Q(\lambda) + Q(\lambda)K(\lambda). \]

Therefore, as \(|\lambda| \to \infty\) for \(\lambda \in \Lambda\), we see that Proposition 7.1 holds also for \(\text{Tr}(\Delta_L - \lambda)^{-1}\). Now using the resolvent asymptotics, we can proceed to copy the proofs of Proposition 8.1 and 6.3. The proof of Theorem 1.2 is now complete.
ACKNOWLEDGMENTS

One of the authors (K.K.) was supported in part by funds from the Baylor University Research Committee and by the Max-Planck-Institute for Mathematics in the Sciences (Leipzig, Germany).

APPENDIX: THE RESOLVENT WITH DIRICHLET CONDITIONS AT $r=R$

In this Appendix, we compute the trace of the resolvent by explicitly finding the Schwartz kernel of the Bessel function. To do so, recall that the resolvent kernel of the differential operator $\Delta_\sigma - \mu^2$ with given boundary conditions at $r=0$ and $r=R$ can be expressed as follows (see Lemma 4.1 in Ref. 9 or Ref. 26, Sec. 3.3 for an elementary account):

$$-rac{1}{W(p,q)} \begin{cases} p(r,\mu)q(s,\mu) & \text{for } r \leq s, \\ p(s,\mu)q(r,\mu) & \text{for } r > s, \end{cases}$$

where $p(r,\mu)$ and $q(r,\mu)$ are solutions of $(\Delta_\sigma - \mu^2)\phi = 0$ satisfying the given boundary conditions at $r=0$ and $r=R$, respectively and where $W(p,q)$ is the Wronskian of (p,q). Recall that the general solution to $(\Delta_\sigma - \mu^2)\phi = 0$ is

$$\phi = c_1(\phi)r^{1/2}J_0(\mu r) + c_2(\phi)r^{1/2}\left(\frac{\pi}{2}Y_0(\mu r) - (\log \mu - \log 2 + \gamma)J_0(\mu r)\right).$$

To satisfy the boundary condition at $r=0$, we must have [see (5.3)]:

$$\cos \theta c_1(\phi) + \sin \theta c_2(\phi) = 0.$$

Thus, we can take $c_2(\phi) = 1$ and $c_1(\phi) = -\tan \theta$; this gives

$$p(r,\mu) = r^{1/2}\left(\frac{\pi}{2}Y_0(\mu r) - (\log \mu - \kappa)J_0(\mu r)\right), \quad (A1)$$

where $\kappa = \log 2 - \gamma - \tan \theta$. To determine $q(r,\mu)$ we use the less fancy formulation of the general solution:

$$\phi = C_1 r^{1/2}J_0(\mu r) + C_2 r^{1/2}Y_0(\mu r).$$

To satisfy the Dirichlet condition at $r=R$, we therefore take

$$q(r,\mu) = r^{1/2}(Y_0(\mu R)J_0(\mu r) - J_0(\mu R)Y_0(\mu r)). \quad (A2)$$

The Wronskian is easily computed using that $W(r^{1/2}J_0(\mu r), r^{1/2}Y_0(\mu r)) = 2/\pi$ (see Ref. 45):

$$W(p,q) = \frac{\pi}{2}Y_0(\mu R)W(r^{1/2}Y_0(\mu r), r^{1/2}J_0(\mu r)) + (\log \mu - \kappa)J_0(\mu R)W(r^{1/2}J_0(\mu r), r^{1/2}Y_0(\mu r))$$

$$= -Y_0(\mu R) + \frac{2}{\pi} (\log \mu - \kappa)J_0(\mu R).$$

Therefore,

$$\left(\Delta_\sigma - \mu^2\right)^{-1}(r,s) = \frac{1}{F(\mu)} \begin{cases} p(r,\mu)q(s,\mu) & \text{for } r \leq s, \\ p(s,\mu)q(r,\mu) & \text{for } r > s, \end{cases} \quad (A3)$$

where p and q are given in (A1) and (A2), respectively, and where

$$F(\mu) := Y_0(\mu R) - \frac{2}{\pi} (\log \mu - \kappa)J_0(\mu R).$$
We now need to compute \(J_0(r, \mu) q(r, \mu) dr \); that is,

\[
\int_0^R \left(\frac{\pi}{2} J_0(\mu r) - (\log \mu - \kappa) J_0(\mu r) \right) (Y_0(\mu R) J_0(\mu r) - J_0(\mu R) Y_0(\mu r)) dr
\]

\[
= \frac{\pi}{2} Y_0(\mu R) \int_0^R r Y_0(\mu r) J_0(\mu r) dr - \frac{\pi}{2} J_0(\mu R) \int_0^R r Y_0(\mu r)^2 dr + (\log \mu - \kappa) \int_0^R r J_0(\mu r) Y_0(\mu r) dr - (\log \mu - \kappa) Y_0(\mu R) \int_0^R r J_0(\mu r)^2 dr.
\]

(A4)

We next use the indefinite integrals

\[
\int r J_0(\mu r)^2 dr = \frac{r^2}{2} (J_0(\mu r)^2 + J_1(\mu r)^2),
\]

\[
\int r Y_0(\mu r)^2 dr = \frac{r^2}{2} (Y_0(\mu r)^2 + Y_1(\mu r)^2),
\]

\[
\int r Y_0(\mu r) J_0(\mu r) dr = \frac{r^2}{2} (Y_0(\mu r) J_0(\mu r) + Y_1(\mu r) J_1(\mu r)),
\]

which we need to evaluate between \(r = 0 \) and \(r = R \). Recalling (5.2), \(z J_0(z) \) and \(z J_1(z) \) vanish at \(z = 0 \). Also, by (5.1) \(z Y_0(z) \) also vanishes at \(z = 0 \). However, it is a remarkable fact, which may be easily overlooked, that since

\[
\frac{\pi}{2} Y_1(z) = - \frac{1}{z} J_0(z) + (\log z - \log 2 + \gamma) J_1(z) - \frac{1}{2} \sum_{k=1}^{\infty} \frac{kH_k \left(- \frac{1}{4} z^2\right)^{k-1}}{(k!)^2},
\]

where we used that \(Y_1(z) = - Y_0'(z) \) and \(J_1(z) = - J_0'(z) \) from Ref. 1 p. 361, we have

\[
(z Y_1(z))_{|z=0} = - \frac{2}{\pi} \Rightarrow (z^2 Y_1(z)^2)_{|z=0} = \frac{4}{\pi^2}.
\]

Therefore,

\[
\int_0^R r J_0(\mu r)^2 dr = \frac{R^2}{2} (J_0(\mu R)^2 + J_1(\mu R)^2)
\]

\[
\int_0^R r Y_0(\mu r)^2 dr = \frac{R^2}{2} (Y_0(\mu R)^2 + Y_1(\mu R)^2) - \frac{1}{2} \left(r^2 Y_1(\mu r)^2 \right)_{|r=0}
\]

\[
= \frac{R^2}{2} (Y_0(\mu R)^2 + Y_1(\mu R)^2) - \frac{2}{\pi^2 \mu^2}
\]

\[
\int_0^R r Y_0(\mu r) J_0(\mu r) dr = \frac{R^2}{2} (Y_0(\mu R) J_0(\mu R) + Y_1(\mu R) J_1(\mu R)).
\]

Plugging these integrals into (A4) and using the identity (Ref. 1, p. 360)
\[J_1(z)Y_0(z) - J_0(z)Y_1(z) = \frac{2}{\pi z} \]

to simplify the expression obtained, we eventually arrive that
\[\int_0^\infty p(r,\mu)q(r,\mu)dr = \frac{R}{2\mu} \left(J_1(\mu R) - \frac{2}{\pi} (\log \mu - \kappa)J_1(\mu R) \right) + \frac{1}{\pi\mu^2}J_0(\mu R) \]
\[= \frac{R}{2\mu} \left(J_1(\mu R) - \frac{2}{\pi} (\log \mu - \kappa)J_1(\mu R) + \frac{2}{\pi\mu R}J_0(\mu R) \right). \]

Using the fact that \(J'_0(z) = -J_1(z) \) and \(Y'_0(z) = -Y_1(z) \), we can write this as
\[\int_0^\infty p(r,\mu)q(r,\mu)dr = -\frac{1}{2\mu} \frac{d}{d\mu} \left(Y_0(\mu R) - \frac{2}{\pi} (\log \mu - \kappa)J_0(\mu R) \right) = -\frac{1}{2\mu} \frac{d}{d\mu} F(\mu), \]
where we recall that
\[F(\mu) := Y_0(\mu R) - \frac{2}{\pi} (\log \mu - \kappa)J_0(\mu R). \]

Since [see (A3)]
\[(\Delta_\theta - \mu^2)^{-1}(r,s) = \frac{1}{F(\mu)} \begin{cases} p(r,\mu)q(s,\mu) & \text{for } r = s, \\ p(s,\mu)q(r,\mu) & \text{for } r \neq s, \end{cases} \]
we have proved the following theorem.

Theorem A.1: With \(F(\mu) := Y_0(\mu R) - (2/\pi)(\log \mu - \kappa)J_0(\mu R) \), we have
\[\text{Tr}(\Delta_\theta - \mu^2)^{-1} = -\frac{1}{2\mu} \frac{d}{d\mu} F(\mu) = -\frac{1}{2\mu} \frac{d}{d\mu} \log F(\mu). \]

This theorem has been used to analyze the zeta function, resolvent, and heat kernel of \(\Delta_\theta \) in Secs. VI–VIII.

Applications (World Scientific, River Edge, NJ, 1994).

22 Hildebrand, F. B., Methods of Applied Mathematics, 2nd ed. (Dover, New York, 1992).

26 Hildebrand, F. B., Methods of Applied Mathematics, 2nd ed. (Dover, New York, 1992).

46 Wolfram research, BesselJ, http://functions.wolfram.com/BesselAiryStruveFunctions/BesselJ/