FREDHOLM PERTURBATIONS OF DIRAC OPERATORS ON
MANIFOLDS WITH CORNERS

PAUL LOYA AND RICHARD MELROSE

ABSTRACT. A Dirac operator d on a compact manifold with corners related
to a complete metric on the interior of ‘multi-cylindrical’ (exact b-) type is
Fredholm if and only if the induced Dirac operator on each boundary hyper-
surface is invertible. In case the boundary codimension is at most two a result
of the second author and V. Nistor shows that @ can be made Fredholm by
perturbation with a b-smoothing operator only if the induced Dirac operators
on the corners have index zero. In this case we provide explicit Fredholm
perturbations and compute the index of the resulting Fredholm operators.

INTRODUCTION

The index theorem of Atiyah, Patodi and Singer [1] gives a quite explicit formula
for the index of a Dirac operator associated to a manifold ‘with cylindrical ends’. By
exponential compactification this may be reinterpreted as an index formula in the
‘b-category’ as discussed extensively in [22]. Thus, the Dirac operators considered
are for Clifford bundles £ — X over even-dimensional compact manifolds with
boundary with metrics which become singular near the boundary components and
take the form ,

g= d% + h.
x
Here h is a 2-cotensor smooth up to the boundary and restricting to a metric on
it and x € C°°(X) is a defining function for the boundary. Given such geometric
data, let 97 : C(X, Et) — C*(X, E~) be the associated Dirac operator. If the
metric and connection are of product type near the boundary, then

0" =T[xd, + o), inz<e,

where T' is Clifford multiplication by idx/x and @y is the induced Dirac operator
on the boundary. Then 8% is Fredholm on its natural Sobolev domain if and only
if 0 is invertible; the index formula of [1] in this case is

(0.1) nd ot — / AS - %n(%),
X

where AS is the Atiyah-Singer density and 7(9g) is the eta invariant of dy. Even if
0o is not invertible, Atiyah, Patodi and Singer give an index formula which can be
interpreted in one of several related ways. One approach is simply to note that on a
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manifold with boundary with exact b-metric, 0T is always Fredholm as an operator
between weighted Sobolev spaces

(0.2) Ot i 2°HN(X,ET) — 2°L3(X,E7), 0#|a| <4, § small.

Here, H} (X, ET) is the natural domain of 3 and d can be taken to be the smallest
absolute value of a non-zero eigenvalue of dy. The index formula then becomes

(0.3) ind, 0" = /X AS — %[17(30) + dim ker(9y)],

where the sign is the sign of . Whilst very natural, this approach fails in higher
codimension cases for several related reasons. One difficulty with (0.2) is that it
amounts to replacing 3+ by z~*d"x%, which has induced boundary operator

(0.4) 3o + a.

Such a perturbation, by a constant, has the undesirable effect of destroying the
structure of O™ as an admissible Dirac operator and hence invalidates the local
index theorem, which is a key step in the proof of (0.1).

To overcome some of the difficulties with the approach through conjugation, a
‘small’ perturbation can be used in place of ‘e’ in (0.4). The space of b-smoothing
operators is a natural class of perturbations preserving all the weighted metric
Sobolev spaces and such perturbations do not affect the local index theorem. A
perturbation R € ¥, *°(X, ET, E~) may be chosen such that 3+ + R is Fredholm
on the natural domain of % and then a direct analogue of (0.1) holds

(0.5) ind(0" + R) = / AS — %77(60 + i1 — TN(R)(7)).

b'e
Here, we denote by 7 the generalization of the eta invariant introduced in [23] for
suspended families of pseudodifferential operators; N(R)(7) is the indicial family
of the perturbation.

The third approach to Fredholm perturbations, and the one closest to the meth-
ods of [1], is to enlarge the domain of dT to include the ‘extended L? null space’.
This has been systematically studied by Carron [8]. In the case of a manifold with
boundary, the enlarged domain is simply

E-Dom(3") = {u € z °HNX,ET); dtu e L}(X,E7)}, 4> 0 small
and
oF : E-Dom(0") — L(X,E")
is Fredholm. It is relatively easy to relate the indices stemming from these three
types of Fredholm problems; namely

(0.6) ind®® =ind, " =ind(@" + R), «a < 0 small

provided 0y + i — dT'N(R)(7) is invertible for all 0 < § <1 and 0 < Im7 < ¢’ for
some ¢’ > 0.

The merit of considering Fredholm perturbations R is that the index formula
(0.5) is easily evaluated using the approach in [22]. However, a second step is
needed to relate the index so obtained to solutions of the unperturbed operator.
In the generalization to manifolds with corners here we do not directly relate the
index of the perturbed operator to the solutions of the unperturbed operator. How-
ever, the formula itself is given in a ‘transgressed’ form in which the index of the
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perturbed operator is expressed in terms of unperturbed data, plus a minimal term
corresponding to the ‘deformation’ of the operator.

In this paper we discuss Fredholm perturbations of this type for compact man-
ifolds with corners. If the induced Dirac operators on the corners of codimension
two and greater are all invertible, then we can proceed in much the same way as
for manifolds with boundary. In particular, conjugation gives a Fredholm operator,
cf. (0.2) in the codimension one case, and a direct generalization of (0.3) holds; see
Theorem 6.8. Similar relations as in (0.6) also hold. Moreover, the invertibility
of these induced operators is also a necessary condition for conjugation to give a
Fredholm perturbation; see Theorem 2.1. Unfortunately, these strong invertibility
assumptions on the corner Dirac operators are rarely satisfied by geometric opera-
tors. For codimension two manifolds with corners, Miiller [28] also gives an index
formula under these strong invertibility assumptions.

For Dirac operators on manifolds with corners up to codimension two, the weaker
assumption that each of the induced Dirac operators on a corner has index zero,
is necessary and sufficient for there to exist perturbations R € ¥, (X, Et,E7)
such that % 4+ R is Fredholm on the natural domain of d+. The necessity of this
condition follows from work of V. Nistor and the second author. If there is a single
corner component the cobordism invariance of the index implies the vanishing of this
index. The sufficiency is shown here by the construction of Fredholm perturbations
R € ¥, °(X,ET,E™) from Lagrangian subspaces of the kernels of the induced
Dirac operators on the corners. In future work, using a slightly larger class of
perturbations, we expect to remove both the assumption on the Dirac operators on
the corners and the limit on the codimension of the boundary.

For simplicity, we shall describe here the form of our results in the special case
that X has a single corner component; the general case is treated in the body of
the paper. Fix an ordering H; and Hs of the boundary hypersurfaces. If 5+M is the
Dirac operator induced on M from H; then the Dirac operator induced on M from
5H2 is

(0.7) 0y, Oy = (03"

The factor of ¢ and the opposite chirality induced from 0y, appear in the ‘corner
correction term’ in the index formula (0.9) below. Set V = ker 8}, @ ker 0},. Since
dim ker 3;(/[ = dimkerd},, as the index of 5& is zero, we may choose a unitary
isomorphism

(0.8) T" : kerd}, — kerd,,

with respect to the L? inner products. The +1 eigenspace of T = T+ & T~ on
V, where T~ = (T)*, defines a subspace A7 C V which is Lagrangian in the
sense that V' = Ap @ 'Ap, where I' = +4 on ker 6@. Given such a subspace we
construct an operator R € W,"*°(X, ET, E™) that preserves the Clifford structure
at the boundary faces, has restriction to the corner equal to —7 and is such that
the indicial families of 0 + R at H; and Hs are invertible for 7 € R.

Theorem 0.1. Let X be an even-dimensional compact manifold with two boundary
hypersurfaces intersecting in a single corner, let 0% : C°(X,Et) — C>®(X,E™)
be an admissible Dirac operator on X, associated to a product-type b-metric and
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connection on X, then

1 1
(0.9) ind(&* + R) :/ AS-- Y {bn(aHi) +dimkeram} — ~e(Ap, Acy, Acy).
X 2 i=1,2 2

In the sum % (dg,) is the b-eta invariant of the Dirac operator 9z, induced on the
hypersurface H;. The third ‘corner correction term’ is described as follows. First,
Ac,,Ac, C V are the scattering Lagrangians associated to the operators dy, and
Op, respectively. Then

C(AT, Acl s ACQ) = dlm(AT N Acl) + m(AT, Acl)

0.10
( ) + dim(ApT n AC2) — m(ApT, ACZ),

where Arr is the Lagrangian associated to I'T" and

1 .
m(AT7Acl) = _E ., Z Zaa
et cspec(—T~CF)
oc(—m,m)

and where a similar formula holds for m(Arr, A, ). The function m was introduced
in the work of Lesch-Wojciechowski [14] and C is the restriction C; to V*. A
formula similar to (0.9) holds for manifolds with any number of corners up to
codimension two, as long as the induced Dirac operators on the corners have index
zero; see Theorem 6.12.

As already noted, Miiller [28] gives an index formula for Dirac operators on man-
ifolds with corners up to codimension two under the assumption that the induced
Dirac operators on the corners are invertible. Without this assumption a signa-
ture formula was proved in [13] by Hassell, Mazzeo and the second author, using
the techniques of analytic surgery [12]. Salomonsen in [31] also gives an index for-
mula without this assumption by considering a related problem on a manifold with
boundary with wedge singularities.

In the next two sections we discuss Dirac operators and their induced opera-
tors on general manifolds with corners. Then the two classes of perturbations on
Dirac operators are examined, corresponding to conjugation by boundary defining
functions and to adding b-smoothing operators. The proof of Theorem 0.1 uses the
difference of the traces of the heat operators exp(—tA*A) and exp(—tAA*) where
A = 0"+ R. These heat operators are not trace class in the usual sense, but instead
the b-trace functional, described in Section 3, can be applied to these operators;
this functional was introduced in [22] for manifolds with boundary. The index of
0" + R can then be computed following the approach in [22] and resulting in a
similar formula to (0.5) involving an interior term and boundary eta term. The
eta term is further analyzed in Section 4, and then the ‘transgressed’ index formula
is presented in Section 6. In Section 7 we give an application of Theorem 0.1 to
derive a splitting formula for the eta invariant. Finally, the appendix contains a
treatment of b-pseudodifferential operators and the corresponding heat calculus.

1. DIRAC OPERATORS ON MANIFOLDS WITH CORNERS

In this first section we fix notation. See the appendix for a summary of the basic
notions and notations used in the b-geometry on manifolds with corners.
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1.1. Dirac operators. Let X be a compact manifold with corners and Hy, ..., Hy
a fixed ordering of the boundary hypersurfaces of X. A metric on the b-tangent
bundle “T"X is said to be ezact if it takes the form

N
(1.1) g= Z(

where ¢’ € C*°(X,T*X ® T*X) for some choice of boundary defining functions
dpi
Pij]

dp;\ 2
,0) _|_g/7
Pi

{pi}L,. If M is a codimension k face defined by p;,, ..., p;,, then { }?:1 is an

orthonormal set at M, and hence

(1.2) Xy = INFM @ T M, UNFM = SpanR{ i, }
is an orthogonal decomposition. Assume that X is even dimensional. Let E be
a Hermitian, Zs-graded Clifford module over X associated to an exact b-metric g.
Thus, F = E* @ E~ and there is a homomorphism ¢ : T*X @ E — E, ({,¢€) —
o (&)e, that is odd with respect to the Zy-grading and satisfies o(£)* = [£[2. (Note
our sign convention is o(£)® = [£|2 and not the usual o(£)* = —[¢2.) A b-
connection, "V € Diﬁ%(X, E,’T*X ® E), is an operator satisfying

WN(fe)=df e+ fNe, feC®X), ecC®X,E).
It is called a Clifford connection if for any a € C®(X,T*X) and e € C®(X, E),
(1.3) Wo(a)e = o(Va)e + o(a)Ve,

where V is the Levi-Civita connection associated to g. By the structure of the
metric in (1.1) and the definition of the Levi-Civita connection, it follows that
V% € pO=(X,'T*X @ 'T*X), where p = p;---px is a total boundary defining
function. As p’T*X = T*X, the Levi-Civita connection V is therefore a true (as
opposed to just a “b-") connection on "T*X

V:C®(X,'T*X) — C®(X,T*X @ 'T*X).

The splitting (1.2) implies that the Levi-Civita connection can be restricted to any
face M of X, giving the Levi-Civita connection VM on that face associated to the
exact b-metric gy on M induced from g. The decomposition (1.2) also gives a
natural way to define an induced connection W™ € Diff} (M, E|y,"T*M & E|r)
from V. By (1.3), this connection is a Clifford connection and it commutes with

. dp; ;
the homomorphisms o*( pp L

— ) where M is defined by p;,,. .., pi,.
If W is also Zg—graded. and Hermitian, then the associated (generalized) Dirac
operator, d € Diff} (X, E), is the operator

3:%J~bv.

Note that 9 is self-adjoint and is odd with respect to the Zs-grading of E (the proof
is essentially the same as in the manifold with boundary case, see [22, Lem. 3.32]).
The restrictions of 8 to C°(X, E*) and C*(X, E~) are denoted by 0+ and 9~
respectively.
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1.2. Induced Dirac operators. Let M = H;, N---N H;, where 1 <¢; < -+ <
ir < N be a non-trivial intersection. Note that M has possibly several components,
each of a face of codimension k. Let [0,1)% x M be a product decomposition of X
near M, where x; = p;; near r; = 0, and choose an isomorphism £ = E|js over
this decomposition. Then

1
0=o0121Dy, + -+ 0y aDyy + By + B, D, Zgaxj,

/ : - dzj — 1 LM
where B’ vanishes on M, o; = O’( z; )|M, and where By = 0o WM ¢

Dift} (M, E|a) is self-adjoint and is odd with respect to the Zo-grading of E. More-
over, the Clifford module structure and the fact that "V is Clifford imply that

(1.4) 0; =04 0,05+ 005 =20;55 0;0By =—DByoo;.

Freezing the coefficients at the boundary and taking the Mellin transform in the
normal variables defines the normal operator of d at M:

(1.5) N]\/j(a)(T)20'171+~'~+O'ka+B]y[.

See the appendix for more on normal operators.
Assume that k = 2/ is even, where ¢ € N. Define

WjZiO'QjO'gj_1ZE+|M—>E+|M, j:1,2,...,€.
By (1.4)), for each i,j, wjw; = wjw;, w; = w;, and w? = Id. Thus, {w;} is a
commuting family of self-adjoint operators each having eigenvalues £1. We define

FE) to be the common intersection of the +1 eigenspaces of wy, ... ,wy_1:
Ey={e€Et|yiwje=e, j=1,...,0—1}

Then E); is Zo-graded: Eyy = E]T/[ @ E;;, where E]j\tl are the +1 eigenspaces of wy.
Now assume that k = 2¢ + 1 is odd. If k = 1, we define Eyy = ET|y. If £ € N, we
define Ey; = E1\+/[,|M7 where M C M’ with M’ = H;, N---N H,,,, and where Ejp;
is already defined since 2/ is even.

The definition of these induced bundles may be clearer through the following
inductive definition. For a codimension one face, we set Fpy = E1|). Assume that
E; is defined when M is the intersection of at most k—1 boundary hypersurfaces of
X. For M = H;,N---NH;,, set M' = H; N---NH;,_,. Then E)y is already defined.
If k is even, we define Ey; = Epr|ar, and if k is odd, we define Epy = EJJ[{, |ar where
E]T/[,|M is the +1 eigenspace of iopog_1 on Epyr.

By (14),if k=20 or k = 2 + 1, where k € N, then i0y, By wj = w; iox By for

207

k>

j=1,...,£—1. Thus, we obtain an operator
(].6) 5M:ZO7€BIJ\;[ COC(M,EIV[) —>COO(M,EM)
Since oM = ioy, - o|ipe s is a Clifford action on Eyr, 0y = %CTM M s a Dirac

operator on M. If k = 2/ is even, then w;0p; = —0wy, so Oy is odd with respect
to the Zs-grading of Fjy;. Thus, for k even, 0, is Zo-graded:
9%, : C=(M, Ef,) — C>®(M, EY).

The operator 0y, defined in (1.6) is called the induced Dirac operator of @ on M. If
F C M is a codimension k face of X (a component of M), then O is by definition
the restriction of 9 to F.
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Since O0p; = iokBjt[, given F € My1(X) with F C H;; Nn---NH;
Np(0p)(7) = iokok17 + B, Hence, for odd codimension M,

_l M AP+ . M ( APr+1 s
(1.7) Np(aM)(T)—iJ (—Pk+1 [ZT—FéF}, o (—pk+1)—wkok+1.

by (1.5),

k10

If M has even codimension, we must replace 0y with 97,. In particular, Ny (9+)(7)
= toglit +0u| for any H € My(X).

Finally, we note that different orderings of the boundary hypersurfaces give rise
to induced Dirac operators differing by a Clifford action. For instance, let M €
My (X) with M C Hy N Hs. Then, by (1.7), we have

(1.8) Ny (Bp,)(r) =T[it + 00 |, I' =1w,

where w = {0307 is, by definition, the Zy-grading of Ej,;. However, using the fact
that 0p, = iazB}SQ, a similar computation used to derive (1.7) shows that

(1.9) N (0, ) (1) =T'ir + 0 ], I = —iw, 0y = iwdy.

The discrepancies between (1.8) and (1.9) will come into play later (see for instance,
in Section 6.3).

2. PERTURBATIONS OF DIRAC OPERATORS

By Theorem B.2 of the appendix, a Dirac operator 0 is Fredholm if and only if
each of its normal operators is invertible for all real parameters. This condition is
very restrictive. In this section, we consider two methods to make a Dirac operator
Fredholm. The first is by conjugation by boundary defining functions and the
second is by adding a b-pseudodifferential operator to it.

2.1. Weighted Sobolev Spaces. Given a multi-index e on X; that is, an N-tuple
of real numbers, we set p® = pi"* -+ pR. Also, for any ¢ > 0, we write 0 < |a| < &
to mean that 0 < |a;| < 0 for each ¢ = 1,..., N. The following theorem shows
that in general one cannot make a Dirac operator Fredholm by considering it on
weighted Sobolev spaces.

Theorem 2.1. There exists a § > 0, such that for all multi-indices o with 0 <
af <4,

(2.1) o o HL (X, EY) — p°L(X, B")

is Fredholm, if and only if, ker 0y = 0 for each M € M (X) with k > 2; in which
case, given any two such multi-indices, if we denote the index of the operator (2.1)
by ind, 0T, then we have

ind, " —ind, 0" = — Z sgn(ay — aly) - dimker 0.
sgn oy #sgn oy, HEM; (X)

In particular, if X is a manifold with boundary, then 8% can always be made
Fredholm by considering it on weighted Sobolev spaces. In Theorem 6.8 we give a
formula for the index ind,0T. This formula is the direct analog of the corresponding
formula on manifolds with boundary [22].

Necessity in Theorem 2.1: If ker dy; = 0 for each M € My (X) with k£ > 2, then
by Proposition 2.4 in the next section, it follows that Nj;(9)(7) is invertible for all
7 € R2. Thus, the following proposition proves the necessity part of Theorem 2.1.
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Proposition 2.2. Let E and F be vector bundles over a compact manifold with
corners X (not necessarily even dimensional) and let A € U;*(X, E, F) be elliptic.
Suppose that for each M € My(X), Np(A)(7) is invertible for all 7 € R%. Then
for some § >0, for all multi-indices o with 0 < |a] < 9,

A5 g H'(X, E) — p"LE(X, F)
is Fredholm. Moreover, given any two such multi-indices o, o, we have

(2.2) indyA —indyy A= — Z sgn(ag — oly) kg (2),
sgn g #sgn ay,
z€specy (A), HEM; (X)
where specy (A) is the set of poles on the real axis of the meromorphic family
Ny (A)(T)71, and where rky(2) is the rank of the pole at z (see [22, Sec. 5.9]).

Proof. Once we prove that A is Fredholm on weighted Sobolev spaces, the “relative
index formula” (2.2) is proved just as in the manifolds with boundary case [22,
Th. 6.5]. Thus, we need only prove the first statement of the proposition. We
work within the context of non-weighted Sobolev spaces. Thus, we prove that
p~*Ap* : H"(X,E) — L3(X,F) is Fredholm. In the statements that follow,
Fredholm properties always refer to non-weighted Sobolev spaces.

Since Njp(A)(7) is invertible for each M € My(X), by Theorem B.2 of the
appendix, for each ¢, Ny, (A)(7) is Fredholm for all 7 € R. We prove the following
statement by induction:

(2.3) For each j = 1,..., N, there is a §; > 0 such that given any multi-index
a with 0 < |o;] < §; for @ = 1,...,7, the operator Ng,(p~*Ap®)(7) is
invertible for all 7 € R.

Setting j = N and applying Theorem B.2 of the appendix proves the proposition.
If j =1, a is any multi-index, and p} = (p2 - p~)|m, , then

(2.4) Np, (p~*Ap®)(7) = (p1) ™" N, (A) (1 — i) (1)

Fix any r > 0. Then by Lemma B.6, there is an v’ > 0 such that the oper-
ator (p}) *Np, (A)(1)(p})* is invertible for all 7 € C such that |Rr| > ' if
0 < la|,|Im7| < r. Thus, as Ng, (A)(7) is a holomorphic family and Fredholm
for 7 € R, by analytic Fredholm theory and the fact that Fredholm operators form
an open set in the bounded operators, it follows that for some 0 < §; < r and for
all 0 < |a| < 41, the inverse of (p])~“Np, (A)(7)(p})“ exists for 7 € C near R with
the exception of a finite number of poles on the real line. In particular, choosing
91 smaller if necessary, by (2.4), for all multi-indices « with 0 < |a| < d1, it follows
that Ny, (p~*Ap®)(7) is invertible for all 7 € R.

Assume that (2.3) holds for j < N. Then repeating the j = 1 argument implies
that for some 0 > 0, Ny, (p~*Ap®)(7) is invertible for all 7 € R with 0 < [a| < 0.
Let 0 < ¢j41 = min{d,d1,...,0;}. Then (2.3) holds for j + 1, so our induction step
is finished and our proof is complete. O

Sufficiency in Theorem 2.1: To prove sufficiency, we work in the context of non-
weighted Sobolev spaces. Thus, assume that for some § > 0, p~¢3 " p® is Fredholm
on L} for all multi-indices o with 0 < |a| < §. We show that ker d,; = 0 for each
M € My(X) with k > 2.

Let n’ = codim X and let M € M,,/(X). We prove that ker 3y, = 0. To simplify
presentation, assume that M = H; N---N H,s and that M is the single boundary
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component of F' = Hy;N---NH, _1; the general case is not essentially different. By
Theorem B.2, Np(p~*dp®)(7) is invertible for all 7 € R” ~! and for all 0 < |a| < 4.
Let p' = (ppn -+ pn)| . Then using notation in Section 1.2, cf. (1.5), we can write

n'—1
Ne(p=0*p®)(r) = 3 a3(m —iag) + () BEG)
j=1
1 n'—1
= Jowor| 2 iB(ry —iay) + () Dr(s)].
j=1

where 3; = i0,—10j and Dp = ian/_lB;. The induced operator 0 is the operator
Dp restricted to sections of Er (see Section 1.2). Setting 7 = 0, we see that

n'—1

(2.5) > (Bjay) + (p)*Dr(p)®

Jj=1

is invertible for all 0 < |a] < §. We claim that (p')"*Dpg(p’)* is Fredholm for any
« with |a,s| > 0 sufficiently small. To see this, let p” = (ppr+1---pn)|ar- Then
arguing as in the derivation of (1.7), we obtain

(2.6)  Nu((p)"*Dr(p)*)(7) = % on 10w (")~ LiT + an + D |(p"),

where Dy = ian/B;C. The induced Dirac operator 0, is the operator D), restricted
to sections of Eps. Since v,y +D)y is self-adjoint, (2.6) is invertible for all 7 € R\{0}.
Now D)y is Fredholm since it is elliptic and M is compact without boundary. Thus,
D) has discrete spectrum near zero, so in fact, (2.6) is invertible for all 7 € R with
|| > 0 sufficiently small. It follows that (p')~*Dp(p')* is Fredholm for |a,,/| > 0
sufficiently small. Thus, since the index in invariant under Fredholm perturbations,
the fact that (2.5) is invertible for all 0 < |a| < ¢ implies that p:f,a"'Dpr,a"’ must

have index 0. Hence by the relative index formula (2.2), we have
0—-0=indg,, Dr —ind_o ,DF = sgna, - dimker Dyy.

Thus, ker Dy; = 0 and so, ker 0y, = 0. We remark that the key to proving this
was that Dj; has discrete spectrum near zero which allowed us to conclude that
pI,Q”/DFpiE,a"“ is Fredholm. Now setting all multi-indices to zero in (2.6) shows
that Nps(Dp)(7) is invertible for all 7 € R. Thus, Theorem B.2 implies that Dp
is Fredholm for all F' € M,,_1(X). In particular, D has discrete spectrum near
zero. Using this fact and going through a similar argument as we did above in
showing that ker Dy; = 0 for each M € M,,/(X) shows that ker Dy = 0 for each
F € M,,_1(X). Continuing by induction finishes up the sufficiency proof.

2.2. Compatible operators. We now consider perturbations of Dirac operators
by b-smoothing operators. A natural choice of perturbations are those having sim-
ilar properties as the Dirac operator with respect to the Clifford action at the
boundary faces.

Definition 2.3. An operator R € ¥, (X, E*, E™) is said to be Clifford compat-
ible if given any codimension k face M C H;, N---NH;,, foreach j =1,...,k, we
have

(2.7) ajo Nu(R)(1) = —Nu(R)(7)" 00;,  7eCF,

ko
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dpi
Pij

even function of 7 € R,

where 0; = o )’M and when restricted to real parameters, Ny (R)(7) is an

In analogy with the definition of induced Dirac operators, we define
(2.8) Ra(7) = iop Nu(R)(7).

By condition (2.7), it follows that for real 7, Rps(7) is self-adjoint and it defines
an operator on the induced vector bundle E)s, such that when k is even, Rps(7) is
odd with respect to the Zs-grading of Fy;.

Proposition 2.4. Let R € ¥, *°(X,E",E™) be Clifford compatible and let M €
My(X). Then Np (3T + R)(7) is invertible for all T € R* \ {0}, and is invertible
at 7 =0 if and only if Oy + Rar(0) is invertible. Moreover,

0"+ R: H)(X,E") — L}(X,E")

is Fredholm if and only if each of the induced operators dps + Ras(0) is invertible, if
and only if each of the induced operators Oy + Ry (0) on each of the hypersurfaces
H of X is invertible.

Proof. Fix any 0 < j < k. We prove that Ny, (07 + R)(7) is invertible for all 7 € R*
with 7; # 0. Indeed, observe that

1
Ny (0t + R)(7) =017 + -+ opi + BIT/I + Ny (R) (1) = Eaj litj +1i0;A4,(T)],
where
Aj(T) =071+ +0'j_17'j_1 +Uj+17j+1 + -+ OoTk +B1—Q +NM(R)(T)

Since 0; 0 Bf; = —By; 0 0; and 0; 0 Ny (R)(7) = —Ny(R)(7)* 0 0; for 7 € R¥
(see (1.4) and (2.7)), it follows that io;A;(7) is self-adjoint for all 7 € R*. Thus,
Ny (0 + R)(7) is invertible for all 7 € R® with 7; # 0. It is invertible at 7 = 0 if
and only if B}, + Ny (R)(0) is invertible, which holds if and only if 057 + Ras(0) is
invertible. The Fredholm properties of % + R follow from Theorem B.2. (]

Choosing R = 0 gives the following corollary.

Corollary 2.5. The following are equivalent:
(1) 8" : H(X,Et) — L}(X, E™) is Fredholm.
(2) For each H € My(X), Oy : H}(H, Eg) — L}(H, Epp) is invertible.
(3) For each M € M'(X), dp : HY (M, Enr) — LE(M, Eyy) is invertible.

2.3. Dirac operators on codimension two manifolds with corners. The
following theorem, due to Melrose and Nistor, characterizes those Dirac operators
0 that can be made Fredholm by perturbation by b-smoothing operators.

Theorem 2.6. Let X be an even-dimensional compact manifold with corners of
codimension two. Then there exists an R € ¥, *°(X,ET,E™) so that

0" +R:H)(X,E") — L} X,E")

is Fredholm if and only if the L?-index of the positive part of the induced Dirac
operator on each codimension two face is zero.
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The last statement means that ind 3}, = 0 for each M € M>(X). We remark that
this theorem remains valid for any manifold with corners of arbitrary codimension
as long as we assume that ker 0y, = 0 for all M € M (X) with k¥ > 3. The proof
follows essentially the same line of reasoning. In Section 2.4, we show that the
signature operator on any 4k dimensional manifold with corners of codimension
two, and any Dirac operator on a manifold with one codimension two face, satisfy
the conditions of this theorem.

Sufficiency in Theorem 2.6: Assume that ind 9}, = 0 for each M € M5(X). To
prove the sufficiency in Theorem 2.6, we give a recipe to build a Clifford compatible
perturbation from the null spaces of the corner Dirac operators. The basic idea is
the following. According to Proposition 2.4, we need an R such that for each
boundary face M, O + Ras(0) is invertible. To construct such an R, we first
define a compatible perturbation, say S, supported near the corners, such that for
each codimension two face M, Oy + Sps(0) is invertible. We then define another
compatible perturbation, say S’, supported near the boundary hypersurfaces and
vanishing at the corners, such that for each boundary hypersurface H, 8y + Sy (0)+
S%;(0) is invertible. Then R = S + S’ is the required perturbation.

Let x € C2°([0,1)) be a nonnegative function such that y(z) =1for 0 <z < %
and x(z) = 0 for x > %. Let ¢ be an even, real-valued, Schwartz function on R
with ¢(0) > 0. Then the Fourier transform @(7) is an even entire function. Define
Q € ¥, °°([0,1)) by defining its Schwartz kernel, which we again denote by Q:

!/
(29) Q = pllogs) x()x(@) 5=
Since ¢ is even and real valued, @ is self-adjoint, and by definition, N(Q)(7) = @(7).

Let M C H;, N H;,, where i; < i3, be a codimension two face. From Section
1.2, recall that Ey; = E'|y, which splits: Ey = By, ® Ey;, where EF; are the +1
eigenspaces of w = igg0oy. Then 0y = iagB;\} is odd with respect to the Zs-grading
of Fjs, and by assumption, ind 5;(/1 = 0. Hence, dim ker 5& = dimker 9, so we can
choose a unitary, self-adjoint isomorphism Tj; on ker dj; that is odd with respect
to the Zs-grading of Ej;. To construct such a map, let TJ\Z : ker 8& — ker @, be
a unitary isomorphism. Choosing bases of ker 57\'4 and kerd;, shows that T’ ]f/} is a
finite rank operator. Thus, T}, € ¥=°(M, E},, E;;). Now set Ty = T}, + Ty, €
U=°(M, Epr), where Ty, = (T3;)*. Then Ty is unitary, self-adjoint, and is odd
with respect to the Zs-grading of Ej;. Choose a decomposition

(2.10) X 2[0,1)2 x M,

near M, where x; = p;; near z; = 0, and over which ET = E);. Using this product
decomposition, we define

1 _ _
(2.11) Su = =202 QIQ3Tw € U, (X, E¥, B7),

where oy = U(dx2)|M and where Q; = Q(z;,x}) with @ given in (2.9). One can

Z2

check that the operator Sy, defined in (2.11) is Clifford compatible. Note that

(2.12) Nur(Sn)(m1,72) = —%0’2 G(11)*@(12)* Tns-
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Lemma 2.7. Assume that ind 3, = 0 for each M € My(X), and set
(2.13) S = Z S,

MeMsy(X)

where each Sy is defined as in (2.11) above by a choice of unitary isomorphism
Ty. Then S € W, (X, ET,E™) and for each M € My(X), Ny (0T + S)(7) is
invertible for all T € R%. In particular, for 0 < |a| < for some § > 0,

o + S 1 p HL(X, V) — p"LA(X, E7)
is Fredholm.

Proof. Since each Sy is b-smoothing, so is S. Moreover, by (2.12), we have Sy (1) =
—3(11)?@(12)?Trs. Thus, by Proposition 2.4, Nj (3T + S)(7) is invertible for all
7 € R? if and only if dys + Sy (0) = Oy — Ty is invertible. But 0y — Ty is
invertible by construction. The fact that % + S is Fredholm on weighted Sobolev
spaces follows from Proposition 2.2. O

In Theorem 6.13, we give a formula for the index of the operator % + S on
weighted Sobolev spaces.

Using the operator S € ¥, (X, ET,E™) in (2.13), we construct an operator
R satisfying Theorem 2.6. Let H € M;(X) and let X = [0,1), x H near H,
where x is the fixed boundary defining function for H near x = 0, and over which
E = E|g. Since S is compatible with @, by Theorem B.2 and Proposition 2.4,
it follows that Ny (3 + S)(7) is a family of Fredholm operators for 7 € C near
R and is invertible for all 7 € R if and only if 3y + Sy (0) is invertible. By
Theorem B.8, the orthogonal projection Iy onto the null space of 8y + Sy (0) is
an element of U~°>¢(H, Ep) for some £ > 0. As the invertible operators form an
open set in the bounded operators between H}(H, Ey) and L (H, Ey), it follows
that 0y + Sy (0) + gy + K is invertible for all operators K € ¥~°¢(H, F) with
|K| < 6 for some § > 0. Let Ky € W~°?(H, E) be a self-adjoint smoothing
operator such that |K —IIg|| < d. Then 0y + Su(0) + Ky is invertible and if

1
(2.14) Sl = EUHQQKH eV, *(X,ET,E7),

where oy = a(df) | and where @ is defined in (2.9), then S%; is Clifford compatible
and by Proposition 2.4, Ny (0 + S + Sy )(7) is invertible for all 7 € R. Summing
up such operators for each H € M;(X) produces an S’ € U, (X, E*t, E~) such
that Ny (0 + S + S')(7) is invertible for all 7 € R for each H € M;(X). Thus, if
R=S+5', then 8" + R is Fredholm on L?. This proves the following proposition,
which in turn proves sufficiency in Theorem 2.6.

Proposition 2.8. Suppose that indd}, = 0 for each M € My(X). Then the
operator R = S+ 5" € U, *(X,E",E™) defined above is such that 3" + R is
Fredholm on Lg.

In Theorem 6.12 we give a formula for the index of the operator 3" + R. We
remark that we could replace each operator S%; in (2.14) by any nonzero multiple
of it and the operator R defined in this manner will still be Fredholm. The index
of 8% + R is similar to the formula found in Formula (6.14) of Theorem 6.12, but
with appropriate sign changes.
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Necessity in Theorem 2.6: The proof of necessity is based on the degree map,
due to Melrose and Nistor, which we now define. Let M C H;, N H;,, i1 < 2.
Recall that, cf. (1.5), Np(07)(7) = o171 + 0272 + B]J\}, and Oy = iagB]T/[ is odd
with respect to the Zs-grading on Ey = ET|p. If A(7) = Np(01)(7), then by
Proposition 2.4, A(7) is invertible for all 7 € R? \ {0}, so A(7)"'dA(r) exists for
all 7 € R? \ {0}, where d is the differential with respect to 7 = (71,72). We define

a(r) = Tr(A(T) " tdA(7T)),

where Tr is the regularized trace with respect to P = 0%,0as; that is, a(7) is the
regular value of the meromorphic function Tr(A(7)"'dA(7)P~*) at 2 = 0. A short
computation shows that

d(A(T) " dA(T)) = [A(T) 10, A(T), A(T) 10, A(T) | dTy A drs,
which implies that
(2.15) do(t) = Tr([A(T) 10, A(T), A(T) 710, A(T)]) dmy A do.
Thus (see for instance [24]), we have da(7) = Res(y(7)) dry A d1a, where Res(y(7))
is the Wodzicki residue of v(7) = A(7)719,, A(7) [log P, A(T) 719, A(7)]. Since the
residue depends only on the — dim M homogeneous component of the local symbol
of v(7), and since A(7)~! has at most a finite rank singularity at 7 = 0 (given by

the projection onto the null space of djy; cf. (2.16) below), it follows that da(r) is
smooth for all 7 € R?.

Lemma 2.9. For any r > 0, set

deg(A)z/ a—/ da,
S, B,

where S, = {r € R?; |7| =71} and B, = {T € R?; |7| < r}. Then deg(A) = ind 0},
for any r > 0.

Proof. Observe that A(7) = o017 + o972 + B]T/I = %0'2[0071 + i2 + Opz], where
w = iog0y is the Zs-grading on Ejr, and hence a(r) = Tr(a(7) " 'da(7)), where
a(T) = wry + i + Opy. Identifying R? with C via (71, 72) = 71 + iTe, we can write
a(7) as a matrix using the Zs-grading:
T 0,
o0 =[ef, %]
A straightforward computation shows that

L [F(rP OO N (72 + 05,0k "0
(216)  alr) d““)‘[<|r|2+6mmm 7 (|72 +04,0,) " \d7

Let IIy be the orthogonal projection onto ker dy;. Then the formula (2.16) implies
that g a(7) " tda(r)[F is a smooth function of 7 € C, and that

1 Hg Ha — 1 -1 €
a(t)""da(r) = —dr + —d7 + Uya(r)” "da(r)y,
T T

where Hat are the orthogonal projections onto ker 5]@. It follows that if N7T is the
dimension of the null space of 5& and N~ is the dimension of the null space of 9;,,
then N
N N~
a(T) = —dr + —d7 + B(7),
T T
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where 3(7) = Tr(lga(r) ~'da(r)I) is a smooth function of 7 € C. Observe that
da = df. Thus, for any r > 0, we have

deg(A /af/dwi/—%rh—ﬁ+/ /dﬂ

=NT—-—N"+0
= indﬁx/l.
|
Given R € U, *°(X,E*,E~), by Lemma B.6, the operator Ar(7) = Np (0 +

R)(7) is invertible for all 7 € R? sufficiently large. In particular, Ag(7) 'dAg(7)
exists for 7 € R? sufficiently large. We define

(2.17) ar(t) = Tr(Agr(7) " 'dAR(T)).

A similar argument as we did for the case that R = 0 shows that dar(7) is a smooth
two-form on all of R? (see the discussion around (2.15)).

Proposition 2.10. For any r > 0 sufficiently large so that ar(T) is defined, set

deg(AR):/ aR—/ dag.
Sr B,

Then deg(Ag) = ind 0}, for any such r > 0.

Proof. Let R, € ¥, (X, ET, E™) be a smooth family of operators and set A;(7) =
Np(0F + Ry)(7). Let 7 > 0 be such that deg(A;) is defined for all ¢ sufficiently
near 0. By Lemma 2.9 and the fact that the operators of order —oo form an affine
space, to prove this proposition it suffices to show that (d/dt) deg(A;) = 0 for ¢ near
0. Set ay(7) = Tr(Ai(1) " dA: (7)) and Si(7) = (d/dt)Ai(1) = (d/dt)Nar(Re)(T).
Then, since S¢(7) is a smoothing operator, the commuting properties of the trace
imply that

iat( ) = —Tr(A (1) 718 (7) Ar (1) TLdAL(T)) + Tr(A¢ (1) ~1dSi (7))

dt
= —Tr(Si(r) Ae(7) "' dA(T) Ar(r) 1) + Ta(Ae(r) "' dSe (7))
= Te(S¢()dA:(T)™") + Tr(dS (1) Ae(1) ™)
= dTr(S; (1) A (1) 7).
Thus, (d/dt)a;(7) is exact and smooth on all of R?. It follows that (d/dt)day (1) = 0
and that (d/dt)deg(A;) = 0. O
The following lemma finishes the proof of necessity in Theorem 2.6.

Lemma 2.11. Let M € M>(X) and suppose that for some R € ¥, (X, ET,E™),
N (0 + R)(7) is invertible for all T € R%. Then indd}; = 0.

Proof. Let R € ¥, (X, E™, E™) be such that N (0% + R)(7) is invertible for all
7 € R2. Then, Ag(r)~! exists for all 7 € R?. Thus, ag(r) defined in (2.17) is
smooth on all of R?. Hence, by Stokes’ Theorem, deg(Ag) = 0, which implies that
indd}, =0. O
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General Clifford compatible perturbations: In the sense described in the
following proposition, the special Clifford compatible operators defined in Lemma
2.7 form a complete set of Clifford compatible Fredholm perturbations of Dirac
operators.

Proposition 2.12. Let R € ¥, °*°(X,Et,E~) be a Clifford compatible opera-
tor such that for each M € My(X), Ny (0% + R)(7) is invertible for all T €
R2. Then there exists a continuous family of Clifford compatible operators R; €
U, ®(X,ET,E7), 0 <t <1, such that Ry is an operator of the form defined in
Lemma 2.7, and such that for each M € My(X), Ny (Ro)(7) = Nyp(R)(7), and
Nur(0F + Ry)(7) is invertible for all 7 € R? and 0 <t < 1.

Proof. Fix M € M5(X). The idea of this proof is to reduce the problem to the
connectedness of GL(k,C). To do so, Let ¢; € C°(M,Ey), 7 > 1, be an or-
thonormal basis of L2(M, Eys) consisting of eigenvectors of dys. If dprp; = Ajoj,
then the positive and negative parts of ¢; satisfy 5$[<p;»t = )\jgof. For any k € N,
we set & = span; <<, {y;} and Ef = Spanlgjgk{goji}. Then &, = & & &, and
since dim ker 3L = dimkerd;, by Lemma 2.11, and 3L is an isomorphism from
&5 \ ker 0}, onto &, \ kerd,;, it follows that dim &, = dim &, .

We first show that there is a continuous family of Clifford compatible operators
Sy € U, (X,ET,E7), 0 <t <1, supported near M such that Ny (0" + S;)(7)
is invertible for all 7 € R? and 0 < ¢t < 1, Np(So)(7) = Ny (R)(7), and such
that for some k € N, we have Ny (S1)(7) : & — & and Np(S1)(7) = 0 on &
Indeed, by Lemma 2.4, Nj(d7, + R)(7) is invertible for all 7 € R? if and only
if 9y + Rar(0) : HY(M, Epr) — L%(M, Eyy) is invertible. Moreover, by Clifford
compatibility, it follows that 3y, and Rps(0) are odd with respect to the Zs-grading
of Ey. Hence, the restrictions, 91, + R, (0), to sections of Ei, are each invertible.
Here, d,, = (01,)* and Ry,(7) = (R};(7))*. Since the invertible operators form an
open set in the bounded operators, there is an € > 0 such that 3+ + R}:}[ (0)+ A
is invertible for all bounded operators A from H'(M, E};) into L*(M, E};) with
norm less then €. Observe that there exists a k € N such that if we define

Ri(r)= > Rij(n)¢; @¢f, Ri(r)=(Ry(T)e],¢;),
i+j>k+1
then the norm of R} () between H'(M, E};) and L?(M, E;,) is less then e. Hence,
O3y + Ry, (0) = tR{(0) : HY(M, ) — L*(M, Ey)

is invertible for all 0 < t < 1. Let Si°(1) = Ri, (1) — tRi (1), where R, (1) =
(R} (7))* for 7 € C2. By definition, we have

SH(r)= > Ri;(1)¢; @ ¢}
i+j<k

Let Si(1) = S (7) + S; (7). Then Si(7) : & — & and Si(1) = 0 on &F.
Now choose any S; € ¥, (X, ET, E~) supported near M such that Nps(S;)(1) =
(1/i)02S¢(7). Then by construction, S; is Clifford compatible and S; satisfies the
conditions required.

We now show that there is a continuous family of Clifford compatible operators
T, € U, °(X,ET,E7), 0<t<1,supported near M such that Ny (0T + T3)(7) is
invertible for all 7 € R? and 0 < t < 1, Ny (Tp)(7) = Nas(S1)(7), and such that,
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using the notation around (2.9), we have Ny (T1)(7) = (1/i)o2 $(71)%(2)%51(0),
where 7 = (71, 72) € C%. In fact, just choose any T; € ¥, *°(X, ET, E~) supported
near M such that Ny (T3) (1) = (1/i)o2 $(t11)2p(tT2)? 5’1(( t)7). This T} satisfies
the conditions required.

We next show that there is a continuous family of Clifford compatible operators
Uy € ¥, (X,ET,E7), 0 <t <1, supported near M such that Ny (0" + U;)(7)
is invertible for all 7 € R? and 0 < ¢t < 1, Ny (Up)(7) = Nps(T1)(7), and such that
U is an operator of the form given in (2.11). Let TF : ker 0}, — ker d;, be any
unitary operator. Here, we used that dim ker 3;& = dimkerd,, by Lemma 2.11.
Since GL(k,C) is connected, there exists a smooth family of hnear 1somorphlsms
ViE g — &7, 0 <t <1, such that V;F = (85, + S;(0 ))\5+ and V;© =
(0%, +T+)|gk+. Let V,© = (V;" — )|5+ so that (07, + V+)|g+ = V;", and define
V;iE=0on (§)*. Set V- = (V,")* and V; = V;* + V,~. Note that V; : & — &
and V; = 0 on Skl. Since V; = 0 on S,CL, it follows that V; is really just a finite
rank operator, and hence, V; € W=°°(M, Ej;). Also, by construction, 9y + V; is
invertible from H(M, Ey;) onto L?(M, Eyy) for all 0 < ¢t < 1 such that V; = 0 on
&L, Vo = 51(0), and V4 = T, where T = T+ + T~ with T— = (T")*. Using the
notation around (2.11), we define

1 e B
U, = =03 QiQ3V, € ¥, (X, ET,E™).

Then U, satisfies all the properties discussed above.
Finally, if we define

Se  0<t<1/3,
Ro={ Ty 1/3<t<2/3,
Uiz 2/3<t<1,

then R, € U, *(X,E",E7), 0 <t < 1, is a continuous family of Clifford com-
patible operators supported near M such that Ny (0% + R;)(7) is invertible for all
T€R?and 0 <t <1, Ny(Ro)(r) = Ny (R)(7), and Ry is an operator of the form
defined in (2.11). Adding together such operators for each M € My(X) produces
an operator satisfying all the requirements of this proposition. O

2.4. Examples. We give a couple examples when the index of the positive part of
the induced Dirac operator on each codimension two face is always zero.

Proposition 2.13. Let X be compact, oriented, 4k dimensional manifold with
corners of codimension two. Then for the signature operator, the index of the
positive part of the induced Dirac operator on each codimension two face is zero.

Proof. We first recall various facts about the signature operator. Here, E = ATT*X
is the full exterior product of I'* X and 8 = d+J, where § = d*. The Zy-grading of
E is given by Z = i?*o(dg), where o is the symbol of d and dg is the Riemannian
volume form. Thus, E = E+ @ E~, where E* are the +1 eigenspaces of Z.

Let M C H;,NH;,, %1 < i2, be a codimension two face. We show that ind 5L =0.
Now, E)y; = E+|M has the Clifford action 0™ = ioy0 and is Zy-graded with respect
to w = io901. The induced Dirac operator is 9y, = %O‘MVM7 where VM is the
Levi-Civita connection of the induced Riemannian metric gy on M (cf. Section
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1.2). Since M is a closed compact manifold, by the Atiyah-Singer index theorem
[3, Th. 4.3], we have

indd7, = / A(M) - el (Eyy).
M

Here, A(M) = det'/?((Ry/4mi)/(sinh(Ry /47i))) is the A-genus, with Ry the
Riemannian curvature tensor of gas; and ch’(Eys) = 27(2]671)‘51‘(767@//8“) is the
relative Chern character of Ej;, where 7 = iQk_laM(dgM) - w is the relative Zo-
grading, and Q' = Q — %O‘M(RM), where Q) is the curvature of VM on E,;.
By the results of [3, p. 149], Q' = %a’(RM), where ¢’ is a Clifford action on
Ejr commuting with oM. Also, since 1 = i?*¢(dg) on Ej;, one can show that
7=1o0r 7= —1. Hence, by [3, Lem. 4.4], ch’(Ex;) = +22* det'/?(cosh(Ry; /47i)).
It follows that A(M) - ch'(Ey) = £L(M), where £(M) is the L-genus. Thus,
ind 5;[1 = +sign(M). Since the signature of any 2xodd dimensional closed manifold
is zero, and dim M = 2(2k — 1), we have sign(M) = 0. Thus, ind(d},) = 0. O

Proposition 2.14. Let X be an even dimensional compact manifold with corners
of codimension two. Suppose that each codimension two face is the boundary of
some boundary hypersurface. Then for any Dirac operator on X, the index of the
positive part of the induced operator on each codimension two face is zero.

Proof. This follows from the cobordism invariant of the index for if M € My(X),
then M bounds by assumption, so by Theorem 3 of [29, Ch. 17, indd}, =0. O

Corollary 2.15. Let X be an even dimensional compact manifold with corners of
codimension two with exactly one codimension two face. Then, given any Dirac
operator, the index of the positive part of the induced operator on the codimension
two face is zero.

3. REGULARIZED TRACE

Given a Dirac operator d with indd}, = 0 for each M € My(X), by Proposition
2.8, there exists an R € ¥, (X, ET, E~) such that A = 9" + R is Fredholm on L.
The traditional analytic way to determine a formula for ind (07 + R) is to consider
the difference in the traces of e t4"4 and e 44" These heat operators are however
not trace class. In this section, following [22] in the manifolds with boundary case,
we define a regularization of the trace, called the b-trace, that can be used in place
of the usual trace. To simplify notation, we drop vector bundles throughout this
section. All the results hold for bundles with only notational changes.

3.1. b-trace. The space S°([0,1)¥) consists of those functions on [0, 1)¥ all of whose
b-derivatives are bounded on [0,1)*. (See appendix for more on symbol spaces.)
Given any 7 > 0, we define S%7([0,1)¥) as those symbols u € S°([0,1)*) such that
given any 1 < j < k, we can write u = v; + a:?wj, where v; € C°°(]0,1)*), and
where w; € S°([0,1)%) is continuous, with all b-derivatives, up to z; = 0.

Lemma 3.1. Let f € S%7([0,1)%), where 0 < n < 1. Then we can write
@) = £0) + 3wl (),
I

where the sum is over all I = (i1,...,i7),1 <iy < --- <iy <k, and where for each
I= (il, . ,i@), xry = (xil, . ,.Tiz) and f] S SO’O([O,l)e).
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Moreover, if n =1, then for each I,

1 1
f1<:c1>=/ / (O, - O, f 0 gr)(triy, - tes,) dby - e,
0 0

where gl(xl) = (y17' e 7yk)7 with Yi = 0 Zf’L ¢ I; Yi = Ty ZfZ = Z]
Proof. We use induction on k. If k = 1, then by definition of S%7([0,1)),
(3.1) f(@) = f(0) + 2" f1 (),

where fi(z) € $%9([0,1)), and where by the fundamental theorem of calculus, if
n =1, then fi(z) = fol (0 f)(tx)dt. Thus, our lemma is true if &k = 1. Assume our
lemma is true for k; we prove it is true for k 4+ 1. Applying our lemma to the first
k variables of f(x1,...,zk4+1) yields

f(xla s 7xk+1) = f(ovmk+1) + Z‘TZ” T (E?Zeff(x[axlﬁtl)a
I
where if n = 1, then

1 1
1(Zr,Zk+1) = iz Oxy ] O Gr)(01Tiyy oo LeTiy, Ty )Al1 - - - Ay,
fi( ) (0 . 0, ef ) (¢ t )dt dt
0 0

where gr(vr, 21) = (Y1, Y, Thy1), With y; = 0if 4 & I} y; = a;, if § = 5.
Applying (3.1) to each of the terms f(0,zx41) and fr(zr, 2xt1) with respect to the
variable xj11 proves our lemma for k + 1. O

We define
CY ={z=(21,...,2n) € CV; Rz > 0 for all i}.

Observe that if A € ¥,"*(X), then p*A, where p* = pi*---py’, is trace class
on LI(X) for all z € CY with trace given by Tr(p*A) = [ (p*A)|a,. Here, we
identify A with its Schwartz kernel on X? and we identify A with X. The function
Cj\_[ 3 z — Tr(p*A) is holomorphic, and as we now show, meromorphic on C.

Proposition 3.2. Let A € V"> (X). Then we can write
fr(z1)
Tr(p*A) = —_—,
(P*4) IZJ: -

where the sum is over multi-indices I and J such that I UJ = {1,...,N} and
INJ =@, and where for each I, f; : CHl — C is meromorphic, with only simple
poles, all on the set {z; € CHl; z; € =N for some i € I}. In particular, for each
I, fr is holomorphic near zy = 0.

Proof. Let {U;}, where U; = [0,)" x Rp™* (some k > 0, where n = dim X), be a
covering of X = Ay, with the appropriate p;’s defining the [0, €) factors. Let {¢;} be
a partition of unity of Ay subordinate to the cover {U;}. Since Ala, = >, pi4|a,,
we may assume that A|a, is supported on some U;, which we now fix. Denote by
Z1,...,Tk, the fixed boundary defining functions that define the hypersurfaces of U;.
Then p*Ala, = a?'“’B(w’,my)\%zdy\, where w = (21,...,2k), W' = (Zkt1,- -, 2N),
and where B(w', z,y) € C°(U;) is entire in w’, therefore

Tr(p*A) = /

d
x“’B(w’,m,y)—xdy.
[0,1)k xR —F T
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By Lemma 3.1, B(w',z,y) = B(w',0,y) + >, xi, ---;,Br(w',zr,y) for some
smooth functions By(w’,xy,y). Since for any a € C, fol 597 1ds = 1/a, we have

1
Te(p4) = [ B0y
21 2k
1 Zi Zi
(3.2) +Z PR /3%11 cexy t Br(w', xp, y)dardy,
1,0 J1 Jk—2

whete U.J = (L,...., k). By Taylor’s theotem, By(w',z1,) ~ o 2§ Bra(w/, 1),
and so
/xfl‘l "'x:;eBl(w/,xI, y)d$1dy N
1 1
o ziy +on +1 zi, +op+1

/Bf,a(w’,y)dy-
This formula, together with (3.2), prove our result. O

In particular, Tr(p*A) = 3_; ;1 1j<n f1(21)/25 + f(2), where f(2) is holomorphic
at 0. Thus, the regular value of Tr(p*A) at z = 0 is well-defined.

Definition 3.3. Let A € ¥, °°(X). Then the regular value of the meromorphic
function Tr(p*A) at z = 0 is called the b-trace of A and is denoted by "Tr(A).

Remark 3.4. If A € ¥, °%(X) is in the calculus with bounds with ag > 0, then
a proof similar to that of Proposition 3.2 shows that we can write Tr(p*A) =
>_r.7 f1(zr)/z;, where the sum is over all /U J ={1,..., N} with INJ = &, and
where for each I, f; : {z; € CUl; z; > —q; for alli € I} — C is holomorphic.
Then "Tr(A) is defined to be the regular value of Tr(p*A) at z = 0, just as in the
case A € ¥, (X).

Proposition 3.5. If A € p*U, °>*(X) where ¢ > 0, then "Tr(A) = Tr(A).

Indeed, in this case, Tr(p*A) is regular at z = 0 with value Tr(A). Thus, the
b-trace is a generalization of the usual trace. However, unlike the usual trace, the
b-trace does not vanish on commutators, see Theorem 3.7.

3.2. The trace defect formula. Let M = H;, N---N H;,, where 1 <143 <--- <
ix, < N. Then M is a possible disjoint union of codimension k£ boundary faces of
X. Given A € ¥, *(X), we define

"Tr( N (A)(7) )dr = > "Tr( Np(A)(7) )dr.

Rk Rk

F = component of M
Lemma 3.6. If A € U, *°(X), then the reqular value of z1 - -- 2, Tr(p*A) at z =0
18
1

—— [ "Tr(Nuy(A)(7))d

e L, TV (4) ()
where M = Hy N --- N Hy and where the b-trace appearing in the integral is the
b-trace on W, (M).
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Proof. Let U = [0,1)* x M be a neighborhood in X near M where z; = p; near
x; = 0. Let x € C°([0,1)) with x = 1 near 0 and set x; = x(x;). Observe that

K
X1 Xk — 1= Zi:l(Xi - 1)X¢+1 © Xk, SO
K
A=x1xpA— Z(Xz = D)xit1 - xwA.
i=1

Since x; — 1 = 0 near z; = 0, it follows that Tr(p*(x; — 1)Xi+1 - XxA) is regular
at z; = 0. Hence, the regular value of z1 - - - 2 Tr(p*A) at z = 0 is the regular value
of z1 -z Tr(p%x1 -+ - xxA) at z = 0. Thus, we may assume that A is supported
near M. If s; = z;/ x;, where the primed variables denote the coordinates lifted
to the right factor of U2, then (z,s) are coordinates near Ay on the [0,1)?* factor
of U? where the z’s define ff. Thus, we can write 4 = A(m,s)\‘iﬂ”,/ dy’|, where

A(z,s) is supported near x = 0. If z = (w,w’), where w = (z1,...,2;) and
v with r = Pk+1 - PN, and we can write

Ti(p°4) = [ "B, )
X

w' = (2k+1,...,2N), then p* =2 - r

where B(w',z) = [}, " Az, 1)|a,(ar)- We can now proceed as we did in the proof
of Proposition 3.2 to see that the regular value of z;--- 2z, Tr(p*A) at z = 0 is
equal to the regular value of [, rw/A(O7 1)|a, () at z = 0. By the Mellin inversion
formula, A(0,1) is given by

e o010 = e [ Mo

Thus, by the definition of the b-trace on W, (M), the regular value of the function
Jor A0 D) a ary at 2= 088 oyr Jor Tr(Nar(A)(7) )dr. O

A(0,8)| 521 = (

The formula in the following theorem is called the trace-defect formula and it
measures the non-commutativity of the b-trace.

Theorem 3.7. Let A € ¥*(X) and B € \I!’gll (X) with either m or m’ equal to
—o00. Then

(33) 'mA,B= - 3 [ T(DENy(A)(r) Nu(B) (7)) dr,

k
MeMy(X),k>1 (2m)* Jgw
where DX = D, --- D, with D;, = %8”.

Proof. Observe that p?[A, B] = [p®, A]B + [A, p*B]. Since the trace vanishes on
commutators, Tr([A, p?B]) = 0 for = € CY. Thus, "Tr[A, B] is the regular value
of Tr([p?, A]B) at z = 0, which is the regular value of Tr(p*C(z)) at z = 0, where
C(z) = p~*[p*, A|B = AB — p~*Ap* B. Note that C'(0) = 0 and thus arguing as in
Lemma 3.1, we can write C'(2) = >, z;, - - - 23, Cr(21), where

1 1
(3.4) c,(z,)z/o /0 (O 0oy Cogn)(trzin, .tz )ty - i,

where gr(zr) = (y1,...,yn), with y; = 0if @ &€ I} y; = 2;, if i = i;. Thus,
Tr(p*C(2)) = >z, -+ 2, Tr(p*Cr(21)), so by Proposition 3.2 and Lemma 3.6,
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the regular value of Tr(p*C'(z)) at z =0 is

. 1
>3 G [, B (€1 0) (),

k=1|I|=k
where M7 = H;, N---N H;,. We are now left to show that
) "Te(Nar, (Cr(0))(7))dr = — ) "Te(D7 Ny, (A) (1) Nas, (B)(7))dr.
R R
To see this, let s; = p;/p;. Then (3.4) implies that

Cr(0) = (D, 02, C)(0) = ~0s,, -0z, (0> A"} B)]oo

= 0., 0. ([ AIB)|so
= —(=1)*[(log si,) - - - (log 54, ) A] B.
Thus,
Ny (C1(0))(7) = =Ny, (=1)*[(log si, ) - -~ (log 53, ) A] B ) (7)
= —Na, ((=1)*(log si,) -+ (log 53, ) A ) (7) Nag, (B)(7)
=—Dr, -+ Dy Nag, (A)(7) Nag, (B)(7),
where we used that Ny, (A)(7) = p;l”l e pi_k”kA,oZ1 . -pZ" |nt;- O

3.3. b-integral. We end this section by discussing the b-integral.

Definition 3.8. If u € C*(X,(),), then °[ u is defined to be the regular value of
Jx pPuat z=0.

A similar argument used in Proposition 3.2 shows that [  P°u has a regular value
at z = 0. The definition of the b-trace and the b-integral imply the following.

Lemma 3.9. Given any A € U, *°(X), we have "Tr(A) = b[ A4, .

4. ETA INVARIANTS ON MANIFOLDS WITH BOUNDARY, |

4.1. Eta invariant for perturbed Dirac operators. Throughout this section,
X is an odd-dimensional compact manifold with boundary, and 0 € Diffé (X,E)is
a Dirac operator associated to an exact b-metric (see Section 1.1).

Lemma 4.1. Let P € Diﬂ?g(X7 E) be elliptic with a scalar, nonnegative principal
symbol. Then given any R € W, (X, E), e *FHR) = e=tP L tR(t), where R(t) €
C*°([0, 00); \I/b_oc(Xv E)).

Proof. Defining F(t) = e *FP+E) — ¢=tP we have (9, + (P + R))F(t) = —Re '
Hence, as F'(0) = 0, by Duhamel’s Principle, F(t) = — fot e~ (=) (PHR) Re=sP s,
Since R € ¥, (X, E), by the properties of the heat operator e~*F as described

in Appendix C, we have Re™* € C*°([0,00); ¥, *°(X, E)). It follows that F(t) €
tC([0, 00); W, (X, E)). O

Remark 4.2. This lemma holds for manifolds with corners with the same proof.

The formula (4.1) defines the b-eta invariant of the Fredholm perturbation 9+ R.
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Proposition 4.3. Given any self-adjoint R € V, (X, E) such that 0 + R is
Fredholm, the integral

1 e 2
(4.1) MO+ R)=—= [ t7V2Te((0+ R)e” O dt

v Jo
15 absolutely convergent.

Proof. We first show that the integral is convergent near t = co. Indeed, by Propo-
sition C.9, the difference e~tO+R)” _ Iy, where Il is the orthogonal projection
onto the null space of 3+ R, is exponentially decreasing in ¥, (X, E) as t — oo
for some £ > 0. Thus, (0 + R)e_t(ﬁ‘*‘R)2 is also exponentially decreasing as t — oo,
so the integral (4.1) is convergent near ¢ = oo.

If R = 3R+ RO+ R? € ¥, (X, E), then e~tB+R)? = o—t@+R)) Thus, by
Lemma 4.1, e~ {O+R)" — ¢=10" L 47(1), where T(t) € C*([0,00); ¥; ®(X, E)). It
follows that

(8 + R)e"O+R = 5= 4 §(1),
where S(t) = Re™'9" 4 (34 R)T(t). Observe that S(t) € C*°([0,00); U; (X, E)).
This implies that “Tr (S(¢)) € C>([0,00);), and therefore ¢~/2%Tr (S(t)) is inte-
grable near ¢t = 0. By [22, Th. 8.36], "TIr (e~7") € t1/2C>([0,00);). Thus,
=12y (5 + R)e~*0+R)”) is also integrable near t = 0. O

The following proposition shows that the b-eta invariant is also defined for R = 0.

Proposition 4.4. The integral
1 *° 2
b o 71/2 bT —t0
n(0) = —/ t r(0e™")dt
VT Jo

is absolutely convergent; it defines the b-eta invariant of 0.

Proof. This proposition is [22, Prop. 9.16], in which it is proved that "Tr(de~19") =
O(t™!) as t — oo, and vanishes to order t'/2 at t = 0. In particular, the integral
defining the b-eta invariant of § converges. (]

Under certain conditions, we can relate (9 + R) and %(d), see Theorem 5.1.

4.2. Perturbations of Dirac operators. We now describe a particular pertur-
bation R making d Fredholm. Let Y = 0X =Y UY,U---UY,, where Y3,...,Y, are
the connected components of Y, and let x be the fixed boundary defining function
for Y. We denote E|y by Ey and we assume that X 2 [0,1), XY near Y over which
E > FEy. As in the discussion around (1.5) in Section 1.2 for the even-dimensional
case, we can write

(4.2) Ny (0)(r) = o1 + B,

where B € Diff'(Y, Ey) is self-adjoint and o = U(%Hy are such that o* = o,
0?2 =1,and 6 0o B= —Boo. Note that Ey is Zo-graded: Ey = Ear @ F; , where
EOi are the +1 eigenspaces of wy = —o.

As in (1.6) of Section 1.1, we define the induced Dirac operator on Y by 99 =
icB e Diffl(Y, Ep). Observe that wy o9 = —0g owp and so g is odd with respect
to the Zg-grading of Ey. Thus, we can define 3% : C=(Y, Ef) — C>®(Y, ET).
Also, we can write (4.2) as

(4.3) Ny (0)(1) =T[it + 0g], T =iwy= —io.
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We denote the restriction of dy to C(Y;, Eg) by 0. Then for each i, 0 is odd
with respect to the Zo-grading of Eply; given by wg, the restriction of wy to Eply;.
We assume that for each 1,
ind (95)" = 0.

(This is true for instance if Y has only one component by the cobordism invari-
ance of the index.) Now as in the discussion around (2.11) in Section 2.3, we can
choose T;" € W=(Y;, Ef, E; ) such that T; : ker(d})" — ker(d))~ is a unitary
isomorphism. Set T; = 7,7 + T, € V~>°(Y;, Ey), where T, = (T;7)~!. Then T; is
self-adjoint and is odd with respect to the Zs-grading of Eyly,. Define

(4.4) T=T 4 +T, € U=, E).

With respect to the product decomposition [0,1), x Y, we define
1

(4.5) R=—-0Q’T = -TQT € ¥, (X, E),
)

where @ is the self-adjoint operator given in (2.9), which we now recall how to
define. Let x € C°([0,1)), where x >0, x(z) =1 for 0 < 2 < 1, and x(z) =0 for
x> %. Let ¢ be an even, real-valued, Schwartz function on R with ¢(0) > 0. We
define @ € ¥, °°([0,1)) by defining its Schwartz kernel, again denoted by Q:

(46) Q= pllog ) xla)(@) 2 5= L

~

Since ¢ is even, @ is self-adjoint, and by definition, we have N(Q)(7) = &(7), where
the Fourier transform @(7) is an even entire function. By Proposition 2.4, it follows
that 9+ R is Fredholm. Thus, the b-eta invariant %(d+ R) given by (4.1) is defined.

Note that R € ¥, (X, E) since T' € ¥~>(Y, Ey) is “diagonal” in the sense that
in (4.4), T is written as the sum of individual operators on each component of Y.
For any arbitrary element of ¥~°°(Y, Ey), the definition (4.5) would not define a
b-pseudodifferential operator in the sense of Appendix A. In fact, it would define an
operator in the “overblown” b-calculus, see [19, Sec. 4.6], which is very similar to the
usual b-calculus, but allows “non-diagonal” elements. However, we remark that all
the results in this section hold for any T'= T+ +T~, where T : ker ] — ker J;,
is a unitary isomorphism, and where 7~ = (T"")*. For this reason, the overblown
b-calculus is the natural class of operators in studying perturbed Dirac operators
on manifolds with boundary.

4.3. Variation of the eta. Suppose that R = R(r) defined by (4.5) (where T is
of the form (4.4)) depends smoothly on a parameter r € [0,1]. In particular, we
have

(4.8) Ny(@+ R)(1) =T[ir + 00 + Ro],  Ro(r) = —¢,(7)*T(r),

where ¢, and each unitary isomorphism 7} (r) : ker(d})™ — ker(d})~ making up
T'(r) depend smoothly on r. We now investigate the variation of the eta invariant
of @+ R(r). To do so, we need two lemmas, in which we denote 0 + R(r) by A(r).

Lemma 4.5. With A = d%A, we have
d

dr

[£71/2 Ty (Ae A7) = %[Qt” 2MTr(Ae )] + a, (8),
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where

t
ar(t) = —t_1/2/ bTr[Ae_(t_s)A2,AAe_5A2}ds
0

Proof. The same arguments, which are based on Duhamel’s principle, used in the
proof of Proposition 8.39 of [22] show that

d 2 d 42
4. Y p—1/2 lrl'\ —tA 2 1/2 lTI\ _
(19) i (ac ) = Lo/ (e
t
12 bI‘r[Ae_(t_s)AQ, AAe_SAz]ds — 12 bI‘r[AQe_(t_s)Az, Ae_SAz]ds.
0 0

Thus, our lemma is proved once we show that the last term of this equation
is zero. To see this, note that 9y and Ry anti-commute with T' (as they are both
odd with respect to the Zs-grading of Eg) and R3 = $,.(7)* Iy, where IIj is the
projection onto the null space of dg. Thus,

Ny (A)(1)? = 72 + (B9 + Ro)* = 72 + 32 + @,.(1)* M.
Now an elementary computation shows that for any v € R,

(4.10) e—uNy(A)(T)2 — e—u-r [ —11.5 _|_( —u@7~(7')4 _ 1)1—10].

It follows that Ny (A2e~(=94%)(7) is an even function of 7 and, since Ny (A)(r) =
IRy, Ny(Ae_SAZ)(T) is also an even function of 7. Thus, the integrand in the trace-
defect formula (3.3) for "Tr[A2e~(1=94% 4¢=54%] is 0dd in the indicial parameter
and hence this b-trace vanishes. Therefore, the last term in (4.9) is zero. g

Lemma 4.6. Given 1o, r1 € [0,1], we have

"0(© + R(r)) = 'n(® + R(ro)) = lim tm/ Te(A(r)e A0 dr |

+ = Tr(T*( YT ()1 dr.

LT

Proof. By definition of the b-eta invariant in (4.1), we have

1 (M d 2
W@+ R(r1)) — (@ + R(ro)) = NG / / gt’l/z "Tr(Ae™t" ) dr dt.
0 0
By Lemma 4.5, for any 0 < ¢ < a, we have

d 2 . 2 |t=a @
/dr[t V20 (A7) ]dt = 2612 Tr(Ae ) . +/€ o (t) dt.

Taking a — oo and € — 0 shows that

1/2 )
(S + R(r1)) — (0 + R(ro)) = hm{t [ (e ) ar

1/2
- }in(l) { 2t / "Tr(A *tA(r ) dr} + / ay(t) dt.
- 0

Since A = R(r) € ( ) it follows that 2t/2'Tr(Ae='4") — 0 ast | 0. We
show that % fooo ozT = LTe(T*(r)T*(r)~1), which finishes the proof of this
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lemma. Now by the trace-defect formula (3.3), % Jo~ an(t)dt is given by

1 [oe] t 5 A 5
(1) / rl/Z/ / Tr( 9, Ny (Ae==94%)(1) . Ny (Ade=4%)(r) ) dr ds dt
21 v Jo oJR
Since Ny (A)(1) = T'[iT + 9 + Ry), for any u € R, we have
12 Ny T)e Y 2:zTTe_ Y 2+F o+ Rg)e Y .
4 A uNy (A)(T) uNy (A)(T) 3 uNy (A)(T)
Thus,

(4.13) 8T[NY(A)(T>e—uNy(A)(T)2] — iDe— Ny (D) 4 Z.FTaTe—uNy(A)(T)2+
T8, Rye "N (D) L T(3y + Ro)dre~ Ny (AD(D?

By (4.12), and three facts: N)./(A)(T) = TRy, TR\ = Ry (as T2 = —1 and T
anti-commutes with Rp), and Rydy = 0, we have

(4.14) Ny (A)(T)Ny (A)(T)G_UNY(A)(T)z — iTRye "Ny (D(™* L B Ry~ uNy (A)(7)?

Since Ry and e~ uNy (A are both even in 7, the first two terms on the right of

(4.13) are even, while the the last two terms on the right of (4.13) are odd. Also,
the first term of (4.14) is odd, while the last term of (4.14) is even. Thus,

0: Ny (Ae_(t_s)Az)(T) . Ny(AAe_SAz)(T) =191+ modulo odd in T,
where
= iTe~(t=)Ny (AD(M* g R e=sNy (A)(7)* .
iDrd,e~ (=N (D By Roe=s Ny (1)
and
Ny = iDT8, Ry - e~ =Ny (A)(1)? R =Ny (A)(7)* 1.
iT(Bg + Ro)r0,e” (1IN (D) B o=sNy (A)(1)*

Hence, as the odd terms in 7 will integrate out to zero in the inside integral of
(4.11), we are left to compute

R _ °‘11/2/t/
N /0 o (t)dt = oy /O 2 [ 1) + Te(ardsar

Now by (4.10), for any linear map L on ker Jy, we have
e (=N (A)(1)? [ =sNy (A)(1)* _ o=t =t@n()' [
and
78~ (t=)NY (A(M)? | [ o=sNy (A)(1)* _ —(t— 8)r0,(r2 + @T(T>4)e—t72—t¢r(f)4L_
Applying these two identities to 1 and 2 we obtain
v = e~ =18 (MY T Ry Ry — (t — s)70, (7% + (,/O\r(T)4)67tT27t¢T(T)4Z'FR0R0
and

Yo = e_tTZ_t“‘A’T(T)ALiFTaTRO Ry — (t —8)10- (7% + {0}(7')4)6_”2_t“A"T(T)‘LiFROR.O.
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Since Ry anti-commutes with I', Tr(l'.‘RO . Ro) = Tr(RO -TRy) = —’IY(FP;ORO), and
similarly, Tr(I'70, Ry - Ro) = —Tr(T'Ro70; Ro). Thus,

Tr(y1) + Tr(ye) = e 47 —18- (0% [Tr(FR'ORO) - Tr(FRoraTRo)} .

Now observe that Ry = £3,.(7)2T + &,(7)?T and 70, Ro = 70, [, (1)? - T. Thus,
as T? = Tl where Il is the projection onto the null space of 8y, and Tr(I'Ily) = 0,
we have

Te(n) + Tr(2) = 17 204 3,(1)" = By(1)*r 0, B (r)?] | TH(TTT).

Since [, t'/2e~t0dt = a_?’/gg for any a > 0, we have

1 (@r(7)! = & (7)?70, (0 (7)%]) ;
t71/2/ Tr + Tr dsdt = ﬁl(%«(ﬂ %AST) il s -Te(TTT).
73 ) + Tt = FREAD DS (r77)
Integrating the right-hand side of this equation over 7 € R, using integration by
parts, we get

I 1 = 1 .
ﬁ/o a(t)dt = 5373; /Ot /0 R[Tr('yl)+Tr('yg)]desdt7 %Tr(FTT).

Finally, to finish the proof of Theorem 4.7, we just need to prove that
Te(DT(r)T(r)) = =20 Te(TF (r)TH(r)71).

Since T' = T+ + T~, where TV : ker 5;{ — kerd, is a unitary isomorphism and
where T~ = (T")*, and since wy defines the Zy-grading on Ey, we have

Tr(woTT) = Tr(woTTT7) 4+ Tr(woT~TH) = —Te(TTT7) + Te(T~T7).
However, as TTT~ = (T~)~'T~ is the projection onto kerd; , which is constant

in 7, it follows that 7+T~ + T+T~ = 0. Thus, Tr(T~T") = —Tr(T+7~), and so
Te(DTT) = i Tr(woT'T) = =20 Te(THT7) = =2 Te(TH(TH) 7).

We now prove our variation formula.

Theorem 4.7. Let R(r) € ¥, (X, E), r € [0,1], be a smooth family of self-adjoint
perturbations satisfying (4.8) and suppose that O + R(r) is Fredholm for r € [0,1]
and the null space of O + R(r) has the same dimension for each v € [0,1]. Then
(0 + R(r)) is smooth for r € [0,1] and

Lon(o 4 R(r) = TR (T (7)),

where T+ (r) = LT+ (r).

T

Proof. Since 9+ R(r) is Fredholm and its null space has constant dimension by as-
sumption, the proof used in Proposition 8.39 of [22] shows that 2¢!/2 lTr(Ae*tAQ) —
0 as t — oo. Our theorem is proved. O

A class of perturbations which always admit constant dimensional null spaces is
provided in Theorem 4.13.
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4.4. Lagrangian subspaces. We now recall some results concerning Lagrangian
subspaces, which will be used to define classes of perturbations such that the null
space of 3+ R and the b-eta invariant % (3 + R) are computable in terms of unper-
turbed data. We continue to use the notation of Section 4.1. Set

V=kerdy=V1@ -0V, V; = ker 0}).

If (-,-) is the inner product on L2(Y, Ep), then Q(v,w) = (wov,w), v,w € V,
is a (complex) symplectic structure on V', where wy = —o is the Zs-grading of
Eg = E|4—o. Let Iy be the orthogonal projection of L?(Y, Ey) onto V. Then there
exists a canonical Lagrangian subspace Ag of V given by the “limiting values of
extended L2-solutions of du = 07, also called the scattering Lagrangian:

Ac = {Ty(uly); u € C*(X,E) + [ 2°H;*(X, E) and du = 0}.
e>0

Let I be the orthogonal projection onto Ax. Then [27],
(4.15) C =9l —1d

is a unitary isomorphism of V satisfying Cwy = —woC and C? = Id, and is such
that Ac = {u € V'; Cu = u}. In particular, IIc = (C +1d).

Definition 4.8. A unitary isomorphism T : V — V is Lagrangian with respect
to wo if Twy = —woT and T? = Id. The set of such isomorphisms is denoted by
L(V). An element T € L(V) is diagonal f T =T1 & --- & T,, where T; : V; — V;
is (necessarily) Lagrangian with respect to wg, the restriction of wy to V;.

Observe that if T+ : V¥ — V~, where V' = kerdf and V~ = kerd,, is a
unitary isomorphism and 7~ = (TF)~!, then T = T+ + T~ is Lagrangian with
respect to wy. Conversely, every T' € L(V) arises in this way.

Note that every T' € L(V) has eigenvalues +1. Since Twy = —woT, wp is an
isomorphism between the 41 eigenspaces. We denote the +1 eigenspace by Arp.
This subspace is called the Lagrangian subspace associated to T and it can be
identified as the image of the orthogonal projection Il = %(T + Id). The -1
eigenspace of T is the orthogonal complement A%, and can be identified as the
image of the orthogonal projection II+ = %(Id —T). Two elements S,T € L(V)
are said to be transversal if Ag N A7 = 0.

Lemma 4.9. Two elements S, T € L(V) are transversal if and only if for allv € V
with v # 0, we have Sv # Tv. In other words, S and T are transversal if and only
if the unitary matric U = ST does not have a +1 eigenvalue.

Proof. Tt is clear that if Sv # Tw for all v € V with v # 0, then Ag N A = 0.
Conversely, let S and T be transversal and suppose that Sv = Tw for some v € V.
We show that v = 0. Indeed, define w = wo(v — Sv) = wo(v — Tw). Then, Sw =w
and Tw = w. Since S and T are transversal, w = 0. Thus, Sv = v and Tv = v.
Again, as S and T are transversal, v = 0. (]

Proposition 4.10. Let T € L(V). Then the set of S € L(V) that are transversal
to T is open, dense, and connected in L(V). Moreover, there exists a diagonal
S € L(V) that is transversal to T.

Proof. Since Ar is a closed subspace of V' and since the eigenvectors corresponding
to the eigenvalue +1 of S € L(V) depend smoothly on S, if S € L(V) and AgNAr =
0, then Ag N Ap =0 for all R € £(V) sufficiently close to S.
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We now prove density. Let S € £(V). Let Ag = span{us,...,us} and let v; =
wouj. Then {u;,v;} is an orthogonal decomposition of V into the +1 eigenspaces
of S. Suppose that Ag N Ar = span{uy,...,u,}. For 6 € [0,27], we define

w? =cosf - u; +isind - vy, z;f) zwow? =cosf-vj +isinf-u;, 1 <5<
It follows that {w?, 2%, ug, vg}, where 1 < j <r and r+1 < k < s, are mutually
orthogonal unit vectors of V. Define

SQU)? :wg, ngg = —z? 1<j<r; Souxp =ug, Sovp = —vg, 7+ 1<k <s.

Then Sy is a unitary isomorphism of V' that is Lagrangian with respect to wg. By
construction, Sy = S and for 0 < 6 < m, Sy is transversal to S. Thus, as 6 | 0, Sy is
a family of unitary isomorphisms of V', Lagrangian with respect to wq, converging
to S. Observe that if S is diagonal, then by construction, Sy is also diagonal.

We are left to prove connectedness. Let R,S € L(V) be transversal to T. By
Lemma 4.8, TTR™ and TS~ do not have a +1 eigenvalue and thus, there exists a
path of unitary operators U;  on V'~ with no +1 eigenvalue such that U, =T+ R~
and U; = T*S~. Define U;” = T~ (U, )*T* and actingon V =V+ @V~ set

_[um o
be= [ 0 U ] '
It is now straightforward to check that T; = TU, defines a path in £(V') such that
T is transversal to T for each ¢ € [0, 1] and is such that To = Rand T3 = S. O

4.5. Null spaces of Perturbed Dirac operators. We first analyze the null
spaces of one-dimensional operators. For any o € R and interval [0, a], we denote
by H([0,a],V), the space of functions that are in HZ([0,a],V) near 2 = 0, and
are in H*([0,a], V) away from = = 0. We set L2([0,1],V) = H2([0,a], V).

Proposition 4.11. Let T,S € L(V) and set D(T,S) = I'(x0;) + R, where R is
defined in terms of T by (4.5) and with domain given by

Dom(D(T, S)) = {v € H}([0,1], V) ; Tgv|s—1 = 0},

where Ilg = 1(S +1d) is the orthogonal projection onto Ag (so 11§ = 2(Id — 9) s
the orthogonal projection onto AJS-) Then

D(TS) : Dom(D(T, $)) — Li([0,1],V)
is Fredholm and dimker D(T, S) = dim(Ar N Ag).

Proof. For simplicity, we denote D(T,S) by B. To prove that B is Fredholm, we
construct a parametrix for it. We first work near 2z = 0. The formula (4.5) for R
shows that near x = 2’ = 0, the Schwartz kernel of R is the same as the Schwartz
kernel of the operator S with kernel defined by

/

dz
S = —p(log(z/x"))? - -TT.

See (4.5) and (4.6) for the various notations. We define an operator Gy by its
Schwartz kernel:
G, = —I’i (z/2')" (it + ¢(1)°T) tdr d—x/
2m Jr z’
One can check that Gy maps L2([0,00),, V) into H}([0,00)4, V), and that

Gil(20, + S) =1d, T(2d, + S)Gy = Id.



FREDHOLM PERTURBATIONS OF DIRAC OPERATORS 29

We now work near = 1. Since R is supported near z = 0, B = I'(xd,) near
x = 1. Consider the change of variables s = —logz. Then, x = 1 corresponds to
s = 0 and the interval [0, 1], transforms to [0,00)s. Hence, near s = 0, B = D,
where D = —T'05. Consider the operator D with domain

Dom(D) ={v € Hlloc([O7 0)s, V) ; Hév\szo = 0}.

Let u = v +w € L2([0,00)s, V) (compactly supported L? functions), where v takes
values in Ag and w takes values in A& = T'Ag. Define

Gau(s) = 1] /Osv(r)dr}—F{ /:Ow(r)dr}.

One can check that G maps L2(]0,00)s, V) into Dom(D) and that
DGy =1d on L?([0,00),,V), G2D=1d on H([0,00),, V).

Now let p(z) € C*(R) be a non-decreasing function such that p(z) = 0 for
z < 1/4 and p(z) = 1 for z > 3/4. Given real numbers o < 3, define py g(z) =
p((z—a)/(B—a)). Then py g(z) = 0 on a neighborhood of {z < a} and p, g(z) =1
on a neighborhood of {z < }. For simplicity, assume that R is supported on
[0,1/4]. (If R is supported on an interval larger than [0,1/4], then the subscripts
of the p’s below would be slightly more complicated.) We define

Yi(z) =1 —pgsa/8(x), ha(x) =1 —i(x),
p1(z) =1 —pags/8(x),  p2(x) = paysa/s().
Then {t,;} form a partition of unity of [0, 1] and ¢; = 1 on supp(v;). We define
G = p1(2)G191 (") + p2(2)Gatha(2').

A straightforward verification, using the properties of G; and G4 already stated,
shows that G maps LZ([0,1],V) into Dom(B) and that

BG=1d+K, GB=Id+K'

where K and K’ are compact operators. It follows that B is Fredholm.
We now prove that dimker B = dim(Ar N Ag). Let {u3,u;} be a basis of Ar
where {ug} is a basis of Ar N Ag. Then T decomposes as follows:

V=U'¢UeW, T=Idelde -Id,

where U? = span{u}}, U = span{u;}, and W = T'Ap. We show that there are
exactly dim(Ar N Ag) non-trivial solutions to the boundary value problem

(4.16) (20y — Q*T)v =0, TEv|s—1 =0

if v takes values in U°, and has no solutions otherwise. This proves the lemma.
First suppose that v takes values in W. Let {w;} be a basis of W and write
v="> fij(z)w;. Then by (4.16), for each j we have

(4.17) (20, + Q*) fi(x) = 0.

Since 20, and @ are real, we may assume that f; is real. Note that f;(0) = 0
for each j since by assumption, v must be square integrable with respect to the
measure dz/x and therefore must vanish to some power of z at © = 0 [22]. Thus,
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multiplying (4.17) by fjdf and using the fact that fol Oz fi - fide = %fj(l)2 as
£;(0) =0, and that Q is self-adjoint, we obtain

d
(118) 3107+ 105,22 =0

Thus, f;(1) = 0 and Qf; = 0. In particular, as Qf; = 0, by (4.17), f; must be
constant. As f;(0) = f;(1) =0, f; must be the constant 0.

Now suppose that v takes values in U. Since U N Ag = 0 and since v(1) € Ag,
we have v(1) = 0. Writing v = Y fju;, by (4.16), we have (20, — Q%) f;(z) =0
for each j. Assuming that f; is real, a similar argument used to prove (4.18) shows
that

24507 = [1e5PE <o

Since v(1) = 0, f;(1) = 0, and thus, Qf; = 0. Arguing as in the previous case
shows that f; must be the constant 0.

Thus, we are left with the case that v takes values in U°. Write v = Y, fju.
Then by (4.16), Bf; = 0 for each j, where B is the 1-dimensional operator

B =20, —Q* on0,1].

We prove that dimker B = 1 on I:Il} ([0, 1]); this finishes the proof of the proposition.
We first observe that

B* = —20, — Q.
Thus, the same argument used to prove that there are no solutions to (4.17) proves
that ker B* = {0}. Since B is Fredholm, it follows that ind B = dimker B. We
show that ind B = 1. To see this, consider equation (4.6) for Q:
dx’ x

Q = ¢(log s) X(x)x(x’)?, 5=

;a
where y € C2°([0,1)) is such that x >0, x(z) =1 for 0 <z < 1, and x(z) = 0 for
T > %, and where ¢ is an even, real-valued, Schwartz function on R with ©(0) > 0.
Since N(Q)(7) = ¢(7), if

dz’

Q1 = ¢(log s)? X(@)x(a)—,

then N(Q?)(7) = N(Q1)(r). Hence, by Theorem B.1 in the appendix, it follows
that Q2 — @, is compact. Since the index is invariant under compact perturbations,
we have ind B = ind (29, — )1). Counsider the following deformation of @)1 defined
by:

Quu = _Xéf / ¢ (tr)? xu(r)dr,  teo,1].
Then Qt|t:1 = @1 and, since N (20, — Q;)(7) = —it — §(t7)? is invertible for

0 <t <1 andfor all 7 € R, by Theorem B.2 in the appendix, it follows that
x0; — @y is a continuous family of Fredholm operators for each 0 <t < 1. Setting
t = 0, we have ind B = ind (29, — rx?) where r = $(0)2. Again using the fact that
the index is stable under compact perturbations, we can replace x? with H, where
H(z)=1for 0 <z <1 and H(z) =0 for > 1 and conclude that ind B = ind B,
where B = 29, —rH. Since B* = —z8, —rH, the same argument used to prove that
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there are no solutions to (4.17) proves that ker B* = {0}. Suppose that Bf = 0.
Then

20y f —rH(x)f =0,
and thus, for some c € C, f = cza” for x < % and f = C(%)” for x > % Therefore
dimker B = 1, which implies that ind B = 1. (Il

Looking over the proof of this proposition, we find that we actually established
the following stronger statement.

Corollary 4.12. With the same hypotheses as Proposition 4.11, a non-trivial el-
ement v € H}([0,1],V) satisfies [['(zd;) + Rlv = 0 only if v takes values in Ar.
Moreover, given any vg € Ag, the boundary value problem

v € Dom(D(T,S)), D(T,S)v=0, v|yz=1=vo,

has a non-trivial solution if and only if vo € Ar N Ag, in which case, the solution
is unique and also takes values in Ap N Ag. Thus, the boundary values in Ar N Ag
parameterize ker D(T, S).

As an easy consequence of Proposition 4.11, we prove the following result, which
shows that there are many smooth families of perturbations R(r) of the form (4.5)
such that 3 + R(r) has constant dimensional null space for r € [0, 1].

Theorem 4.13. Assume that on a collar X =2 [0,1), x Y of the boundary, 0 is a
product:
0 =T'[z0, + 0p).
If T € L(V) is diagonal and R € ¥, (X, E) is of product type, defined by (4.5)
with respect to the same product X = [0,1), X Y, then
ker(0 + R) = ker 0 @ ker D(T, C) (kernels on L} ),

where C' is the scattering matriz in (4.15) and D(T, C) is the operator in Proposition
4.11 with S = C'. In particular,

dimker(0 4+ R) = dimker 8 + dim(Ar N A¢).

Proof. Suppose that u € kerd. Let ¢; € C™(Y,Ey) be the eigenvectors of @
with corresponding eigenvalues A\; € R. Then on the product decomposition, X =
[0,1); x Y, we can write u = >, f;(z)p;(y) for some f; € L2([0,1)). Since d =
I[z0; + Tp] on the collar and since du = 0, one concludes that f;(z) =0 if A; >0,
and fj(z) = ¢ja™ if \; < 0, where ¢; is a constant. Thus, u = 3, _;c;z7p;(y)
on the collar. Since T acts only on V', and since R is supported on the collar, it
follows that Ru = 0. Thus, (0 + R)u = 0 and therefore u € ker(d + R).

Suppose that u € ker(d + R) \ ker 8. Since d 4+ R =T'[x0, + 0p] + R and R acts
only on the null space of 0y, just as in the previous paragraph, on the collar we can
write u = v(z,y) + Z/\Ko cjz M ;(y), where v(z,y) # 0 takes values in V and
[['(zd;) + R]v = 0. Since R is supported on [0, 1), v(z,y) must be constant off the
support of R. Define v = u off of the collar and v = v(1,y) + Z/\j<0 xicjp;(y)
on the collar. Then v € C®(X,E) 4 (.5, 2°Hy°(X,E) and v = 0. Thus, by
definition of the scattering Lagrangian, v(1,y) € Ac. Thus, v is a non-trivial
solution to the boundary value problem

[[(z0;) + Rlv =0, v|z=1 € Ac.
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By Proposition 4.11 (see also Corollary 4.12), there are exactly dim(Ar N A¢)
independent solutions to this boundary value problem, occurring only when v €
Ar N Ac. Tt follows that ker(d + R) \ kerd = Ar N Ac. O

4.6. Eta invariant of the one-dimensional operator. Let 7,5 € L£(V) and
let B = D(T,S) be the operator in Proposition 4.11. We now consider the b-eta
invariant of B:

(4.19) %(B) = = /OO =12 Ty (Be B dt.

™ Jo

Here, the heat operator e~tB” can be constructed explicitly using very similar argu-

ments as in the (more elaborate) development presented after expression (5.9); and
hence, will not be reproduced here. The b-trace "Tr(Be~*53") is defined (see Defini-
tion 3.3) as the regular value at z = 0 of the meromorphic function Tr(z*Be~'5B")
at z = 0. The fact that the b-trace exists follows from properties of the Schwartz
kernel of e~*B” derived from its construction. The goal of this section is to prove
that

n(D(T,S)) = m(Ar, Ag),

where
1 .
(4.20) m(Ar, As) = —— | > b
e'?espec(—T~ST)
oc(—m,m)
If T and S are transversal, then m(Ar,As) = —s=tr(log(=T~S™)), where the

logarithm is defined by its standard branch. By Lemma 4.9, 7~ S* has no +1
eigenvalue if 7' and S are transversal, so log(—7'~S™") is defined. The function
m(Arp, Ag) was first introduced in the work of Lesch and Wojciechowski [14]. It is
nicely related to the Maslov index [6], [7]. To prove that % (D(T,S)) = m(Ar, Ag),
we begin with the following lemma.

Lemma 4.14. If T € L(V), then tn(D(T,-T)) = 0.
Proof. For simplicity, denote D(T, —T) by Dr. Since II1,. = Iz, we have
(4.21) Dom(Dr) = {v € H}([0,1],V); Hrv|o=1 = 0},
therefore
Dom(D7) = {v € H;([0,1],V); TIgv|z—1 = 0, Ty Drvle1}.
The heat kernel e~ *P7 takes an initial condition v to a function u; that satisfies
(0 + D%)ut =0; ug =v, Ipulz—1 =0, UrDrui|,—1 =0.
Near x =1, R =0, so at x = 1 we have Il Dy = IIrI'x0, = I‘HJT-(’?I. Thus,
(0 + D%)ut =0; ug =v, Ilpuglz=1 =0, H%‘@muﬂz:l =0.

The heat operator of this heat equation is described as follows. Let D4 be the
scalar operators

Dy =D(28, +Q%, D_=TD(zd, — Q?),

where @ € ¥,>°([0,1)) is the one-dimensional operator given in (4.6) and denote

the corresponding solution operators to the following scalar heat equations by e ~*P i
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2 . . . .o . o, . . p— 2
and e 'P= | respectively: Given an initial condition v, the functions uf = e Piy

satisfy
@+ DN)uf =0, ug =v, (O] )o=1 = 0;
(0r + D*)u; =0, Uy =V, Uy |g=1 = 0.
Since R = —T'Q?T, we have Dy = D on A% and Dr = D_ on Ar, so
e~tDF = o~tDY H% + e~tD2 I,
Also, since I' : Ay — A7, we have Tr(I'll+) = 0 and Tr(T'Ilr) = 0. In particular,
bfr(I‘xaxe*tD?f) =0.

Furthermore, as Ty = [Ip and TTl = —II#, we obtain

Tr(TTTly) = Tr(THy) =0, Tr(TTTF) = —Tr(I'Tl3) = 0.
Thus, "Tr(Re~*P7) = 0. Hence, "Tr(Dre~tP7) = 0, and so i(Dr) = 0. O

As the proof that (D(T,S)) = m(Ar,Ag) for T, S € L(V) is a bit detailed,
we first give an outline of its proof. Fix 0 < a < 1 such that R is supported
completely on [0,a). In order to use %(D(T, —T)) to help us calculate % (D(T, 5)),
the idea is to analytically separate [0, 1] into two parts: [0,a] and [a,1]. On the
interval [0, a], we denote I'(x9,) + R by D1, which has the domain given in (4.21)
with 1 replaced by a throughout the expression. On the interval [a, 1], we have
I'(2d;) + R = T'(x0,,), which we denote by D, and on this interval, we put the
boundary conditions

(4.22) Dom(Dy) = {v € H'([a,1], V) ; 70|y = 0, TZv|,=1 = 0}.

The operator Dy appears in, for instance, [14] and [7]. However, others usually put
s = logx so that if a’ = log a, then

Dy =T9,, Dom(Ds) = {ve H([d',0]s,V); HFv|s=a = 0, TEv|s—o = 0}.

Observe that Dy is not degenerate on [a, 1], (or on [a/,0]s in the variable s): it
is a true (as opposed to a “b-”) elliptic operator on [a,1],. In [14], it is shown
that n(D2) = m(Ap,Ag). Here, n(Ds) is the usual eta invariant of Dy defined by
the integral (4.19) but with the usual trace replacing the b-trace. We show that
b(D(T, S)) separates into two parts: (D(T,S)) = (D1) 4+ n(Ds). The compu-
tation in Lemma 4.14 shows that % (D;) = 0, and hence, as 7(Dz2) = m(Ar, Ag), it
follows that % (D(T, S)) = m(Ar, Ag). Our proof is finished.

Thus, we are left to prove that n(D(T,S)) = "(D1) + n(D3). The crux of the
idea is to “twist apart” the subintervals [0,a] and [a, 1], of [0, 1], from each other.
The technique to do so goes back to Vishik [32], and was later applied by Briining
and Lesch [5] to study the eta invariant.

Acting on a pair of elements (v1,v3) € V @V considered as a column vector, for
each 6 € [0,7/4] we define (cf. [5, Sec. 3])

cos? 6 —Lginog sin® 0 —Lginog
= 2 2 1
Q) —% sin 20 sin® 6 } ©r + [—% sin 20 cos? 6 © 17

A straightforward computation shows that Q(6) is an orthogonal projection:

Q0> =Q0), Q) =Q(0),
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and that
e 0 11 -1
We denote by By, the operator I'(zd,,) + R with domain
Dom(By) = {u € H}([0,a],V) ® H([a,1],V) ;
Q(O)u|p—q = 0, T u|,—; = 0}.

Here, I'(z0;) + R acts as [['(z0;) + R] & I'(z0,) on the domain of By since R =
0 on [a,1]. For each 6 € [0,7/4], the heat operator e~*537 can be constructed
explicitly using very similar arguments as detailed in Section 5.3 after Expression
(5.9). Moreover, the b-eta invariant of By can then be defined in terms of e~ B
using the integral (4.19). As the proofs of the these facts concerning the heat
operator of Bj are much simpler than those presented in Section 5.3, we will take
these facts for granted, and leave the interested reader to check Section 5.3 for the
details. We now compare By for § = 0 and 6 = /4.

If u = (u1,u2) € Dom(By4), then Q(7/4)(u1, u2)|o=a = 0if and only if u;[,—o =
Ug|g=q. Thus, u considered as a function on [0, 1] itself, is continuous across z =
a. For this reason, Q(mw/4) represents the continuous transmission condition. In
particular, it follows that

(4.23)

Dom(Bﬂ'/4) = IA{bl([O7 1]7 V)v
and that B;,4 = D(T, S), where D(T, S) is the operator in Proposition 4.11. Thus,

n(Brsa) = n(D(T, S)).
We now consider By, which according to the formula for Q(0), has domain
Dom(Bg) = {(u1,u2) €HL([0,a], V)& H' ([a,1],V) ;
7t |p—q = 0, MFug|p—q = 0, HEug|s—1 = 0}.
Thus, Dom(By) decomposes into two parts: Dom(By) = Dom(D1) @ Dom(Ds),
where Dy = I'(29,) + R with Dom(D;) = {u € H}([0,a],V); Uru|,—, = 0}, and

where Dy = I'(20,) has domain given in (4.22). It follows that the heat operators
decompose:

_ 2 _ 2 _ 2 _ 2 _ 2 _ 2
e tBO —e tDlEBe tD2 Boe tBO :Dle tDl@DQ@ tDQ'

)

Hence, %)(By) also splits into two pieces:

(Bo) = "n(D1) + n(D2).

Since %(D;) = 0 by Lemma 4.14 and n(Ds) = m(Ar, Ag) by [14], we have % (By) =
(D) = m(Ar, Ag). In summary, the projector Q() “rotates” from the boundary
condition that separates [0,a] and [a, 1] from each other, and which produces the
operators Dy and Ds, to the continuous transmission condition, which gives the
original operator D(T,S). We shall prove that %(Bjy) is in fact constant in the
parameter 0. It follows that

bn(D(T, S)) = bn(B,r/4) = bn(BO) =m(Ar,Ag).

Thus, it remains to prove that % (Bg) is constant.
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Proposition 4.15. Let T, S € L(V) and let By be the operator I'(x0;) + R with
domain (4.23). Then the b-eta invariant 'n(By) is constant in the parameter 6 €
[0,7/4]. In particular, setting @ =0 and 0 = 7/4, we have

bn(D(Tv S)) = m(AT7 AS)7
where m(Ar, Ag) is defined in (4.20).

Proof. To prove that %)(Bjp) is constant, we use similar arguments as those found
in Section 4.3 concerning the variation of the eta invariant. We start by showing
that dimker By is constant in 6 € [0,7/4]. Thus, let ©w = (uy,us) € ker By. Then
Bouy = [I'(z0;) + RJu; = 0 and Byus = I'(xdyuz) = 0, and Q(0)(u1,u2)|z—q = 0
and [T us|,—1 = 0. Since [['(x0,)+RJu; = 0, by Corollary 4.12, we have u; (z) € Ar
for all # € [0,a]. In particular, uj|,—, € Ar; that is, IlFuy|,—q = 0. Since
Q(6)(u1,u2)|z=q = 0, by the definition of Q(6), we have

(4.24) €08 0 uq|p—q = sin 0 llpusg|p—q, cosHH%uﬂm:a =0.

Since 0 € [0, w/4], the second equation in (4.24) implies that us|,—, € Ar. On the
other hand, as Byus = T'(z0yu2) = 0, it follows that uy is constant. Moreover,
since H§UQ|,;:1 = 0, we must have us € Ag. Thus, us € Ar N Ag. Now the first
equation in (4.24), plus Corollary 4.12, imply that if § = 0, then u; = 0, and
if # € (0,7/4], then uy is completely determined by the value of us € Ar N Ag.
Therefore, dimker By = dim(Ar N Ag) for all 8 € [0, 7/4], and hence, dim ker By is
constant. We can now proceed as in the proof of Theorem 5.7, which is provided
Section 5.3, to prove that “(Bg) is constant. However, the proof of our current
problem is not as involved, since in this case we are dealing with a one-dimensional
operator. As all the details are given to prove Theorem 5.7, to avoid repeating the
essentially the same arguments, we appeal to Section 5.3 for the remaining details
of this proof. O

5. ETA INVARIANTS ON MANIFOLDS WITH BOUNDARY, II

5.1. Main result. Throughout this section, X is an odd-dimensional compact
manifold with boundary, and @ € Diﬁ"}, (X, E) is a Dirac operator associated to an
exact b-metric (see Section 1.1). We refer the reader to Sections 4.3, 4.4, and 4.5
for the various notations in this section. Our aim is to prove the following theorem.

Theorem 5.1. Assume that on a collar X =2 [0,1), x Y of the boundary, 0 is a
product:

0 =T'[z0, + 0g).
Let T € L(V) be diagonal and let R € V, (X, E) be of product type, defined by
(4.5) with respect to the same product X = [0,1), x Y. Then

"(® + R) = "(0) + m(Ar, Ac),
where C' is the scattering matriz given in (4.15) and m(Ar, Ac) is defined in (4.20).

The idea of this proof is similar to that of Proposition 4.15. In the first step, we
analytically “twist off” the null mode V' = ker 0g on the end that carries R in order
to separate ’(d+ R) into two pieces: an eta invariant on the null mode on the collar
involving the one-dimensional perturbed Dirac operator D(T,C) (see Proposition
4.11 with S = C), plus an eta invariant on the rest of the manifold independent
of R. In the second step, we show that the eta invariant independent of R equals
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% (9). As the proof of Theorem 5.1 is quite long, we break it up into various parts.
We set up these steps in Section 5.2, and the proofs of these steps are provided in
Sections 5.3 and 5.4.

5.2. The program to prove Theorem 5.1. Here we set up the initial steps to
prove Theorem 5.1. By an appropriate scaling of the normal variable, we may
assume that our odd-dimensional manifold with boundary X has a collar neighbor-
hood X 2 [0,e], X Y near 0X =Y over which E = Ey = E|,—o,

d = T[20, + o),

and x > e off this collar. Let T € L(V) be diagonal and let R € ¥, (X, E)
be of product type, defined by (4.5); thus, R is defined by (4.5) with respect to
the product X 2 [0,¢e], x Y. We assume that R is supported on the “subcollar”
[0,e71), x Y. This assumption does not effect the dimension of the null space of
0+ R by Theorem 4.13, and hence neither the b-eta invariant of d + R by Theorem
4.7. As mentioned already, to prove Theorem 5.1, we first separate (0+R) into two
pieces: an eta invariant on the null mode on the collar involving the one-dimensional
perturbed Dirac operator, plus an eta invariant on the rest of the manifold that
does not depend on R.

To begin this program, we start by separating X at x = 1 into two halves as
follows. Let

M=10,1,xY, N={peX;ax(p) >1}.
Since X = [0,¢], x Y, we have
N =~ [l,e], xY near ON =Y,

and gluing together M and N, identifying the sets where x = 1 in the obvious way,
reproduces the original manifold X. Note that the Dirac operator d induces in a
canonical way, operators on M and N, and the b-pseudodifferential operator R is
supported completely on M near x = 0.

Acting on pairs (v1,v9) regarded as a column vector, where vy, vo € L2(Y, Ep),

we define
1 1 -1
P‘i[ -1 1 ]

Then P is an orthogonal projection:
P?=pP, P*=P,
and P(vi,v2) = 0 if and only if v; = vy. For any « € R, we denote by I:Ig‘(M7 Ey),

the space of functions that are in H*(M, Ey) near x = 0, and are in H*(M, Ey)
away from z = 0. Set A = 0+ R and denote by Ap, the operator A with domain

Dom(Ap) = {u € Hy(M,Ey) & H'(N,E) ; Pul,—; = 0}.

To define u|,—1 we use the fact that for any manifold Z, restricting a function
in H'(Z) to a hypersurface S defines a continuous map H'(Z) — HY?(S). Let
u = (u1,uz) € Dom(Ap). Then by definition of P, we have P(u, us)|z=1 = 0 if and
only if u1|z=1 = uz|z=1. Thus, u considered as a function on X itself, is continuous
across = 1. For this reason, P represents the continuous transmission condition.
In particular, by standard Sobolev space theory on manifolds with boundary, see
for instance [4], it follows that

Dom(Ap) = H (X, E).
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Thus, e~ 4% = ¢=t4” where e=*4” is the heat operator of A2 in the usual sense (see
Appendix C), and so

(5.1) t(Ap) = (©+ R).
To relate (9 + R) to (d), the idea is to “twist off” the null mode on the end that
carries R. To do this, we follow Briining and Lesch [5] and Vishik [32].

Let II¢ be the orthogonal projection onto the scattering Lagrangian. Acting on

pairs of functions (v1,v2) considered as a column vector, where vy, vy € L%(Y, Ep),
for each 6 € [0, 7/4], we define, cf. [5, Sec. 3],

1 _
(52) PO =3| 1 T3 |emree. ososan
where Iy is the orthogonal projection onto V' = ker dg, and where
cos? —1sin26 L sin?@  —3 sin 26
= 2
(5:3) Q) { —% sin 20 sin? 0 Qs+ —% sin 26 cos? 6 © 1o

The projection Q(6) acts entirely on the null mode V, P(f) is the continuous
transmission condition on V-, and by a straightforward computation P(f) is an
orthogonal projection:

such that

101 -1 n oz o 11 -1
P(O)—§{ 11 }@HO +[ 0 e |’ P(7r/4)—§ 11l
In particular, P(mw/4) is just the continuous transmission boundary condition.

Denote by Ay, the operator A = d + R with domain
(5.4) Dom(Ag) = {u € H (M, Ey) ® H (N, E) ; P(0)u|y,=1 = 0}.

Elements of Dom(Ag) can be described as follows. Let u = (u1,u2) € Dom(Ayp)
and write u; = v; +wy and, on the collar N & [1,¢], x Y, ugs = vy + we, where v;,
respectively wj, is the orthogonal projection of u; onto V, respectively V+. Then
by definition of P(6), we have P(0)(u1,us)|z=1 = 0 if and only if w1 |,—1 = wa|y=1
and Q(0)(v1,v2)|z=1 = 0. Thus, elements of Dom(Ay) are continuous across z = 1
in V1 it is only on V where the boundary condition P(#) has any effect. In
particular, gluing together w; and wse at x = 1, on the product decomposition
X =2 [0,€]; x Y an element u € Dom(Ay) can be written in the form v = v + w,
where w € TIg HL ([0, ] x Y, Ep), and where v = (v1,vs) with v; € H}([0,1],V) and
vy € H([1,¢€],V) such that Q(6)(v1,v2)|s=1 = 0.

In Section 5.3, for each 6 € [0, /4] we show that the b-eta invariant of Ay can
be defined in terms of the heat operator by the usual integral (4.1) and we show
that the variation of % (Ag) in 6 is zero. Let us consider the b-eta invariant at the
end points. By (5.1) we have “(A; /1) = (0 + R). To compute '(Ag), note that
by the formula for P(0), we can write

Dom(Ao) = {(u1,u2) € MoH} (M, Eg) @ [y H} (M, Eo) & H'(N, E)] ;
Hé‘vu1|z:1 =0, ﬂu2|x:1 =0},

N | L, o o
=g 1 ]em o |

where
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Thus, Dom(A() decomposes into two parts:
Dom(Ap) = Dom(D(T, C)) ® Dom(D),

where D(T, C) is the one-dimensional operator I'(xd, )+ R with domain (see Propo-
sition 4.11 with S = C)

Dom(D(T, C)) = {u € My A} (M, o) = H1([0,1], V); sul,y = 0},
and where D is the Dirac operator d with domain
(5.5) Dom(D) = {u € Iy H} (M, Ey) & HY(N, E) ; Tu|,—; = 0}.
In particular, the heat operators also decompose:
(5.6) o tAY — o~ tD(T.C)? @ eftDQ, Aoefmg = D(T, C)eftD(T,C)2 ® De—tD?
and hence, %(Ap) also splits into two pieces:
n(Ao) = "n(D(T,C)) + "n(D),

where % (D(T,C)) is the b-eta invariant of the one-dimensional perturbed Dirac
operator D(T,C) and where %(D) is the b-eta invariant of the operator D. To
relate (A, 1) = (3 + R) and "n(Ag) = (D(T,C)) + (D), we first prove that
dim ker Ay is constant in order to understand the variation of (Ag).

)

Proposition 5.2. For any 6 € [0,7/4], we have
ker Ag = ker 0 @ ker D(T, C) (kernels on L),

where C' is the scattering matriz in (4.15) and D(T, C) is the operator in Proposition
4.11 with S = C. In particular,

dimker Ag = dimker d + dim(Ar N Ag).

Proof. Arguing in a similar manner as in the proof of Theorem 4.13, one can show
that ker d can be considered a subspace of ker Ay for each 0 € [0, 7/4].

We now show that ker Ag \ kerd = ker D(T,C). Let ¢; € C™(Y,Ey) be the
eigenvectors corresponding to the non-zero eigenvalues A\; € R of dg. Then as in
the proof of Theorem 4.13, one shows that if u € ker Ag \ ker @, then on the product
decomposition X 2 [0,¢e], X Y we can write u = v + w, where w is of the form
w = Z)\J(O c;jz Y p;(y), and where v = (v1,v9) # 0 with v; € H}([0,1],V) and
vo € H([1,¢€],V) such that [['(20,)+ R]v; = 0, T'(20;)ve = 0, Q(0)(v1, v2)|z=1 = 0,
and va|,—1 € Ac. Since I'(xd,)ve = 0, v2 must be a constant vector in Ac.
Now using the definition of Q(#) in (5.3) and the fact that Q(0)(v1|z=1,v2) = 0
and that vo € Ag so that Hévg = 0, we have C0829Hé7)1|m:1 = 0. Since 0 <
0 < /4, we must have II{vi|,—1 = 0 and so, v; € Dom(D(T,C)). Using the
definition of Q(#) once more, we must have sinf vq|,—1 = cosfvq. It follows that
ker Ap \ ker @ is isomorphic to the space of nontrivial solutions to D(T,C)v; = 0
such that sinfvq|,—; = cosf vy where vo € Ac. We now analyze this boundary
value problem for 0 € [0, 7/4].

First, setting # = 0 in sinfwv1|,—1 = cos@vy gives vo = 0. Thus, the only
requirement on v is that it be in ker D(T', C). Thus, ker A \ ker & = ker D(T, C)
and by Proposition 4.11, dim(ker Ay \ ker 8) = dim(Ar N Ag).

Assume now that 6 € (0,7/4]. Then, by Corollary 4.12, there exists a unique
solution v to the problem

D(T,C)v; =0, sinfwvq|y—1 = cosbuva,
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if and only if vo € Ar N Ac. Hence, ker Ay \ ker @ = ker D(T, C) and dim(ker Ay \
ker 3) = dim(Ar N A¢) for all 8 € (0,7/4]. O

The remaining steps to prove Theorem 5.1 are as follows.
The program to prove Theorem 5.1:

(Step 1) First we prove that the b-eta invariant % (Ay) is constant for 6 € [0, 7/4].
In particular, equating the invariants for § = 0 and 6 = 7 /4, we obtain

(@ + R) ="n(D(T, C)) + "n(D),

where U (D(T,C)) is the b-eta invariant of the one-dimensional operator
D(T,C), and where (D) is the b-eta invariant of the operator & with
domain given in (5.5). In particular, by Proposition 4.15, we have

M+ R) = m(Ar,Ac) + (D).

(Step 2) Second, we prove that (D) = /(0).

Combining these two steps proves Theorem 5.1. In Section 5.3 we work out Step
1 and then in Section 5.4 we complete Step 2.

5.3. Rotating boundary conditions. If Ay is the operator A = 0 + R with
domain given in (5.4), we first prove that for each 6 € [0,7/4], the b-eta invariant
of Ay can be defined by the usual integral:

(Ag) = % /OO 12 bTr(Age_tAg) dt.

™ Jo

To prove this, we show that the b-trace of Age_tAz can be defined, and then we
show that the integral defining %(Ag) converges. Finally, we show that %(4) is
constant, which establishes Theorem 5.7.

To begin this program, we start by describing the domain of Ay is a slightly
different way. Recall that X 2 [0,e], X Y near its boundary over which all our
structures are of product type, and that = > e off this collar. Let X denote the
manifold

X=MUN, M=[0,1,xY, N={peX;alp) >1}

Here, Ul means “disjoint union”. Observe that N = [1,¢e], x Y near N = Y.
Note that &X consists of two parts: the boundary Y coming from z = 0 and the
boundary YUY coming from z = 1. Over the second boundary coming from x = 1,
we have a collar decomposition

5 —logz if e l'<a2<1

(5.7) X =0,1], x (Y UY), 7‘:{ 1o§x f l<z<s
The bundle E extends naturally to a vector bundle over X such that E = E, over
M and over the collar (5.7). Smooth sections of E over X are just pairs (u1,u2),
where u; and us are smooth sections over M and N, respectively.

Note that 0 and R define operators on X. We assume that R is supported
completely on the subcollar [0,e71), x Y of M so that over the collar (5.7) above,
A =0. Since 8 = I'[xd, + 0] over [0,e], x Y, and since 20, = —0, if r = —logx
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and z0, = 0, if r = logz, acting on a pair (uj,us) where u; and uy are sections
over M and N respectively, over the collar (5.7) we have

o N ~ | =T" 0 ~ | =0p O
(5.8) 0 =T10, + 9y, F—{ 0 I‘}’ 80_{ 0 50].

It follows that Ay can be considered an operator on X with domain
Dom(4y) = {u € Hy (X, E) ; P(6)ul,— = 0},

where P(6) is defined in (5.2) and where for any o € R, HZ(X, E) consists of those
functions in Hy'(X, E) near = 0, and in the usual Sobolev space H*(X, E) away
from z = 0. If L}(X, E) = H)(X, E), then Ay defines a continuous linear map

Ag : Dom(A4y) — L3(X, E).

Note that A is only a b-operator near the boundary of X at z = 0. By (5.8), near
the boundary of Xatr=0, Ais just a usual elliptic differential operator: smooth
up to r = 0 and not degenerate there.

To show that the b-eta invariant of Ay can be defined, we first need to show that
the b-trace bTr(Age_tAg) can be defined. Thus, we need to understand the Schwartz

2
kernel of e~ t4s

Dom(A2) = {u € HY(X,E) ; P(f)ul,—o =0, P(#)Agu|,—o = 0},

. To do so, we construct the heat operator directly. By definition,

so e~t4% is the unique operator such that given an initial condition v € I:g (X' VE),
the function u; = e~t%4 solves

(5.9) (O + A us = 0; wp=v, P(O)ugl—o =0, P(0)Agut|r—o = 0.

The idea to construct the heat operator is simple: we just glue together the heat
operator Hy of A% away from r = 0 and the heat operator Hy of A% near r = 0.
Actually, this method will only construct a parametrix for the heat operator, but
one that is very close to the genuine heat operator.

Away from r = 0, we have X = X, the original manifold. Thus, let H; = ¢
where e~*4” is the heat operator of A = 0+ R in the usual sense. The heat operator
e~t4” is described in Appendix C. Near r = 0, R = 0, and so, A = 8. The boundary
condition P(f) is the continuous transmission condition on V+ = (kerd)*, and
so on V1, we can identify elements of Dom(Ay) as sections on X rather than on
X. Thus, on V4 near r = 0, the heat operator of AZ should be close to the heat
operator of 32 projected onto V4. For this reason, as 0% = (xD,)? + 02 on the
collar of X, where D, = i~10,, we define

(5.10) Hi =TIt e 1@ D) 103 1L

—tA?
b

_t(tz)z

where e is the heat operator of (zD,)? on [0,00), given by

—t(zDy)? no_ 1 —t(log z—log x’)? /4t
e z,7') = e .
( ) VAt

Consider now the heat operator of A2 near r = 0 on V. Directly from the definition
of P(#) in (5.2) and of T" in (5.8), one can easily check that

(5.11) PO =T(1d — P(6)).

Now on the collar X 2 [0,1], x (YY), we have A = I'(8, 43¢, where I" and 8, are
given in (5.8). Thus, projected onto V, we see that A = I'0,, P(0) = Q(6) where
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Q(0) is given in (5.3), and by (5.11), P()A = T'(Id — Q())d,. Thus, as A2 = D?
on V mnear r = 0, where D, = i~'9,, the heat operator of A2 projected onto V
should be close to the heat operator on the infinite cylinder [0, c0), x (Y LUY") fixed
by

(0r + D*)u; = 0;  wp =1Iov, Q(O)utlr—o =0, (Id — Q(#))D,ut|r—o = 0.
Using standard Laplace transform techniques [9], the solution operator of this heat
equation can be computed explicitly, and equals

{e*“”’)z/‘“ +(I1d - 2@(9))6*“”’)2/“}%.

5.12 HS =11
( ) 2 Om

Let p(z) € C*(R) be a non-decreasing function such that p(z) = 0 for z < 1/4
and p(z) = 1 for z > 3/4. Given any real numbers o < 3, we define

(5.13) pas() = pl(z — @)/ (B - ).
Then p,,3(2) = 0 on a neighborhood of {z < a} and p, 5(z) = 1 on a neighborhood
of {z < g}

Recall that r is the variable on the collar X = [0, 1], x (Y UY"). We define
(5.14) Y1(1) = p1ya,3/a(r),  Po(r) =1 —11(r),

p1(r) = 01/4,1/2(7")7 pa(r) =1~ P3/4,1(7")-

These functions extend either by 0 or1to define smooth functions on all of X and
{1;} forms a partition of unity of X such that ¢; = 1 on supp(¢;). We define

(5.15) Eg = @1Hytpy + 2 Hy ta + oo H .
It follows that
(8, + A2)Ey = Ky,

where

Ko = [A%, 1] Higy + [0%, o] Hy tho + [0, 2] Hy ).
It is straightforward to check that the Schwartz kernel of Ky is a smooth function
on X2 vanishing to infinite order at ¢t = 0 and at the boundary hypersurfaces of X?2
coming from the boundary x = 0 in X and vanishing near the whole left boundary
X x X of X2. Thus, the heat operator of A2 is given by (cf. [2])

By K) K= Boe S (YK,
j=1

where K; = Ky and K; = K;_; * Ky with * denoting the convolution of kernels:

(5.16) K+« K = /K r)K'(r dr_/K ) K'(t — r)dr.

Arguments similar to those found in [3, Ch. 2] or [22, p. 269] show that the Schwartz
kernel of K/ is a smooth function on X2 vanishing to infinite order at ¢ = 0 and
also at the boundary hypersurfaces of X2 coming from the boundary z = 0 in X.
From the properties of Ey and K, it follows that for each ¢t > 0, the regularized
trace bI‘r(e_tAg) exists (see Definition 3.3) as the regular value of the meromorphic
function Tr(a:ze*mg) at z = 0. (Here, we use only the boundary defining function
x; we are not concerned with the boundary at r = 0 because the kernel of e~ tAs
is smooth up to this face, as follows from the properties of Ey and Kj.) Similarly,

bTT(Age_tAg) is defined. Since Ky vanishes to infinite order ¢t = 0, the asymptotics
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of et4% as t 1 0 are the same as those of Fy as t | 0. Now the asymptotics of Ey
are determined from those of Hy, Hs-, and HY, which are easily computed.
Lemma 5.3. Let n =dim X. Then for any 0 € [0,7/4], ast | 0, we have

(1) "Tr(em*49) ~ 3232 a; () 1072

(2) MTr(Age=t4%) ~ 300, b, (6) t9/2.

j=1
Proof. The asymptotics of bI‘r(e_tAg) as t | 0 are the same as those of
"Tr(Eg) = "Tr(pr Hithr) + "Tr(pa Hy i) + "Tr(pa H o).

By Lemma C.10, we have "Tr(p1 Hi11) ~ > o a;jtU=™/2 as t | 0. Directly from
the formula (5.10) for Hs-, we have "Tr(po Hs-1)9) ~ D0 @) tU=m/2 ast | 0. Also,
directly from the formula (5.12) for HY, we have "Tr(gpoHY1)s) ~ >0 a;’t(j_l)/2
as t | 0. Thus, (1) is proved.

We now prove (2). In this case, the asymptotics of l’IY(Age_tAg) as t | 0 are the
same as those of “Tr(AEy). Observe that

AEg =1 AHytpy + p20Hy by + 020 H3 1)
+ [A, 1] Hitpy + [0, pa] Ha o + [0, 2] Hy s
The Schwartz kernels of the three last operators vanish on the diagonal, and hence
"Tr(AEy) = "Tr(p1 AH 1) + "Tr(po0Hy ¢2) + "Tr(p20 H3 o).

By Proposition 4.3, we have "Tr(p; AH 1) ~ Z;’il bjtj/2 as t | 0. Directly from
the formula (5.10) for Hs-, we see that

PTr(a0Hi1)3) = "Tr(oT 28, + Oo] e (#P=)" 10 [T 4)).

We claim that this expression is zero for all t. Indeed, since I'dg = —0oT, if ¢ is an
eigenvector of Jg with non-zero eigenvalue A, then I'p is an eigenvector of dy with
eigenvalue —\. Therefore choosing an orthonormal basis {¢;} of the eigenvectors
of y with positive eigenvalues, {¢;,T'p;} is an orthonormal basis of V+. Since
It e 01T is diagonal with respect to this basis, it follows that
Tr(METe P TE) =0 and Tr(IIETdee tIIL) = 0,
as the traces involve off-diagonal operators. Thus, "Tr(p20H5 ;) = 0. We also
claim that "Tr(p2dHYv5) = 0. Indeed, since [8,e~'"—")*/4)|,_, = 0, from the
formula (5.12) for HY, we have
1

VAt

By (5.11), it follows that I'(Id—2Q(6)) = —(Id—2Q(#))T. Thus, tr(I'(Id—2Q(#))) =
0. It follows that "Tr(20HE1)s) = 0. Our proof is now complete. O

"Tr(po0HS 1) = "Tr (o0, Ip(Id — QQ(e))ef(T“/f/“Ho%)'

In particular, this lemma shows that ¢~1/2 l’I‘r(Age_tAg) is integrable near ¢ = 0.
To show that it is integrable near ¢t = oo, we need to understand the long-time
behavior of I’Tr(Age_tAg). To do so, we need to extend the calculus with bounds
found in Appendix A.2 to our current setting. Intuitively, as Ag = 0+ R is only a b-
operator at the boundary x = 0 in X , and is otherwise non-degenerate, the calculus
with bounds in the present case should consist of operators that are smoothing on
X\ {z = 0}, and near z = 0 in X are given by Definitions (A.1) and (A.2) in
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the appendix. Explicitly, these operators are defined as follows. Given ¢ > 0, let
. be the multi-index on X2 that associates the number ¢ to the left and right
boundary hypersurfaces of X2 coming from the boundary z = 0 in X, and 0 to
the other boundary hypersurfaces. Then the space W=°¢(X, E) is the subspace
of operators in W~ (X, E) (see Definition (A.1)) whose Schwartz kernels define
smooth densities on the space {(p,p’) € X?; z(p) # 0 or z(p') # 0}. Given € > 0,
let 8. be the multi-index on XE that associates the number ¢ to the left, right,
and front face boundary hypersurfaces of X E coming from the boundary z = 0 in
X, and 0 to the other boundary hypersurfaces. Then the space \i'b_oo’s(f( ,E) is
the subspace of operators in \Ilgoo’ﬁs (X, E) (see Definition (A.2)) whose Schwartz
kernels define smooth densities on the space {(p,p’) € X2; x(p) # 0 or z(p') # 0}.

Proposition 5.4 (cf. Proposition C.9). Let 6 € [0,7/4]. Then we can write
(5.17) e % =TIy + Ry(t), t>0,
where for some e >0, Iy € \i!*OO’E(X, E) is the finite rank projection onto ker Ay,

and where Ry(t) € U, (X, E) is such that as t — 0o, Re(t) — 0 exponentially
in W, >°(X, E). In particular,

lTr(Aee_tAg) — 0 exponentially as t — oo.
Finally, the pointwise trace of Age_“lg on the diagonal satisfies
tr(Age™ %) = 2° fy () dg,
where fqo(t) € CO(X) and vanishes exponentially as t — o0o.

Proof. To prove this proposition, we first prove that for some ¢ > 0, the resolvent
(A% — X\)~! is meromorphic on C \ [§,00) with finite rank residues. Here, A% has
domain

Dom(A2) = {u € H}(X,E) ; P(0)ul,—o =0, P(6)Agu|,—o = 0}.

The resolvent construction is very similar to the construction of e~*4¢: We glue
together the resolvent Ry of A away from r = 0 and the resolvent Ry of A% near
r = 0. This procedure will construct a parametrix for A2 — .

First, away from r = 0, we have X = X. So here, we take Ry(\) = (A2 — \)~1,
On V+, the boundary condition P() is the transmission condition, so on V+ we
can consider elements of Dom(A%) as sections on X. Thus, as 0% = (zD,)?+ 33 on
sections of V+, for the second step in the resolvent construction we define

(5.18) Ri =113 ((xD,)* 4+ 92 — X\)~'I7,

where ((xD,)? + 02 — \)~! denotes the resolvent of (zD,)? + 02 on [0,00), x Y.
Lastly, we define a parametrix on V. On the collar X 2 [0, 1], x (YUY, A = [0, +
o] where T' and 3y are given in (5.8) and projected onto V, we have A = I'9, and
P(0) = Q(0), where Q(0) is given in (5.3). By (5.11), we have Q(#)T' = T'(Id—Q(h)).
Therefore, as A? = D2 on V near r = 0, where D, = i~19,., we shall consider D?
with domain

(5.19) Dom(D?) = {u € TlpHE,.([0,00), x (Y UY), Ep) ;
Q(G)u|r:0 = Oa (Id - Q(G))Dru|r:0 = O}
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The resolvent of D? with this domain can be found explicitly using elementary
techniques from ordinary differential equations, and is described as follows. Since
cos z is even, we can write cosz =: f(22), where f(z) is an entire function with
f(0) = 1. Also, since (sin 2)/z is even, we can write (sin z)/z = g(2?), where g(z) is
an entire function with g(0) = 1. Given u € L2([0,00),,, V) (compactly supported
L? functions), we define Gp(\) to be the operator

GoWulr) = ([ 10 u(eg) -ranr?) = [ = 0axo ~ 0P uloie

If e C\[0,00), then in terms of cosine and sine, we have

Gp(MNu(r) = (/Ooizos(ﬁ 0) u(g)dg)-% sin(\f)\r)—% /OT sin(\f)\(r—g)) u(p)do.

One easily checks that Gp(\) maps Q(0)L2([0,00), x (Y UY), Ep) into Dom(D?)
and that

(D2 = NGp(N) =1d on QB)LA(0,00), x (¥ UY), Ey),
Gp(N(D2=A) =Td on QO)H2([0, ), x (¥ UY), Ey) N Dom(D2).
Given u € L2([0,00),, V), we define Gx()) to be the operator

Gn W) = ([ 2a00a?) ulede) - 10r%) = [ (= 0la(A6 = o) (o),
(This formula can also be written directly in terms of cosine and sine.) One checks
that G (A\) maps (Id — Q(6))oL2([0,00), x (Y UY), Ey) into Dom(D?), and

(D2 = NGy =1d on (Id— QO)TLLA(0,00), x (Y UY), Eo),
GNA)(D2=X)=1d on (Id— Q(O)ToH?([0,00), x (Y UY), Ey) N Dom(D?).
Finally, if we define
RYO) =T {QO)GD () + (1d = Q(0))Gn (\) } T,
then R$(A\) maps L2([0,00), x (Y UY), Ey) into Dom(D?) and satisfies
(D2 = MRY(A) =1d on ToLZ([0,00), x (Y UY), Ey),
RYN(D?2 =X\ =1d on IIgH2([0,00), x (Y UY), Ey) N Dom(D?).

We are now ready to construct a parametrix for Ag — . Let ¢1, 2, 91, and 19
be the functions found in (5.14), and define

(5.20) Go(A) = 1 R1(\)1 + paRy (A2 + 02 RS (A)ta.

By analytic Fredholm theory, see Theorem B.9, for some € > 0, R;()\) takes values
in W 2’E(X, E) and is holomorphic on C \ [0,00) and meromorphic on a small
neighborhood of 0 with finite rank singularities. If o¢ is the smallest absolute value
of the non-zero eigenvalues of gy, then @y Ry (A\)1)o is supported near » = 0 and
is holomorphic on C \ [0, 00) with values in pa¥~2(X, E)thy, where U™ (X, E)
denotes the usual space of pseudodifferential operators on the interior of X. By the
construction of Gp(A) and G x (), the operator R§()) is entire.

Observe that

(5.21) (A2 — N)Go(\) = Id + Kp(N),
(5.22) Go(N)(AZ — ) =1d + Kj()\),
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where
Ko(\) = [A%, 1] Ri(A)Y1 + [0%, 2] Ry (A + [02, 2] RS (N)a.
Kj(N\) = o1 Ri(\) 1, A%] + 02 Ry (A)[1h2, 0%] + 2 RS (N) [tha, 07

From the explicit descriptions of ¢;, 1;, Ri()\), Ry ()\), and R§()), it follows that
Ko(\), Kj(\) € U=°¢(X, E), and are holomorphic on C\ [0, 00) and meromorphic
on a small neighborhood of 0. Let A\g € C\ [0,00). Then, as A2 is self-adjoint,
(AZ — X\o) ™! exists. Define

K = (A2 — o) ' Kp(\o)
= Go(M)Ko(Ao) — Ky(Ao) (A5 — o) " Ko (o),

where we used (5.21) and (5.22). Since Ky()), Kj(\) € ¥~<(X,E), we have
K € U—°%¢(X, E). Tt follows that if we define G%(\) = Gg(\) — K, then

(A7 = NGH(A) = 1d + K5 (N),

where KJ/(\) € U~°¢(X, F), and has the same meromorphic properties as Kg(\),
but is such that K (Ag) = 0. Thus, by analytic Fredholm theory [22, Sec. 5.3],
(Id + K} (X))~ is meromorphic on C \ [§,00) for some § > 0 with finite rank
residues. It follows that (A2 — A\)~! is meromorphic on C \ [§,00) with finite rank
residues. Since A2 is self-adjoint, by standard arguments [22, Ch. 6], these poles are
all simple and lie on [0, §), with the residue at A = 0 given by minus the orthogonal
projection onto the null space of Ay.

To prove the decomposition (5.17), we write e~t4% as the contour integral e 45 =
o [y e (A% — X)~1dA, where T is a contour of the form a 4+ {\ € C; arg()) =
+7/4}, where a < 0. The above analysis of (A2 —\)~! and the standard arguments
imply that we can shift the contour Y to a new one Y’ that corresponds to a > 0
sufficiently small, such that

(5.23) et =TIy + Re(t),  Ro(t) = %/ e NAZ - N)7ld,
r
It remains to show that Ry(t) € \ilb_oo’g(f(, E) and is such that as t — 00, Rg(t) — 0
exponentially in \ilb_oo’s(f( , E). Unfortunately, we cannot prove these facts because
the parametrix R9()\) grows exponentially as |\| — oo on the contour! For this
reason, we need to substitute another parametrix for R§(\) that decays as |A\| — oo
in order to extract precise information about the kernel of Ry (t).
Therefore, instead of the domain (5.19), we consider D? with domain

Dom(D?) = {u € Tl H*([0,00), x (Y UY), Ep) ;
Q(0)ulr=0 =0, (Id = Q(8))Drulr—o = 0}.

The heat operator HS(t) for this domain is given in (5.12). The resolvent of D2
can be written in terms of the heat operator via the Laplace transform:

RI(N) = /0 MHE() dt — HI(t) = é / e~ RI(N) dA.

Using standard Laplace transform techniques [9], we find that

(5.24) R§(N) =11, {z\r MIVA 4 (1d — Q(@))ei(rw’)ﬁ}nm

2f
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where v/X is the standard branch of the square root. Observe that Rg (A) —0
exponentially as |A] — oo in any closed angle of C not intersecting the positive real
axis. However, because of v/, we construct a parametrix for A§ — A2 with Im A > 0,
instead of a parametrix for A — \. Using similar notation as in (5.20), we define

Go(\) = p1 R1(A\2)1 + 2Ry (A2 + 02 RG(A?)th.

For concreteness, let us take A = {\ € C; g9 < arg(A\) <7 —¢ep}, where 0 < g9 <
/4 is fixed, to be our spectral parameter domain. Then by analytic Fredholm
theory, see Theorem B.9, replacing £ > 0 with a smaller value if necessary, we may
assume that Ry (\?) € U, >°(X, E) is meromorphic for A € A., where

Ac={2eC;ImA>0, N> cA}U{reC; |\ <el,
with finite rank singularities for A> € R with A € A., and as before, Ry (A?)t
is holomorphic for A € A, with values in ¥~2(X, E) supported near r = 0. Finally,
R§(\?) is meromorphic for A € C with only a simple pole at A = 0, and vanishes
exponentially as |\| — oo in A.. By Remark C.8, the operator R;(\?) decays like
A2 in \IIS’E(X, E), and pa Ry (A?)1)g decays like A=2 in oo U0 (X, E)y.
Now,
(A7 = A1) Ge(N) = 1d + Ky(N),
where
Ko(\) = [A%, 1] R (V)1 + [0°, 2] Ry (Ao + [0%, 2] RS (A* )b

Similarly as for the first parametrix Gy, it follows that Kp()\) € U—°¢(X, E) is
meromorphic on A.. However, now f(g()\) — 0 like A™2 as a bounded operator on
L}(X,E) as [\| — oo in A.. Thus, Id + Ky()\) is invertible on L3(X, E) for |)|
sufficiently large in A., so by analytic Fredholm theory, see [22, Sec. 5.3], (Id +
Ky(A\))~! is meromorphic on A, with finite rank residues, and moreover, we can
write (Id + Ky(\))~" = Id + K}()\), where Kj(\) € U—°>¢(X, E). In particular,
(A3-A2)7 = Go(N)(Id+Kp(N) ™" = Go(A)+Hg(N), where Hg(X) = Gg(N)Ky(N) €
¥—°%¢(X, E) is meromorphic on A..

We are now ready to prove the decomposition (5.17). Going back to the contour
integral (5.23), we have

7

Ro(t) = o e NAZ - N)7tdA
™ Jyr
i —tA A i —tA
= _— — H,
3 | eGR4 / P H (VAN

where we assume that VON= {Xa for )l € Y’ and for such A\, v/ avoids the poles of
Gy and Hy. Since Hg(\) € U~°¢(X, E), it follows that .= [, e Hy(VN)dA €
U—°¢(X, E) and vanishes exponentially as ¢ — co. By the definition of Gig()\), we
have

i —tA A i —tA
— A)d\ = — A)h1dA
27'[' b € Go(\/_) 271' b € SOlRl( )1)/}1

) _ ) _ ~

+— [ e PRy (\hadA + — [ e P paRE(N)ad.
27T ' 271' T’

Arguments similar to those found in Proposition C.9 of the appendix show that

the first two terms on the right are in ¥, °>(X, E) and vanish exponentially in



FREDHOLM PERTURBATIONS OF DIRAC OPERATORS 47

\i/;OO’E(X, E) as t — 0o0. On the other hand, a straightforward computation using
the explicit formula for R§(\) in (5.24) can be used to verify that the third term
on the right is also in \ilb_oo’e(f(, E) and vanishes exponentially in \ilb_oo’a(f(, E) as
t — oo. The decomposition (5.17) is now proved.

Finally, we prove that tr(Age™'4%) = 2 fy(t)dg, where fy(t) € C°(X) and van-
ishes exponentially as t — oo in C%(X). The decomposition (5.17) and the defini-
tion of \il;m’s(X, E) imply that in the interior of X, as t — oo, tr(Age*tAg) -0
exponentially in C°°(X, Q). Thus, it suffices to work on the subset M = [0,1], x Y,
of X near z = 0. In this neighborhood, by definition of \ilb_oo’e(f(, E), omitting b-
density factors we can write

tr(Age0) = fo(t,y) + 2° f1(t, 2,y),

where fo(t,y) takes values in C*°(Y') and vanishes to exponential order as ¢ — oo,
and where f1(t, z,y) takes values in S%9(]0,1), x Y) and vanishes to exponential
order as t — oo. Here, $%°([0,1), x Y) is of the space of functions which, with
all b-derivatives, are continuous on [0,1), x Y. Hence, it suffices to prove that for
any fixed t > 0, fo(t,y) = tr(Age*tAgﬂm:o = 0. To see this, note that near x = 0,
Age_“‘g is approximated by its normal operator:
!
Age—t43 = L / (2/2')7 N (A=) (r)dr % 4 2 H ().

2m Jp i
Thus, it suffices to show that tr(N(Ae*tAz)(T)) = 0. By the definition of R, see
(4.5), we have N(R)(7) = —¢(7)?T'T. Also, from (4.10), we have

e tN(A)(T)? — o—tr? [e*tEsg + (67“2(7)4 — 1))

Thus,

N(Ae™%)(7) = TliT + 8 — $(7)2 T]e ™" [e% 4 (e 780" — 1)T1,).
Now using the fact that tr(I') = 0 (since I' has eigenvalues +i with eigenspaces of
the same dimension) and tr(I'T") = 0 (since I'T' = —TT), this equation shows that
tr(N(Ae=t4”)(7)) = 0. Our proof is now complete. O

Remark 5.5. Since for § = 0, the operator splits: Ag = D(T,C) @ D, with a
corresponding splitting of the heat operators (see discussion around (5.6)), the

results of this proposition hold for each of e *P(T:)* and e—tP”,

This proposition plus (2) of Lemma 5.3, imply that the following integral defining
b (Ag) is absolutely convergent:
1 [ 2
b _ —1/2 —tA
Ay) = — t "Tr(Aget4e) dt,
o) = —= | (Age4%)
which shows that the b-eta invariant of Ay is well-defined. As a corollary of the
proof of Proposition 5.4, we obtain the following result.

Corollary 5.6. There exists a § > 0 such that for any 0 € [0,7/4], the spectrum
of Ag in (—6,0) consists of finitely many eigenvalues of finite multiplicity.

We are now ready to prove Step 1 in our program to proving Theorem 5.1.
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Theorem 5.7. The b-eta invariant %(Ag) is constant for 6 € [0,7/4]. In particu-
lar, equating the invariants for 6 =0 and 0 = w/4, we obtain

(@ + R) = "n(D(T, C)) + "'n(D),

where (D(T,C)) is the b-eta invariant of the one-dimensional perturbed Dirac
operator D(T,C), and where (D) is the b-eta invariant of the operator d with
domain given in (5.5). In particular, by Proposition 4.15, we have

"n(d + R) = m(Ar, Ac) + (D).

Proof. To show that (Ay) is constant, that is, (d/df)%(A) = 0, we use similar
arguments as found in Section 4.3. The fact that the domains of the Ay’s are chang-
ing with 6 cause problems when examining the derivative (d/df)Ay. To circumvent
this difficultly, we employ a trick used by Lesch and Wojciechowski in [14]. Let
U(#) be the unitary operator

_iT(0) _ cosf —C'sind _ o cC

U@)=e"=1 . s |+ TO=—| 5 (16

where we interpret U(f) = Id on VL. Then one can check that for each 6, we have
P0) =U(O)PO)U(0)".

Recall that r is the variable on the collar X 2 [0,1], x (YLY). Let ¢ (r) € C2°([0,1))
be a nonnegative function supported near r = 0 with ¢(r) = 1 near » = 0 and let
Uy be the operator on the collar [0,1], x (Y UY) defined by

Dpu = HITO),.

Since 9 (r) is supported near r = 0, Yyu = u outside a neighborhood of r = 0.
Thus, ¥y extends as the identity operator off the collar to define an operator on
L?(X,E). Since ¢(0) = 1, we have

Pottp—o = eiT(e)u\Tzo =U(0)ul,—o.

Thus, as P(#) = U(F)P(0)U(#)* and Dom(Ay) is the space of u € H} (X, E) with
P(@)ulr=o = 0, it follows that

Uy : Dom(Ap) — Dom(Ay).

Hence, if we define Ay = V3 Ag¥y, where ¥} = e~ W(TO)  then Ay has constant
domain Dom(Ap). Explicitly, we find that

Ag = A+ i/ (nTT(0),

where we assumed that ¢ (r) is supported sufficiently near » = 0 so that R = 0 on
the support of 1(r). The heat operators of AZ and A? are related by

A2 2
et = Pre 0w,

To see this, one checks that \Ilze_“‘g Wy is the solution operator to the heat equation
for AZ. By uniqueness, the claimed equality must hold. It follows that

"Tr(Age™t40) = "Tr(W5 Ag Wy Wje™ 5 Wy) = "Te(Wj Age™" 5 Wy) = "Tr(Age™"49),
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so '(Ag) = "(Ap). We now show that (Ag) is constant. Indeed, the same
arguments used in the proofs of Lemmas 4.5 and 4.6 can be used to show that for
any 6o, 0, € [0,7/4], we have

: . 22 (O Ay
b, b 1 0 _+4
1(Aa,) = "0(Aa,) tlggo{ = (e e)de}

et fh rdAy e
(5.25) }1_1)%{ N /90 bl“r(me 9)d0 .

Here, unlike Lemmas 4.5 and 4.6, there are no boundary terms since (d/df)Ay =
i (r)T'T'(9) is supported away from z = 0. By Proposition 5.4, we have =45 =
Iy + Ry(t), where for some £ > 0, IIy € \il*OO’E(X, E) is the finite rank projection
onto ker A, and Ry(t) € W, °°(X, E) vanishes exponentially in ¥, >°(X, E) as
t — o0o. Conjugating by g, it follows that e~t4% = II, + Ry (t), where I, is the
finite rank projection onto ker Ag and Ry(t) vanishes exponentially as t — oo. Since
ker Ag = ker Ay has constant dimension by Proposition 5.2, the proof of Proposition
8.39 of [22] can be used to show that the first term on the right of (5.25) is equal to
zero. We claim that tl/%l’r((dflg/dH)e_tAg) vanishes as ¢ | 0. To see this, observe
that

brr(d[‘f’ *“‘3) ibl“r(z//(r)fT'(Q)etAg)iﬁ’r(i//(r){ 0 -lc ]e“‘?).

a0 € rc 0

As in the proof of Lemma 5.3, the asymptotics of t'/2/Tr((dAg/df)e~*4%) as t | 0
are the same as those of

_ibTr<¢'(r) [ FOC _EC ] Eg(t)>

as ¢t | 0, where Ey(t) is given in (5.15). Since the factor in front of Ey(¢) lies in
V' = ker 8y and since 9(r) is supported near r = 0, it follows from the decomposition
(5.15) of Ey(t) that

620 (o) | {00 | Ee) = —im(vo | 0 | ).

where HY(t) is given in (5.12). Using the explicit description of HY(t) given in
(5.12), it is straightforward to verify that the right hand side of (5.26) vanishes
exponentially as ¢ | 0. Thus, the right hand side of (5.25) is 0, and so, "(Ag,) =
bn(figl). Our proof of Theorem 5.7 is now complete. |

5.4. Stretching the cylinder. We begin by describing the idea to prove Step 2 in
our program to establishing Theorem 5.1. In this step we show that %(D) = (d),
where recall that D is the operator 8 with domain given in (5.5):

Dom(D) = {u € Iy H} (M, Ey) © H'(N, E) ; Tul,—; = 0}.

We follow Douglas and Wojciechowski [11] and Miller [27, Sec. 7]. Recall that
X 210, e], x Y near its boundary over which all our structures are of product type.
For each a € [0,00), let M, = [e~*,1], x Y. Note that as a — oo, M, “approaches”
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M =10,1], x Y. Let D, be the Dirac operator 8 with domain
Dom(D,) = {u € I H'(M,, Eo)®H*(N,E) ;
H+u|z:e_“ =0, 121u|z:1 = 0}7

where Il is the projection onto the eigenspaces of Jy with positive eigenvalues,

and where
-1 1 -1 n 0 O
n_2[_1 1}®HO+{O HC].

There are two key points that make the analysis of D, substantially simpler than the
analysis of Ay considered previously. The first is that D, is no longer degenerate;
it is a true elliptic operator. Indeed, if s = logz, then the product decomposition
[e7 el x Y in X, consisting of M, and the collar [1,e], x Y of N glued along
x =1, transforms to [—a, 1] X Y and 0 takes the product form

3 = T[d, + do]

over this decomposition. The fact that D, is no longer degenerate implies that it
has discrete spectrum. The second point is that we are keeping the null mode V'
fixed at the boundary of the “compact part” N. Only V= is allowed to “approach”
x = 0 as a — oo. This fact implies, see Proposition 5.8, that the non-zero spectrum
of the operators D, is bounded away from 0 uniformly in a € [0, 00).

The proof that (D) = %(d) proceeds as follows: We show that for any a €
[0, 00), the heat operators e~tD% and Da.e_th are of trace class, and that the trace
til/zTr(Dae’th) is integrable on [0, 00);. Hence, the eta invariant

1 o 2
(5.27) N(Dy) = — [ Y2 Tr(Dge tPe)dt
VT Jo

is defined. We then show that for all a € [0, c0), the eta invariant n(D,) is constant.
Note that Dy is the Dirac operator 0 with the “augmented” APS condition:

Dom(Dy) = {u € H'(N,E) ; (Il + I¢)u|=1 = 0}.

In [27], Miiller proved that (Do) = %(9), the b-eta invariant of the Dirac operator
on the original manifold X. Thus, 7(D,) = %(9) for all a € [0,00). Finally, we
show that

lim 5(Da) = "n(D).
This ends the proof that % (D) = %(d).

We begin by constructing the heat operator for D2. To do so, we first define
appropriate parametrices and follow the ideas used to produce the heat operator
for A2 found around (5.15). Since N has a collar N 22 [1, €], x Y near ON XY over
which all our structures are products, this manifold along with all its geometric
structures can be “doubled” across z = 1 (for this double construction, see [4]).
Let H; be the heat operator for the double of d2.

Changing coordinates to s = log z, the product decomposition [e™%,¢], XY in X
transforms to [—a, 1]s X Y, where [—a,0]s x Y = M, and [0, 1]; x Y is the collar of
N. Also, 0 takes the product form 8 = I'[0s 4+ o] over this decomposition. Let {¢;}
be an orthonormal basis for the eigenspaces of 0y with positive eigenvalues. Then
{T'¢;} is an orthonormal basis for the eigenspaces of dy with negative eigenvalues.
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Let HY be the heat operator for I {T[0s + 09| }2Ilg = Ig {D? + 02}1I5, where
D, =710, over the infinite cylinder [—a, 00)s x Y with domain
{u ey H ([~a,00)s X Y, Eg) ; Miu|e=_q = 0, T {T[0s + oJu}|s=—a = 0}.

Using standard Laplace transform methods [9, pp. 357-8], this heat operator is
Of the fOI'Hl Hg(t7 S, Y, 5/7 y/) = H(t’ s + a,y, sl + a, y/)7 Where H(tv S, Y, 8/7 y/) iS
described in [2, Sec. 2]:

A2t
(& J —(s—s' 2 —(s+s’ 2
H(tasayaslvyl) :Z\/ﬁ[e ( ) /4tie (4 /4t] Saj(y)®<pj(y/)
J
(5.28) e (e (s+5")2/4
. + e (s—s t +e” s+s t
S |

!
—\jetilets )erfc<s+—8 + )\jﬁ) }Fcpj(y) @ Tp;i(y'),

2Vt

where erfc(z) is the complementary error function

erfe(x) = % /OO e*£2d§.

™

Finally, let HS be the heat operator for Ho{T[0s + Do) }2Tly = D2y over the
infinite cylinder [0,00)s x Y with domain

{u € MoH"([0,00)s X Y, Ey) ; Heouls—o =0, He{Tdsu}|—o = 0}.
Then, cf. (5.12), we have
1

5.29 HS =11
( ) 2 0 4t

{e_(s_sl)2/4t + (Id — 2Hc)€_(s+s/)2/4t}ﬂo.

Define
Y1(s) = p1ja1/2(8),  Pals) =1 —1hi(s),
p1(s) = P0,1/4(3)7 pa2(s) =1~ P1/2,3/4(5)7
where the function p, g is defined in (5.13). Each of these functions extend either
by 0 or 1 to define smooth functions on all of X. We define

(5.30) Eq = @1Hy + 02 HS s + @o HS s,

where we understand that s > —a in the Schwartz kernel of H§ and s > 0 in
the Schwartz kernel for HS. With this understanding, F, defines, in a completely
natural way, a map from IIg- L (M,, Eo) ® L*(N, E) into Dom(D,) and its Schwartz
kernel is smooth on the manifold (Xa)g, where Xa is defined as

X,=M,UN, M,=[-a,0,xY, N={peX:;s(p) >0}

As for the manifold X studied previously, the boundary of X, consists of two parts:
the boundary Y coming from s = —a, and another boundary Y LY coming from
s = 0. This latter boundary has a collar similar to that of X found in (5.7). In
terms of the manifold Xa, the domain of D, can be written as

Dom(D,) = {u € H} (X4, E) ;Moular, =0, TMiu|s—_q = 0, ITu|s—g = 0}.

Now,
(0; + DHE, = K,,
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where

Ko = [0, 1]Hitby + [0%, @2 HS o + [0%, o] HS 1ha.
Note that the Schwartz kernel of K, is a smooth function on (X,)? vanishing to
infinite order at ¢ = 0 and at the boundary hypersurfaces of (X'a)2 coming from the

boundary s = —a in X,, and vanishing near the whole left boundary 8X, x X, of
(X4)?. Then the heat operator of D2 is given by

eitDi:Ea'f'Ea*Faa Fa:Z(_

Jj=1

where K; = K, and K; = K;_; * K, with * denoting the convolution of kernels
as in (5.16). Arguments similar to those found in [3, Ch. 2] or [22, p. 269] show
that the Schwartz kernel of E, x F, is a smooth function on (X'a)2 vanishing to
infinite order at ¢ = 0 and at the boundary hypersurfaces of (Xa)2 coming from
the boundary s = —a in X,. Directly from the properties of E, and E, * F,, it
follows that the heat operators e~tP% and Dae_tDi have smooth Schwartz kernels
on ()A(G)Q, and hence, are of trace class for each ¢ > 0. In the following proposition
we collect various properties of the heat operator.

Proposition 5.8. For each a € [0,00), the heat operators e~tP% and Dae_tD?z have
smooth Schwartz kernels, and hence, are of trace class for each t > 0. Moreover, if
n =dim X, then

(1) Ast |0, Tr(e™Pa) ~ S22 (aj(a) tU=m/2;

(2) Ast |0, Tr(DaetP2) ~ 325 bj(a) t9/2;

(3) Ast— oo, Tr(Dae*tDi) — 0 exponentially.

(4) Dq has pure point spectrum. Moreover, the non-zero spectrum of D? has a
uniform positive lower bound for all a € [0,00).

Proof. Statements (1) and (2) are proved using similar arguments found in Lemma
5.3. To see (3) and the first part of (4), observe that since the heat operator e~tDa
is of trace class, standard arguments (see [3, Sec. 2.6]) show that D, has pure point

spectrum. If {\; = A;(a)} denotes the eigenvalues of D,, then

(5.31) Te(Dae tPe) = 3 Nje ™,
X;#0

which immediately gives statement (3). The fact that the non-zero spectrum of D?
has a uniform positive lower bound for all a € [0, 00) follows from the fact that D
has discrete spectrum near 0 by Corollary 5.6 with € set to 0 (see also Remark 5.5),
and then using essentially the same arguments found in the proof of Theorem 6.1
of [11]. As to avoid duplicating their arguments, we omit the details. [l

In particular, the integral (5.27) defining the eta invariant of D, converges. As
an application of this proposition, we relate the eta invariant n(D,) to the original
definition as defined by Atiyah, Patodi, and Singer [2]. Given z € C, Proposition
5.8 implies that the function

1

1n(z,Dy) = 7/ t=D/2 DaeftDi dt
S (CES N (Pac )
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converges for 8z > —1/2. Note that 7(0,D,) = 1n(D,). If {\; = X;(a)} denotes
the eigenvalues of D,, then using (5.31), a short computation shows that

sgn \;
(2, Da) = Z |>\—|zj
x#0 Y

Thus, formally speaking 1n(D,) = n(0,D,) = “ZAﬁéo sgnA;”. Hence, n(D,) is a
measure of the spectral asymmetry of D,. We now prove that n(D,) = %(d).

Lemma 5.9. For all a € [0,00), we have n(Dy) = ().

Proof. We first show that dimker D, is constant, and then, following the proof of
Theorem 4.7, we show that n(D,) is independent of a € [0,00). Our proof is now
finished since Miiller [27] showed that n(Dg) = (9).

Recall that M, = [—a,0]s x Y, that [0,1]s X Y is a collar of N near N, and
that O takes the product form 8 = I'[0, + J¢] over these decompositions. Given u €
Dom(D,), we have u = (u1,us) € g H'(M,, Eq) ® H'(N, E) where Iy u|s—_o = 0
and f[u|,;:0 = 0. Suppose that D,u = 0. Let {¢;} be the eigenvectors of Jy
corresponding to nonzero eigenvalues A; € R of dy. Since D,u = 0, it follows that
up =3 ; aje~*%p;(y) and, on the collar [0,1]3 X Y of N, uy = v, bje %o (y)
where aj,b; € C and v € V = kerdy. Since II}u|s=—q = 0 and f[u|S:0 =0, we
must have a; = 0 and b; = 0 for A; > 0, a; = b; if A; <0, and IIgv = 0. Hence,
u =35 <o aje i%p;(y) and ug = VD5, <0 aje”*i%p,;(y) where v = 0. Thus,
we conclude that all the spaces ker D, are canonically isomorphic to each other for
each a € [0,00). Hence, dimker D, is constant. It is not needed for later, but one
can show that ker Dy = kerd (the L null space of  on the original manifold X),
cf. Theorem 4.13.

To show that (D, ) is constant, we define a transformation that gives each D,
a common domain. For each a € [0, 00), define

ho(s) =s—a+ CL,01/3,1/2(5)7
where pq 3 is defined in (5.13). Observe that v, : [0, 1] — [—a, 1] and
(5.32) Ya(s)=s—a if0<s<1/3, Ya(s)=s if1/2<s<1.

Note that ¢/ (s) = 1+ ap/1/3,1/2(3) > 1 since py/3,1/2(s) is nondecreasing. Thus,
Ya(s) is a diffeomorphism. Let ¢, : [—a,1] — [0, 1] be the inverse of ¢, (s). Now
define

¥, : Dom(D,) — Dom(Dy)
as follows. Let u = (u1,us) € I3 H'(M,, Ey) ® H'(N, E) be in the domain of D,,.
Then we define ¥,u € H'(N, E) by W,u = uy off the collar [0,1]s x Y of N, and
on the collar [0,1]; x Y of N, we define

Mg u1(Ya(s),y) + Moua(s,y) if 0 < 5 < 0, (0);
Mg ua(Ya(s), y) + Houa(s,y) if ¢a(0) < s < 1.

It is easy to verify that ¥,u € Dom(Dy); that is, ¥,u € H'(N, E) and it satisfies
the boundary condition: (IT4+11¢)¥,uls—o = 0. Thus, ¥, transforms the operators
D, into a smooth family of operators D, with constant domain Dom(Dy) via

Dy, =%,D,¥;!:Dom(Dy) — L*(N, E).

Vou(s,y) = {
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In particular, for each a € [0,00), 7(D,) = 17(D,). We now show that n(D,) is
constant. Indeed, the same arguments used in the proofs of Lemmas 4.5 and 4.6
can be used to show that for any ag, a; € [0,00), we have

. |2t o dD, pe
(5.33) 0(Day) = 1(Day) = lim { = /a Tr( e )da

2412 [ 1dD, _,pe
— lim / Tr(—ae*tDa> da .
t—0 \/7_T ao da

Since ker Da = WU, ker D,, the dimension dim ker Da is constant, so the proof of
Proposition 8.39 of [22] can be used to show that the first term on the right of
(5.33) is equal to zero. By (5.32), it follows that D, = I'[ds + o] on the subcollar
[0,1/3]s XY of N near N and that D, = & for s > 1/2. Thus, the pertubation D,
differs from @ only on the subcollar [1/3,1/2],xY of N, and so tr((dDa/da)e’tDZ) is
supported on [1/3,1/2]s x Y of N. Hence, as the small time heat trace asymptotics
are local, the asymptotics of t'/2Tr((dD, /da)e~tP2) as t | 0 are exactly the same
as the corresponding heat trace asymptotics of the following problem on a finite
cylinder. Let D(a) = I'[0s + 0p] have domain

Dom(D(a)) = {u € g H'([—a,1] x Y, Ep) ; M uls—_q =0, T_u|s—; = 0}.

Lesch and Wojciechowski [14], amongst others, have analyzed eta invariants of such
operators on finite cylinders. It is easy to check that dimker D(a) = 0 for all a. If
we define

D(a) = ¥, D(a) ¥;* : Dom(D(0)) — L([0,1]s x Y, Ey),
then 77(D(a)) = n(D(a)) and dimker D(a) = 0. Hence, the same argument used to
prove (5.33), plus the fact that the small time asymptotics of t1/2Tr((dDg /da)e~tPx)
and tY/2Tr((dD(a)/da)etP(®*) are the same, imply that
1(Da,) = n(Da,) = n(D(a1)) = n(D(ao)).
To compute 1(D(a)) explicitly, observe that if U =1, — II_, then
U : Dom(D(a)) — Dom(D(a))

and I'U = —UT'. Hence, UD(a) = —D(a)U, therefore D(a) has symmetric spec-
trum. It follows that n(D(a)) = 0 for all a € [0,00). Thus, n(D,,) = N(Dy,) and
our proof is complete. ([

We now proceed to show that %(d) = limg ..o n(D,) = (D), where D is the

operator & with domain (5.5). To do so, we need to compare the heat operator

e~tP2 to e=tP*. We do this by defining another parametrix for e~*Pe employing

e~tD’ directly. With this in mind, setting s = logx as usual, we define

P1(s) = p—3/4,—1/2(5), Pa(s) =1 — 1 (s),
P1(s) = p-1,0(5), P2(s) =1—po1(s),

where the function p, g is defined in (5.13). We define

(5.34) Vi(s) = dils/a),  i(s) = @1(s+3a/4), @5(s) = Pals — a/2).
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Each of these functions extends either by 0 or 1 to define smooth functions on all of
X. Henceforth, we assume that a > 5 so that for s > —1, we have {(s), p§(s) =1
and ¥5(s), ¢%(s) = 0. We define

— 2 a a a a
E, = ofe P yd + oS HIS,
where HY(t,s,y,s,y') = H(t,s + a,y,s + a,y’) with H(t,s,y,s’,y") defined in
(5.28). Then (9; + D?)E, = K,, where

% —tD? 1 a alrra,),a
Ka = [527@(11]6 P 1/}1 + [527@2]‘[{2 77[]2'
Note that the Schwartz kernel of K, is a smooth function on (X,)? vanishing to

infinite order at ¢ = 0 and at the boundary hypersurfaces of (X'a)2 coming from the
boundary s = —a in X,. The heat operator of D? is given by the usual formula

o
e_th :Ea+Ea*Faa Fa:Z(_l)jK_ﬁ
j=1

where f(l = f(a and f(j = f(j_l * f(a, with * denoting the convolution of kernels
as in (5.16). The estimates in the following lemma provide the last ingredients
necessary to complete Step 2 in our program establishing Theorem 5.1. However,
as the proof of this lemma is quite long, we shall finish up proving that % (D) = % (d)
before presenting the proof of this lemma in the appendix to this section.

Lemma 5.10. Uniformly for p € X, and for a € [5,00), we have
(5.35)  [tr(Dae™"P2)(p) — tr(gf De™P7)(p)| < e etfe™ >/ dg(p), > 0.

Here, ¢; > 0 are independent of a € [5,00). Moreover, for some ¢ > 0 independent
of a € [5,00), we have

5.36 Tr(e tP2) < cat™2,  t>0.
(5.36)
Theorem 5.11. We have (D) = % (9).

Proof. We begin by splitting the eta invariant of D, into two integrals:

1 va . 1 o )
(5.37) n(Da) = 7/ ¢/ Tr(Dae*tDa)dH—/ Y2 Tr(DyetP2) dt.
\/7_T 0 \/E Va

Consider the first integral in this expression. Using the notation of Lemma 5.10,
we can write

1 ve 1/2 tD? 1 ve 1/2 tD?
ﬁ/o t=Y2Te(Dge P dt = ﬁ/o Y / . tr(yyDe™" " ) (p) dt + &(a),
pPEXy
where
R Va
[€(a)] < vol(X,) 1 / =1/2geatg=caa®/t gy < ca’? ec2a’/? gmcaa®’?
0

with ¢ > 0 independent of a > 5. Thus, £(a) — 0 as a — oco. We show that

Va )
(5.38) lim L/ t—1/2/ ey De 7 (p) dt = (D).
0 pEXa

a—o00 ﬁ

Indeed, by Proposition 5.4 and Remark 5.5, we have
tr(De=P%)(p) = 2° f(t) dg,
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where f(t) € C°(X) and vanishes exponentially as ¢ — oco. It follows that the
integral defining (D) = # Joty? Loz tr(De~'P*)(p) dt is an absolutely con-
vergent integral. This proves the limit (5.38).

We now follow Douglas and Wojciechowski [11, p. 159] and Miiller [27, p. 360]
applying the “Cheeger-Gromov estimate” to compute the second integral in (5.37).
First observe that for any u > 0, we have

> 1/2 tu? oo t2 2
/ t_/ﬂe_“dt:2/ e~ dt§2e_‘/a“.
Va pat/4

Let {)\; = A;(a)} denote the non-zero eigenvalues of D,. Then it follows that

’/ t*l/QTr(Dae*tDi)dt’ gZ/ V2 yleNdt <2 e VAN,
Va ~ Jva -

By statement (4) of Proposition 5.8, for some C' > 0 independent of a, we have
Aj(a)? > 2C. Hence,

S VAN < VA ST VANHVE/IN < o~ VAOTy (o~ (Va/DDE),
J J

Since a > 5, Tr(e~(Va/2P2) < Tr(e~Pa). Thus,

‘/ 12 Tr(Dae*tDi)dt’ < e*‘/“_CTr(e*DZ).
va

By the estimate (5.36) in Lemma 5.10, we have Tr(e’Di) < Ca for some C' > 0
independent of a. Hence, the second integral of (5.37) vanishes as a — co. The
proof of Theorem 5.11 is now complete. (]

Appendix: Proof of Lemma 5.10.

To prove the estimates (5.35) and (5.36) we need precise estimates on the Schwartz
kernels of e~*P” and Hy.

Step 1: Estimates for HS. We start with the estimates for HS. In the sequel
we shall need the following facts for heat operators on closed manifolds: Given
a self-adjoint, elliptic, first-order differential operator P acting on sections of a
Hermitian vector bundle F' on a closed compact Riemannian manifold Z, we have

le™t* (p.p)| < et/ 2ectem AR,

(539) 2 / )2
|Pe=tP (p,p)|| < ct—(+1)/2e=¢/dpp))? /¢

bl

where ¢, ¢ > 0, and where d(p,p’) represents the geodesic distance between the
points p,p’ € Z. The norm || || is the norm derived from the Hermitian metric
on F, and the Riemannian density on Z is used to trivialize the density factor
in the Schwartz kernels. The proof of the estimates (5.39) can be found in [11,
Prop. 1.1] or [3, Ch. 2]. They also follow from [22, Ch. 7]. Note that a priori, the
estimates in (5.39) may be of the sort: [l (p,p)|| < Cyt="/2eC2teCadpp)*/t
and | Pe='F (p,p)|| < Cyt=(+D/2¢=Csdpp)*/t . However, choosing the larger of
C1 and (3, we may assume that C; = Cy; then choosing the larger of C7 and Cy,
we may assume that C; = Cy; then choosing the smaller of C3 and C5, we may
assume that C3 = C5. In order to save letters for constants, we implicitly follow
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this practice of saving letters in the sequel. This is the reason constants may be
duplicated in the estimates that follow. We now prove that

HHga(t,p,p')H < bt—n/26—b/d(p,p’)2/t + bt—n/26—b/(s+s'+2a)2/t;

(5'40) ’ N2 ’ ’ 2
a < —(n — P —(n —b'(s+s a
[BHS (&, p, p')|| < b= (HD/2e=b'dpp)? [t | g (mt1)/2, b (55 +20)°

)

where the constants b, > 0 are independent of a, and where p = (s,y) and
p' = (s',y) with s,s' € [~a,00) and y,y’ € Y, and d(p,p')* = (s = ')* +dy (y,y'),
where dy (y,y’) is the geodesic distance between y,y’ € Y. Since HS(t,s,y,5",y') =
HY(t,s+a,y,s’ +a,y’), to prove the estimates (5.40), we may assume that a = 0.
Define
Hp = R [e—(s—s')2/4t — (st Lot L
4t

Note that e *HIIE = =% on the domain I L2(Y, Ey). Thus, the Schwartz
kernel of Hd‘@’mgﬂé- is the same as the Schwartz kernel of e~ and so the esti-
mates (5.39) hold for IT-e~*IIE. It follows that the estimates (5.40) (with a = 0)
hold for Hp. By the formula (5.28) for HY, we can write

HSZHD+R1+R27

where
(s+s/) /4t

\/_ .7 J
and

s s+
- _ Z )\jehg(s—&-s )erfc(Z—\/% + Aﬁ/i) Ty;(y) ® ij(y/).
J
Arguing as in the proof of Proposition 2.21 of [2, Sec. 2], it is straightforward to
prove that R, satisfies the estimates (5 40) without the first term in each inequality
(and with a = 0). Since erfc(z) \/— e ~€*d¢, we have
2 2 d 2 2
0 <erfe(x) < —e™ ™, —erfe(z) = ——=e™ 7,

VT dz LS

and using these facts about erfc(z) together with the equality

exp <_ (s + 5 ey \/—) ) _ ef(s+s’)2/4t efAj(ers’) 67”‘?,
2Vt

arguments similar to those in [2, Sec. 2] can be used to verify that Ry satisfies the

estimates (5.40) without the first term in each inequality (and with a = 0). Thus,

the estimates (5.40) are proved.

Step 2: Estimates for e~tP”. We now prove some estimates on the Schwartz
kernel of e=tP”. Recall that the kernel of e~*P” is a smooth function on X2 away
from z = 0 where it is a b-operator. Also recall that X has a collar [0, €], x Y near
X with & > e off this collar and X is just the disjoint union of the two halves of
X cut along x = 1. We shall prove the following estimates: For p,p’ € X, both of
which are in the region {z > e}, we have

le™2 (p,p)| < @yt 2emtemondle R,

)

(5.41) . ——
IDe™P" (p, p')|| < agt= "+ 2emtemaxdmr)7/t,
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For p,p’ € X, at least one of which is in the region {z < e}, we have

||e—tD2 (p,p/)H < alt—"/Qealte—azd(:ﬂﬁﬂ/)Q/t + alt—l/Qe—az(S(P)—S(P/))2/t;

(5'42) 2 N2 ’\\2
1Dt (p, )| < ant~ (D2 urtemazdpd | g e aalo) =51

where a; > 0 are constants (independent of the variables), s = logz, and d(p, p’)
is the geodesic distance between p and p’ as points in X. Here, s = log x identifies
(—00,1]s x Y with the interior of the collar [0,¢], x Y and the (b-) Riemannian
density dg on X is used to trivialize the density factor in the Schwartz kernels.
Note that dg = dsdgy on the collar of X, where dgy is the Riemannian density on
Y. The inequalities (5.41) and (5.42) are proved by constructing the heat operator
e~t2” in the usual way, cf. the construction of E, in (5.30). We remark that e—tD?
has already been constructed since we constructed e~*4% around (5.15), and e~*P ’
is just the part of e~*4% with § = 0 that maps into Dom(D?); see (5.6) and Remark
5.5. However, to achieve the estimates (5.41) and (5.42), we need to construct the
heat operator again. To this end, define

Y1(8) = p1/a1/2(s),  Pa(s) =1 —1i(s),
p1(s) = Po,1/4(5)a pa(s) =1~ P1/2,3/4(3)7
where the function pa g is defined in (5.13). With s interpreted as the variable on

the collar (—oo, 1]s x Y, each of these functions extends either by 0 or 1 to define
smooth functions on all of X. We define

(5.43) E = o1 Hithy + o Hathy + pa HS 1),
where H; is the heat operator for the double of 32 on the manifold N doubled

across x = 1, Hs is the operator
1

e—(s—s/)2/4te—t6§1—[é7
4t

Hy, =113

and finally, HY is given in (5.29). Here, we understand that s,s’ € R in the
Schwartz kernel of Hy and s,s” € [0,00) in the Schwartz kernel for HS .

The proof of the estimates (5.41) use the following estimates on the Schwartz
kernels of each component of E appearing in (5.43):

[ Hi(t,p,p')|| < byt~ 2ebrteb2der)*/2,
(5.44) | Ho(t, p, p)|| < byt ~"/2ebrte=badwp )/,
1HS (t.p,p)|| < byt~ 1/2e= b2 (5@ =)/t

where b; > 0 and where the variables are described as follows. In the estimate for
Hy, d(p,p’) represents the geodesic distance between the points p, p’ on the double
of N. In the estimates for Hy and HS, p = (s,y) and p’ = (s',y'), where 5,5’ € R
for Hy and s,s’ € [0,00) for HY and y,y’ € Y, and d(p,p’)? = (s —s')? + dy (y,¥),
where dy (y,y’) is the geodesic distance between y,y’ € Y. The estimate for HS
is immediate from its definition (5.29). The estimates on Hjp, a heat operator on
a closed manifold, follow from (5.39), and since Jy is a an operator on a closed
manifold, the estimates on Hs also follow from (5.39). Note that we can apply
(5.39) to Hy because IF e FIIF = ¢~ on the domain IT-L2(Y, Ey), so the
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Schwartz kernel of Hée_tagﬂé is the same as the Schwartz kernel of e~19%. We
have similar estimates for derivatives, which are also straightforward to prove:
[BHL(t,p,p)|| < but™ (T2t
(5.45) |5H,(t, p,p)|| < blt_("+1)/26_b2d(1’4’/)2/t;
I0HE (¢, p, p)|| < byt~ e b2(s(P)=s(@)*/t

Now the operator E in (5.43) maps 11§ L3 (M, Ey) ® L*(N, E) into Dom(D?) in a
canonical way, and (9; + D*)E = K, where

(5.46) K = [02, o1]Hity + [02, @] Hatha + [02, @] HS 1o,

The Schwartz kernel of K is a smooth function on X? vanishing to infinite order at
t = 0 and at the boundary hypersurfaces of X2 coming from the boundary z = 0
in X, and

et —E+ExF, F=Y (-1)F
j=1
where F; = K and F; = F,;_; » K. First of all, by the estimates (5.44) and (5.45)
for Hy, Hy, and HY', it follows that E satisfies estimates of the form (5.41) and
(5.42). To complete the proof of the estimates (5.41) and (5.42), it remains to

estimate E « F'. We first give estimates on F. By the estimates (5.44) and (5.45),
the formula (5.46) for K implies that

(5.47) 1K (8, p,p') || < dyedrteda/tedale@=s@™/t e X

for some constants d; > 0. Here, we used the fact that [02,¢;] has support in a
compact subset of (0,1/4)s x Y while t; has support in s > 1/4, and that [0%, 5]
has support in a compact subset of (1/2,3/4)s x Y while ¢9 has support in s < 1/2.
We claim that

(5.48) IF(t, p, )| < dgetstedalte—da(s()=s( )/t

To see this, we estimate

¢
(K % K)(t,p,p) :/ / K(r,p,q)K(t —r,q,p")dr.
0 JgeX

The following inequality (cf. [4, Lem. 22.12]) will be useful in what follows: For any
real numbers «, 3,, we have
(@=1? , (=)

2
o —
( b) < + , 0<r<t.
t r t—r

(5.49)

Since the support of K(t — r,q,p’) in the variable ¢ is confined to the interval
[0,1]s x Y, the estimate (5.47) on K and the inequality (5.49) (with o = s(p),
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B =s(p'), and v = s(q)) imply that

t
KK*Kxanpvngj"/’[ (el
0 Jq€0,1]s

(d1ed1(tfr) dz/(t ) e—da(s(a)—- s(P)*)/ (1= T))d.‘]( ) dr

(550) <d2 dit 7d2(5 —s( )/t/ / 7d2/r dg/(tfr)dg(q) dr
q€[0,1]s x

< (Vol(Y)dlt) (d16d1t dz/t —d2(s(p)— S(:D) )/t)
Repeating this argument, one can show that
(j—1!

where F; = K x---% K (j convolutions). Since F(t,p,p’) = Zj(—l)ij(t,p,p'), we
have

1F5(t,p, 0| < dyetitem /e (s0) =)/t

HF(t,p,p/)H < dle(dlVOI(Y)erl)te*dz/te*dz(S(p)*S(P')2)/t'

This proves the estimate (5.48). We now estimate E % F. First, since E satisfies
the estimates (5.41) and (5.42) (as Hy, Hy, and HS satisfy the estimates (5.44)
and (5.45)), a straightforward computation using these estimates shows that given

any compact subset K C X away from the boundary z = 0, there are constants
C, = Cl(K:), Cy = CQ(IC) > 0 such that

(5.51) IE(tyu(p)|| < Cre®te= =@l /|y,

for any smooth section u on X with support in K, where || || is the sup-norm. Let
Cy and Cy be chosen for K = [0,1]; x Y. Since 0 < s(q) < 1, by choosing C5 < da
if necessary, for some C3 > 0, we see that

/ =B (@) =) /(1=7) go () < Cye— 3@/ U=1) < Cye=Cas®)?/(1=r).
g€[0,1]s XY - o

Using this estimate together with the estimate (5.47) on K, the estimate (5.51)
(and recalling that the support in the variable ¢ of K (¢t — r,q,p’) is in [0,1]s x Y),
and the estimate (5.49) (with « = s(p), 8 = s(p’), and v = 0), we obtain

H(E* tpp H_/ E’rpv )K(t_TaQ7p/)dlr
qE

< / / o} e’ e—Czs(p)z/t dledl(t—r)x
0 Jq€[0,1]sxY

¢/ (=) = da(s(@) =)/ (t=7) g0 dy

t
(5.52) <y Csdy e(a1+d1>t/ o= C25(p)?/t ,=Cas(p')?/(t=7) y=da/(t=7) 4.
0

< € C3dy telmrtd)tg—dz/t,—Ca(s(p)=s(p"))*/¢
< Oy Cy dye(Har+d)to—da/t,—Ca(s(p)=s(p))*/t
Observe that F'= —K + K * K + K * F' « K. Thus,
ExF=-ExK+ (FEF+«K)xK+ (E+«K)*«FxK.
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Using the estimate (5.52) for E x K, (5.47) for K, and (5.48) for F, and then
following the arguments used in (5.50) for estimating K % K show that F % F
satisfies the estimate

(5.53) I(E * F)(t,p,p)|| < dse®steo/te=dal@=s@ D/t p e X,

We now prove a similar type of estimate for DFE % F. Indeed, since E satisfies
the estimates (5.41) and (5.42) (as Hy, Ho, and HS satisfy the estimates (5.44) and
(5.45)), the same argument used to prove the estimate (5.51) implies that given a
compact subset K C X away from the boundary x = 0, we have

(5.54) IDE(t)ullco < Cy /2 orte=C25®) /1|y

for any smooth section u on X with support in K where the constants are those
given in (5.51). Following the argument of (5.52), and using the estimate (5.54),
the estimate (5.47) on K, and the fact that fot r=12dr = t1/2 < ¢t, give a similar
estimate as in (5.52):

[(DE * K)(t,p.p')| < C1 Gy dyelH ottt /e=Cilstr =)/t
Following the argument used to prove (5.53) then shows that
(555)  [|(DExF)(t,p,p)|| < dretrteds/temdssm=s@/t -y e X

Since E satisfies the estimates (5.41) and (5.42), the estimates (5.53) and (5.55)
imply that e=*P” and De='P” satisfy the estimates (5.41) and (5.42).

Step 3: Finish up the proof of Lemma 5.10. We now prove the main
results (5.35) and (5.36) of this lemma. Let us briefly recall our set-up. We have
written the heat operator of Dg as e~tPa = Ea + E‘a * Fa, where

I a —tD? a afra,a
Eq, = ¢ie Y1 + s Hys,
where ¢, ¢ are defined in (5.34), HS(t, s,y,s",y') = H(t,s + a,y,s + a,y’) with

H(t,s,y,s',y") defined in (5.28), and F,, = Z;’;l(—l)jKj, where K; = K *---% K,
(j convolutions), with

Ko = (9, + DY) E, = [0%,¢i]e~ P ¢ + [07, 0§ Hy 5.

We now more or less repeat the arguments used to prove the estimates on e~*" * %o
prove the estimates (5.35) and (5.36).

We first prove the estimate (5.36). In view of the estimates (5.40) for HS, and
(5.41) and (5.42) for e=*P”, we have

|Ea(t, p,p)|| < af t7"/2e?,

for some a}j > 0 independent of a. Hence, as vol(X,) < a)a for some ab > 0, we
have

(5.56) Tr(E,) < a) vol(X )t 2e™! < a) alyat™"/?e™!.

We now analyze Tr(Ea * Fa). To do so, we first estimate K,. By the definitions of
2 (s) and ¢¢(s) in (5.34), for some € > 0, [0%, p%] has support in a compact subset
of (=3a/4—1,—3a/4)s x Y while 1)¢(s) has support in s > (—3/4+¢)a, and [0?, p3]
has support in a compact subset of (—a/2, —a/2+ 1), x Y while 1§ has support in
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< (=1/2 — €)a. Thus, by the estimates (5.40) for HY, and (5.41) and (5.42) for

2
e " we have

(5.57) Kot p,p)|| < djefite= e/t p e X,

for some constants d; > 0. Using this estimate, we estimate F, as follows. First,
we have

t
(Ko x Ko)(t,p,p') = / . Ko(r,p,q)Kq(t —r,q,p")dr.
qe

Since the support of I~(a(t — r,q,p') in the variable ¢ is confined to the interval
I, xY, where I, = [-3/4a —1,—-3/4a] U[—a/2,—a/2 + 1] by (5.57), it follows that

t
H(f(a % f(a)(t,p,p/)H < ( ds dgy)/ (dlled’lre—d/zaz’/r) (dlled,l(t_r)e_d;QZ/(t_r))d’l“
0

I, xY
t
= 2vol(Y) (d})2ehit . ¢=d20®/t o=daa®/t / dr
0
< (2vol(Y)dit) (dje dit o —dy /t)
Second, we repeat this argument, obtaining the inequality

i il
1555 (¢, p, P < @vol(Y)dr )" d,etite a1,

(-1
where f(» =K, %% K, (j convolutions). Hence,
||F t D P | _ || Z _]K t DD )” < d/1e(2d'1vol(Y)+d'1)156—41’2,12/157

which proves the estimate (5.48). We now estimate E,x F,. First, the estimates
(5.40) for HS, and (5.41) and (5.42) for e~*P* imply that for some C' > 0, we have

1Ea(t)ulloo < Ce®*[lullo,

for any smooth section u on X,, where || ||o is the sup-norm. This estimate, plus
the estimate (5.57) on K,, imply that

t
||(Ea % Ka)(t,pyp,)” < / C e™” dlledl(t—T‘)e—dQ(zz/(t—T) dr
0
< Ctdlle(a1+d’1)tefd’2a2/t
< Cdlle(1+al+d,1)t€7d/2a2/t.

Second, the same arguments used to prove the estimate (5.53) for E % F' can be
used in this situation to prove that

H(Ea * Fa)(tapvpl)” < dgedgte_déaz/t, p,p' S Xa-
As vol(Xa) < d} a, it follows that
Te(E, + F,) < dgvol(Xa)ed'ste*déaz/t <a,d, aedite—dea®/t

This estimate together with (5.56), imply that for some ¢ > 0, Tr(e‘th) <
cat=/2¢t for all t > 0. However, as Tr(e *Pa) < Tr(e=P2) for t > 1, it fol-
lows that Tr(e~*P4) < ce®at"/2. This proves the trace estimate (5.36).
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It remains to prove the estimate (5.35). To see this, observe that DgyetPi =

DEa + DEa * Fa. Now

n —tD? 1 a a a,a al,—tD? ja a a,a
(5.58)  DaEo = @i De " ¢ + o§OHS ) + [0, 05 le™ " i + [0, p§] Hs s,
so on the diagonal, we have

~ 2

DoEo(t,p,p) = ¥i(p) De™*" (p,p) + 5 (p) OH3 (t, p, ).

Thus,
—tD? a —tD? a a n n
Dae tDa (p7p) - ¢1 (p) De b (p7p) = ¢2 (p) 51{2 (tap7p) + (DaEa * Fa)(tapap)

We now compute tr(0HS(t,p,p)). To do so, we use the explicit formula (5.28) for
H(t,s,y,5",y’) to obtain

2

e Ajt S _ .2 _g?
@) 5.y50) =2 e M+ X (1= Do) @ 0 (0)

J
Aft s —s2 /4t —s2 /4t
+ Z\/R[Ze +)‘j(176 )]@j(y)(@F@j(y)

J

Since I'* = —T', we have (T'p; (), ¢;(y)) = —(v;(y),Te;(y)). Hence, the pointwise
trace tr(0H (t,p,p)) = 0 for all p and therefore,

tr(Dae™ P4 (p, p)) — tr(¥§ (p) De 2" (p, p)) = tr((Du By * Fu)(t,p, p)).

In view of the estimate (5.57) for K,(t,p,p’), and the formula (5.58) for D, E,,
arguments and computations very similar to those used to prove the estimate (5.55)
for DE % F' can be used to prove that

~ ~ ’ ’ 2 A
[(DaEo * E,)(t,p,p)|| < dhetrte e/t p o € X,.

This estimate completes the proof of (5.35).

6. INDEX THEORY

6.1. A general index formula. Let X be a compact manifold with corners of
arbitrary codimension. The following lemma is the fundamental observation used
in all heat operator proofs of the index theorem.

Lemma 6.1. If P € Diff;(X,E) + ¥, (X, E) has a nonnegative scalar princi-
pal symbol, is self-adjoint and Fredholm, then lim; .., "Tr(e=*") = dimker P. In
particular, if A € Diffy (X, E) + ¥, (X, E) is Fredholm, then

(6.1) indA = tlim ["Tr(e ' 4) — PTr(e=t447) 1.
Proof. By Proposition C.9 of the appendix, we can write e 7*F = I + R(t), where

11 is the orthogonal projection onto the null space of P and where, for some ¢ > 0,
R(t) € ¥, °°(X, E) is exponentially decreasing as ¢t — co. It follows that

tlim Tr(e™*") = dimker P + tlim Tr(R(t)) = dim ker P.

The formula (6.1) follows from the first statement plus the equalities: ker A*A =
ker A and ker AA* = ker A*. d
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Let A € Diff,(X, E*, E~) + ¥, (X, E*, E~) be Fredholm. Consider the func-
tion
h(t) = "Tr(e™"474) = Mr(e=t447),
By Lemma 6.1, ind A = lim;_ » h(¢), hence by the Fundamental Theorem of Cal-
culus, for all ¢ > 0,

(6.2) ind A = h(t) + /OO h'(s)ds.

We now compute h'(s). Observe that A*Ae=t4™4 = A*e~t44" A 5o
B (s) ="tTr(—A*Ae 34" A 4 AA*e™5AAT)
— UTy( AATeSAAT  gremsAAT 4
= "Tr([A, ATe™*447)).
According to the trace-defect formula in Theorem 3.7, we have

(6.3) h'(s) =
1

| Tr(DENY (A)(7) Nar(A*) (1) Nag(e*447)(r) ) dr,
(2m)F Jgr

MeMy(X),k>1
where DX = D, ---D,, with D,, = i7'9,,. By Proposition C.9, e~*44" = II, +
R(t), where R(t) — 0 exponentially in the space ¥, °*(X, E~) for some £ > 0.
Hence, for any M € My(X), k € N, Ny (e *447) (1) = Np(R(t))(7) is rapidly
decreasing in W, °°(M,E~) as t — oo and as |7| — oo. Hence, we can interchange
integrals in the following computation: if M € My(X), k € N, then

/t ) [ PTH(DENw(A)(7) N (A7) N (e"447) () s
= [ DN Nar(4°)) N4 ) st
= / / " I(DEN (4)(7) Nas (A)() 0. Nag(e 44 ) (7)) ds dr
= — [ MTe(DEN(A)(7) Nar(A) (7))~ [Nag (e ) (1) 35 ) dr

s=t
Rk

=/, "Te( DEN (A)(r) Nag(A)(7) " Nag(e=447) (7)) dr.

Thus, equations (6.2) and (6.3) imply that for all ¢ > 0,

(6.4) ind A = h(t) — %%A(t),

whete 'a(t) = S ysear, x01 r (t) with

(63) aa(0) = oy [ IR DENA(A)() Mo (47)(7) Nagle*4°) 1)) s
= e L, THDANA (A)(r) Nar (A7) Nas(e™ 44 ) (7))

Definition 6.2. The b-eta invariant of A, "4, is the constant term in the expansion
of ta(t) ast | 0.
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Remark 6.3. In [16, Lem. 7.4], it is shown that each %/(t) has an asymptotic
expansion in powers of ¢t as t | 0.

Hence, taking the constant term in the expansion of the right hand side of
equation (6.4) as ¢t | 0 and using Lemmas C.10 and 4.1 give the following theorem.

Theorem 6.4. If A= D+ B € Diff, (X, E*,E7)+ ¥, (X, E*, E~) is Fredholm,
then
1
ind A = AS(D) — 5%,
where AS(D) is the constant term in the expansion, as t | 0, of Tr(e *P"P) —
"Tr(e=tPP7), and where "y is the b-eta invariant of A.

By Lemma C.10, if n is odd, then *Tr(e=*P"P) and "Tr(e~*PP") have no constant
terms in their expansions as ¢t | 0. Thus, we get the following corollary.

Corollary 6.5. If A= D+ B € Diffy(X, Et*, E~) + ¥, (X, E*, E~) is Fredholm
and X is odd dimensional, then

1
ind A = — =4
in 5 14

where "4 is the b-eta invariant of A.

Let 0 be a Dirac operator associated to an exact b-metric on an even dimensional
compact manifold with corners X of arbitrary codimension and fixed by a Zs-graded
Clifford module E (see Section 1.1).

Lemma 6.6. Assume that 8+ € Diffy (X, Et, E7) is Fredholm. Then, g+ (t) =
ZHeMl(X) " (t), where for each H € My(X),

e (t) = \/1_/ sT1/2 lTr(5H6758§1 )ds.
T Jt

Proof. For any M € My(X), k € N, the normal operator N/ (07)(7) is a first
degree polynomial in 7. Thus, DENy (0%)(7) = 0 if & > 2 and so g+ (t) =
D HeM (X) e (t). Given H € My(X), for 7 € R, Ny (0%)(7) = Y oy (i7 +0p) and
Np(07)(r) = =% (—ir + 0pg)on, which implies that

DNy (3)(7) N (87)(r) Nut (7227 )(r) = opr (—ir + O )e ™" e~ Onayy.

Since [, Te=* dr =0 and Iz e dr = 571/2 Iz e~ dr = s7/2 /7, we obtain

() = /t OO/R "Tr( D, Ny () (1) Ny (37) (1) N (e %797 ) (7)) drds

1
™
1 /OO ~1/2 502
= — 5 "Tr(dye %7 ) ds.
VT Ji
]

By [22, Th. 8.36], it follows that s~/2UTr(dye~%9% ) is integrable near s = 0.
Hence, limy|o g+ (t) = g+ (0) = D HeM (X) g (0) exists. Moreover, by [22, Ch.
8], we have AS(3") = [, AS, where AS is the Atiyah-Singer density of E. Thus,
for the case of Dirac operators, Theorem 6.4 takes the usual form.
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Theorem 6.7. If 0" is Fredholm, then

1
md%ﬁ:‘fAS—5 > na,
X

HeM,(X)
where AS is the Atiyah-Singer density of E, and where
1 oo
(66) b?’]H = ﬁ /(; t_1/2 bI‘I'(6H€_t6§{ )dt

The following result has essentially the same proof as the corresponding result
on a manifold with boundary [22, Ch. 9.1]. The details will be left to the reader.

Theorem 6.8. Suppose that kerdp; = 0 for each M € M (X) with k > 2. Then
for some § > 0, for all multi-indices o with 0 < |a| < §, the operator

oF 1 P HL(X, BY) — O LE(X, E)
is Fredholm (see Theorem 2.1), and if we denote its index by ind,0F, then

1
ind, 0" = 7 AS — 3 Z (*ner + sgnag - dimker dg),
X HeM,; (X)

where AS is the Atiyah-Singer density of E, and where g is given in (6.6).

6.2. Non-product type perturbed Dirac operators. Let 0 be a Dirac operator
associated to an exact b-metric on an even dimensional compact manifold with
corners X of arbitrary codimension and fixed by a Zs-graded Clifford module E.
We now consider the index of Dirac operators with compatible perturbations as
defined in Definition 2.3. We start with the following lemma.

Lemma 6.9. Let H be a hypersurface of X and let A(r,7) = 0y + T(r, ), where
T(r,7) is continuous in (r,7) € [0,1] x R and bounded as a function with values in
U, °(H, Ey). Assume that T(r,T) is self-adjoint and A(r,T) is invertible for all
(r,7) € 0,1] x R. Let B(r,T) be either

(1) equal to A(r,T), or

(2) be continuous and bounded in (r,7) € [0,1] x R with values in ¥, *°(H, Ep).
Then for all (r,7) € [0,1] x R, the integral

n(r,t) :/lTr(B(r, T)e_”ze_tA(T’T)z)dT
R

exists as an absolutely convergent integral and n(r,t) decays exponentially ast — oo
and is O(t=1/2) as t — 0, both uniformly in r € [0,1].

Proof. Tt suffices to prove that each of the following integrals

m(r,t) = lTr(B(r,T)e*”Qe*tA(T’T)Q) dr,
[T]>1

na(r,t) = lTr(B(r, 7')67”267“4(“7)2) dr
Ir|<1
exist and have the required properties. Consider first the analysis of n;. For this, we
need some bounds on the heat operator e=*™" ¢ *4("™*  Since A(r,7) =0g+T(r,T)
is self-adjoint and invertible, the operator (3g +T(r, 7))? is positive, so we can write

(6.7) e—tAtr)? _ / (@ +7(r7)” = X)
T

T om



FREDHOLM PERTURBATIONS OF DIRAC OPERATORS 67

where Y is any counter-clockwise contour in the complex plane around the positive
real axis. Since T'(r, 7) is continuous and bounded in (r,7) € [0,1] xR as a function
with values in ¥, *°(H, Ex), the explicit resolvent construction in [17] shows that
we can write

(O +T(r,7))* =N~ = Q) + R(r,7,\),

where Q()\) is a pseudodifferential operator of order —2 living in an appropriate
parameter-dependent pseudodifferential calculi, and where R(r, 7, A) is continuous
and bounded in (r,7) € [0,1] X R as a function with values in ¥, *°(H, Ey) and
decays in A to order —1 uniformly as |A| — oo in sectors bounded away from the
positive real axis. In particular, the contour integral (6.7) implies that for any
€ > 0, the heat operator e~tAT)? is of the form et x a function that is continuous
and bounded in (r,7) € [0,1] X R as a function with values in ¥, *°(H, E). Now
back to our analysis of 7;. Observe that

2 [ 2 e
/ e dr = —/ e dr < —O/ re T dr = geft,
rI>1 N NN Vi

for some constant C. Hence, for any 0 < € < 1, for some constant C’ we have

C/
"Tr(B(r, T)e_”2e_t’4("7)2)d7 < Zelemt,

IT|=1

The function on the right decays exponentially as t — oo and is O(t‘l/Q) ast |0,
both uniformly in r € [0, 1].
We now analyze 1s:

(6.8) na2(r,t) = "Tr(B(r, 7)67”264‘4(’”’7)2) dr.
I7]<1

Since A(r,7) is by assumption continuous in (r,7) € [0,1] x R and invertible, it
follows that e ~*A("7)" vanishes exponentially as t — oo uniformly for (r,7) € [0, 1] x
[-1,1]. In particular, the integral (6.8) defining 7s(r,t) is absolutely convergent
for ¢ > 1 and vanishes exponentially as ¢t — oo uniformly for r € [0,1]. Thus, it
remains to analyze the integral (6.8) for ¢ over the bounded interval [0, 1]. If B(r, 7)
is continuous and bounded in (r,7) € [0,1] x [=1,1] as a function with values in
U,"*°(H,Eg), then the integrand of ny(r,t) involves the trace of an operator of
order —oo; this trace is certainly a continuous function of (r,7) € [0,1] x [-1,1]
and t € [0, 1]. Suppose now that B(r,7) = A(r,7) = 0y + T (r, 7). Since A(r,7)? =
0%, + R(r,7) where R(r,7) is continuous in (r,7) € [0,1] x [—1,1] with values in
U,"*°(H, Ex), according to Lemma 4.1, for some S(r,7,t) that is continuous in
(r,7,t) € [0,1] x [=1,1] x [0,00) with values in ¥, °°(H, Ef), we can write

e~ tAMT? = =10y 4 tS(r,7,t).
Hence,
"Tr(A(r, )e ATy = (@ e P0H) + tS(r ¢, 1),

where S(r, 7, ) is continuous in (r, 7,t) € [0,1] x[—1,1]x[0, 00). Since "Tr(dze~1%)
= O(v/t) near t = 0 [22, Th. 8.36], it follows that the integral (6.8) decays expo-
nentially as t — oo and is O(t~'/2) as t | 0, both uniformly in r € [0, 1]. Our proof
is now complete. ([l
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Proposition 6.10. Let R € ¥, *(X,E*,E™) be a Clifford compatible perturba-
tion. In other words, for each H € My(X), we can write Ny(R) = tog Ry (1),
where Ry (1) € ¥, °°(H, Eg) is self-adjoint and even in T € R. Assume that 3" +R
is Fredholm. Then the index of the operator 3+ 4+ R is given by

1
(6.9) nd(3* + R) = ’f AS—L Y a(R)
X HeM, (X)
where AS is the Atiyah-Singer density of E and
1 oo
(6.10) i (R) = = / / "Tr(LBy e~ '™ ~Bir ) drdt,
T Jo Jr

where L = 26120, —t='/%79, and By = t'/?>(@y + Ry (7).

Proof. If A=9" + R, then by Theorem 6.4, ind(d" + R) = AS(0") — 1%4. As in
Theorem 6.7, we have AS(07) = [, AS. By definition, %4 is the constant term as
t10of a(t) = EMeMk( X) k1 Yoar(t; R), where

ar( 1) / ka (DENw(A)(7) Nas(A%)(7) Noy (e7*447)(7) ) drrds.

Thus, our proof is complete once we show that %y (t; R) = 0 for each M € M (X)
with & > 2 and that limy|o g (¢; R) is given in (6.10).

We first show that %y (t; R) = 0 for each M € My(X) with k > 2. Let M €
M, (X) with k& > 2. Since (cf. (1.5))
(6.11) Ny (A)(7) = o171 + -+ + 0T + B + Ny (R)(7),
and since By and Njs(R)(7) both anti-commute with the Clifford action (cf. (2.7)),
we obtain

Nar(AA) (1) = 1f + -+ 7 + (Bar + Ny (R)(7))(Bas + N (R)(7))".

Thus, Nps(e=5447) (1) = e~ sNVM(AA)() 5 an even function in each of the variables
7; € R and D¥Ny(A)(7) = D, -+ D, Ny (R)(7) is an odd function in each of the
variables 7;. It follows that the function D* Ny (A)(7)Nas(A*)(7) Nag(e *447)(7)
is odd in at least one of the variables 7;. Since the integral of an odd function over
R is zero, we have %y (t; R) = 0 for M € M, (X) with k > 2.

Hence, "4 (t) = D HeM (X) e (t; R). By (6.5), " (t; R) = 2 [~ n(s,7) drds,
where

77(8’7—) = bTr( DTNH(A>(T) NH(A*)(T) NH(e_SAA*)(7-> )
For 7 € R, we have Ny(A)(1) = Yopu(it + 0y + Ru(r)) and Ny(A*)(1) =
—1 (=it 4+ 0y + Ru(7))on. Hence, DNy (A)(7) = tou(l + D-Ry(7)) and
Nu(AA®)(7) = o (7% + (On + Ru(7))*)on, thus
n(s,7) = "Tr((1 + Dy Ry (7)) (—i7 + O + RH(T))e—ST2e—s(E§H+RH(.,_))2)
= "Tr((On + RH(T))e—sT2e—S(5H+RH(T))2)
= "Te(rd, Ry (r)e ™" e "0t Ry 4 ((s,7),

where ((s,7) is odd in 7. Since the integral of an odd function over R is zero and
since LBy = 0p + Ry (1) — 70, Ry (1), we have

/ / s,7) drds = —/tOOURbTr(LBHeSTZeB?r)dr}ds.
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The previous lemma implies that the integral in the brackets on the right is an
absolutely convergent integral and decays exponentially as s — oo and is (’)(s‘l/ 2)
as s — 0. In particular, %y (¢; R) is continuous at ¢ = 0, which completes the proof
of the proposition. (I

Assume now that X is of codimension two. Then for perturbations considered
in Section 2.3, the previous proposition simplifies as follows.

Theorem 6.11. On a codimension two manifold with corners, suppose that the
index of the positive parts of each induced Dirac operator on the codimension two
faces is zero. Let R € W, °°(X,ET,E™) be a Clifford compatible perturbation such
that for each M € Ms(X), Nar(R)(7) has the form given in (2.12). This holds, for
example, for the operator in Proposition 2.8. If 8" + R is Fredholm, then

(6.12) ind(@" + R) = lf AS — 1 Z "(©u + Ru),
x 2
HeM(X)

where AS is the Atiyah-Singer density of E, Oy is the induced Dirac operator on
H, Ry = Ry (0) with Ry (1) = iogy Ny (R)(7), and where (0 + Ry) is the b-eta
nvariant

bn(5H + RH) = %/ t_1/2 lTr( (8H + RH)e—t(5H+RH)2 )dt
T Jo

introduced in (4.1).

Proof. The formula (6.12) follows from Proposition 6.10 but with % (3 + Rp)

replaced with %y (R) in (6.10). Thus, we just need to prove that %z (R) = % (0g +

RH) Fixing H € M,(X), for r € [0,1], we define By (r) = t*/2(g + Ry (r7)) and
= L [77n(t,r)dt, where omitting the variable r in By (r),

n(t,r) = / "Tr(LBy et~ B )dr
R

with L = 2t1/20,—t=/270, (thus, LBy = 0g+Rpg (r7)—(70; Ry )(r7)). By Lemma

6.9, g (r) is continuous as a function of r € [0, 1]. Moreover, %g (1) = g (R) and
since (10;Rg)(0) =0 and [ e -t dr = /7 /t, we have g (0) = b77(5 + Ry). We
shall prove that % (r) is in fact constant, which implies that %y (R) = g (1
g (0) =0y + RH) and completes our proof.

The same arguments, which are based on Duhamel’s principle, used in the proof
of Proposition 13 of [26] show that

jn(t r) /lTr tl/zB et —Bir )dT}
,
+ / / et "Tr([By e~ (=wWBh LBy - BHe_“B?{] ) dudt
R Jo

t
+ / / eIy ([By - By e~ WBE LByeBh)) dudr,

where By = %BH. Analyzing the b-traces as in the proofs of Lemmas 4.5 and 4.6
one can show that the second and third terms on the right vanish. Thus,

d
o n(t,r) /lTr (262 By 7B%1)d7'},
r
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and so given a,e > 0, we have
“d i
(6.13) /%n(t,r)dt = /R”I‘r@arTaTRH(rT) emam —a@ut+Ru(rr)* ) gr
€

— / bI‘r(?ErTBTRH (r1) e~ —e@u+Ru(rr))? )dr.
R

Lemma 6.9 shows that each term on the right vanishes as a — oo and as € | 0,

respectively. Taking € | 0 and a — oo in (6.13) then gives d—dr e (r) = 0. O

6.3. Dirac operators of product type. We now present a generalization of The-
orem 0.1 found in the introduction. Let X be an even dimensional compact manifold
with corners of codimension two equipped with an exact b-metric. Assume that 0
is of product type near the corners in the sense that given M € My (X), for some
product decomposition X 2 1[0,1),, x [0,1),, X M near M, we can write

0 = 0121 Dy, + 0222 D, + By,
where, cf. (1.5), By € Diffy (M, E|y) is self-adjoint and is odd with respect to the

Zy-grading of E, g; = U(dmijj)| ., and where z; represents an appropriate boundary
defining function in the definition of the exact b-metric (1.1).

We assume that ind 9], = 0 for each M € M(X). For each M € My(X), let
Ty 2 kerdy; — kerdys be a unitary self-adjoint isomorphism that is odd with
respect to the Zs-grading on Fj;. Recall that the hypersurfaces are in a fixed order
{H;}. For each j, let V; = @ ker 0, where 0, is the induced Dirac operator on
H; N Hy, (provided this intersection is not empty), see Section 1.2 for a discussion
of induced operators. As defined in Section 1.2, the Zj-grading on ker d;;, is given
by wjr = sgn(k — j) ioxo;. Then V; = Vj+ ®V, is Zy-graded with grading defined
by w; = @, sgn(k — j)wjr. We define an operator

TV, —V,

by T; = [Tjx|, where T}, : ker 8, — ker 9, is given by

[T, if j < k;
T Niwie S T, iG> K,

where the sums are over those M € My(X) with M C Mj,. Then T; is odd
with respect to the Zg-grading of Vj, and so T} induces maps Tji : Vji — Vf.
The reason we defined T} and w; as we did stems from the discrepancies found
between equations (1.8) and (1.9). Let C; : V; — V; be the unitary isomorphism
(4.15) corresponding to the scattering Lagrangian for 0y, let C' = @©;C}, and let
T = &;T;. Then C,T € L(V), where V = &;V] is the vector space with Zy-grading
defined by w = ®;w;. Finally, let Ay and Ac be the +1 eigenspaces of the matrices
T and C, respectively.

Theorem 6.12. Let R € ¥, *°(X,E",E™) be a Clifford compatible perturbation
constructed from the Tyr’s as shown in Proposition 2.8. Then with the notation
described above, we have

ind(@" + R) = I/

X

T;

AS*% Z {br](ﬁH)erimkerﬁH}

HeM,(X)

1
- 5{ dim(Ar N A¢g) +m(Ar, Ac)}7

(6.14)
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where m(Ar, A¢) is defined in (4.20).
Proof. By Theorem 6.11, we have

1
ind(8* + R) = %{ AS =33 "n(@; + Ry),
J

where R; = R;(0) with R;(7) = iog,Nu,(R)(7). Hence, (6.14) is proved once we
show that for each j,

(6.15) b’l](éj + R]) = bn(5j) + dim ker 6]' + dim(ATj N ch) + m(ATj , ch).

To see this, assume for simplicity that H; intersects only one Hj € M;(X); the
general case is no harder, only notationally cumbersome. In this case, H; is a
manifold with connected boundary given by 0H; = H; N Hy. From the proof of
Proposition 2.8, we can write R; = S; 4+ K;, where S; and K; have the following
properties. By the discussion of induced Dirac operators in Section 1.2, see espe-
cially (1.8) and (1.9), and by the formulas (2.11) and (2.12), it follows that on a
product decomposition near 0H;, we can write

6j —‘rSj = F[x&z +60] +Sj,
where I' = iw;, S; = —I'Q*T}; with Q an operator of the form described in (2.9),
and where 0y is a Dirac operator on 0H; (which is given by 0y = 0, if j < k; or
0o = iwjx Ok if j > k). The operator K; € W~°?(H;, Ey,) was chosen such that
if Rj(r) = S;+K;+r(Il; - K;) for r € [0,1], where TI; is the orthogonal projection
onto the null space of d; + S;, then 9; + R;(r) is invertible for all r € [0, 1]. By the
variation formula in Theorem 4.7, we have

(6.16) '@, + R;) = "n(®; + B;(r)lr—o = '@, + Ry (r)l,—1 = "0(@; + 5, +11,)

since the corner unitary isomorphisms are constant in r. Now let A(r) = 9; +5; +
rII; for r € [0,1]. Then by Lemma 4.6, it follows that

b b 2t1/2 ot ; tA(r)?
n(0; +S; +11;) — (0, + 5;) = tlirrolo{ Nz /0 bTI‘(A(’/‘)(’,7 (r) )dr}.
1
/ lTr(Hje_tA(r)Q)dr}.
0

1. 2t1/2
= lim
t—o0 ﬁ

(Since) Hje’tA(’“)2 = e*tTQHj and lim;_,o (2t1/2//T) fol et dr = 1, in view of
6.16), we obtain

bn(éj + R;) — bn(5j + 5;) = dimker(9; + S;).

Now (6.15) follows from the fact that ’(8,;+5;) = % (d;)+m(Ar;, Ac,) by Theorem
5.1 and that dimker(d; 4 S;) = dimker 9; + dim(Ar, N A¢;) by Theorem 4.13. O

For weighted Sobolev spaces, we have the following theorem involving the oper-
ator constructed in Lemma 2.7.

Theorem 6.13. Let S € U, *(X,E*",E~) be defined from the Tas'’s near the
corners as shown in Lemma 2.7 using the same product decompositions near the
corners (see (2.10) and (2.11)) that make O of product type. Then for some § > 0,
for all multi-indices « with 0 < |a| < ¢, the operator

0 + 5 P HL(X, BY) — p"LA(X,E7)
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is Fredholm (see Theorem 2.1 and Lemma 2.7), and if we denote its index by
ind, (0" + 9), then

. 1 1
ind, (0% + 9) :%{ AS — 5 an(5j) - §m(AT,AC)
(6.17) ) !
-3 Z sgn aj{ dimker 9; + dim(Ag, N ch)},
J

where m(Ar, A¢) is defined in (4.20).

Proof. The proof of this result is similar to that of Theorem 6.12, but following the
proof of [22, Ch. 9.1]. |

The following interpretation of the “corner term” m(Ar, A¢) is taken from [13],
cf. also [18]. This interpretation reflects the geometry and Clifford structure of the
manifold quite elegantly. We define a graph G and a Dirac operator dg on the graph
such that the eta invariant of dg is the corner term.

The graph G is defined as follows. Each boundary hypersurface H; of X repre-
sents a vertex v; of the graph G. Each intersection M}, = H; N H}, represents an
edge e; of G (of course, provided that M, is not empty). Although M, = My;
as sets, the edges e;; and ey; are to be considered distinct edges joining v; and
vi. We do this because the Clifford structures and Dirac operators on the corners
depend on the ordering of the boundary hypersurfaces, see (1.8) and (1.9). To put
a manifold structure on this graph, we identify e;; with the interval [—1, 1], where
the vertex v; corresponds to s = —1 and the vertex v; to s = +1. We consider
V = ®;V; = ®jrkerdj, as a “vector bundle” over G with fiber ker d;, over the
edge ejr. Thus, a section of this vector bundle consists of a collection of smooth
sections @Sk, where s;i @ ej, = [—1,1] — ker 0.

We define a Dirac operator Jg acting on sections of G by 0g = @®,,I'jr d/ds,
where if w;; is the induced Z, grading on En, s then we define I';p = iw;p if
j < k, or I'jy = —iw;p if 7 > k. The reason why we define I';; in this way
stems from the discrepancies found between (1.8) and (1.9). We now describe the
domain of dg. Let @;rs;r be a section of V. Observe that given a vertex v; of
G, we have @s;x(v;) € V;. Similarly, ©;s;x(vx) € Vi. Let Az, C Vj denote the
Lagrangian subspace associated to T}, and let Ac;, C V; denote the Lagrangian
subspace associated to C';. Then the domain of g consists of those sections @ s,
such that ©ps;x(vj) € Az, and @;s;x(vk) € Ag,. The eta invariant of Jg can be
interpreted exactly as the corner term, see for instance, [18] or [13], cf. also [7, Sec.
6] or [14] for related results:

1(8g) = m(Ar, Ac).
Thus, the index formula (6.14) can be written in the form

1
ind(@" + R) = 7 AS—< ) {%(6,,) + dim ker 6H}
X 2
HeM,(X)

- %{ dim(Ar N Ac) + n(ag)}.

Assume now that the only two boundary hypersurfaces of X that intersect are H;
and Hy and let M = HyNH,, which is a disjoint union of codimension two boundary
faces of X. Let C; and C5 be the scattering matrices for 0y, and dp, respectively,
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and let A¢,, Ac, C ker 0y be the +1 eigenspaces of C and Cy respectively. Recall
that I' = iw with w = i0907 the induced Zs-grading on E)ys. Here, 0; = o(dx; /2;)|m
where x; is the boundary defining function for H;. Also recall that m is defined on
pairs (A7, Ag) of Lagrangian subspaces of ker d,s by (see (4.20))

1 .
(6.18) m(Ap, Ag) = - > i,

e'?espec(—T~ST)
oc(—m,m)

where T~ and ST are the restrictions of T and S to the —1 and +1 eigenspaces of
w, respectively. Two straightforward properties that m(Ar, Ag) satisfies are

(6.19) m(AT, As) = —m(As, AT)7 m(AT, As) = —’rh(AT7 As),

where m(Ar, Ag) is the function (6.18), but using the opposite Zy-grading given by
—w. In other words, the T~ and S* in (6.18) are defined as the restrictions of T
and S to the —1 and +1 eigenspaces of @ = —w. Theorem 0.1 in the introduction
is a consequence of the following result.

Corollary 6.14. Let R € ¥, *°(X,E",E™) be any compatible perturbation con-
structed as shown in Proposition 2.8 from a unitary self-adjoint isomorphism T :
kerdy; — kerdys that is odd with respect to the Zs grading w on Ey and is
diagonal with respect to the decomposition ker Oy = @ penr,(x) kerOp. Then

1
(6.20) ind(0" + R) = 7 AS— - g {bn(5H) + dim ker 8H}
x 2
HeM,(X)

1
- 5{ dim(Ar N Ag,) + dim(Arr N Ae,) + m(Ar, Ac,) + m(Ac,, AFT)}.

Proof. The index of 8% + R is given in (6.14). In this specific case of only two
hypersurfaces intersecting, Vi = kerdy = Vo and w @ @ is the Zs-grading on
V = Vi1 ® V. Moreover, by definition of 7}, we have 77 = T and T = I'T". Hence,
the identities (6.19) imply that twice the second line of (6.14) is given by

dil’n(AT1 N ACl) + m(ATl R ACI) + dim(AT2 n Acz) + ’ﬁl(AT2 R Acz)
= dim(AT N Acl) + dim(ApT N ACQ) + m(AT, Acl) + m(Ac2 , AI"T)-
O
Corollary 6.15. Let 7 be the triple Maslov indez, defined on a triple (Aa, A, Ac)
of Lagrangian subspaces of ker 0y by
(6.21) T(Aa, A, Ac) = m(Aa, Ag) + m(Ap,Ac) + m(Ac, Aa).

Under the same assumptions as in Corollary 6.14, in terms of the triple Maslov
indez, the index formula (6.20) takes the form

ind(@" + R) :7 AS — % Z {bn(ﬁH) + dim ker 3H}
X HeM,(X)
(6.22) - %{ dim(Ar N Ac,) + dim(Ar 0 (Id = T)Ac,)

+7(Ac,, (Id — T)Ag,, Ar) — m(Ac,, (Id — F)ACQ)}.
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X =Y="uUY, X=X;UX,

FIGURE 1. The submanifold Z cuts X as well as Y into two pieces.

Proof. The following facts are straightforward to verify:
() Id+T:ArrNAc, — ArNA_pe, is an isomorphism;

(2) m(AcmAFT) = m(A—FC'zv AT) = 7m(AT7 A—FCQ)
(3) A_re, = (Id — T)Ag,.

Using these facts, it is straightforward to verify (6.22) using the definition of 7 and
the formula (6.20). O

7. A SPLITTING FORMULA FOR THE ETA INVARIANT

We give an application of Theorem 6.12 to prove a splitting formula for eta
invariants, see Theorems 7.1 and 7.3. Such formulas are well-known, see [6], [10],
[33], [12], [19], [28] [5], and [34]. In Theorem 7.1, we present a mod Z version, and
in Theorem 7.3, we identify the integer part in terms of index theoretic objects.
We follow [28, Sec. 8].

7.1. The set-up. We begin by setting up our problem. Let F — X be a Zs-
graded Hermitian Clifford module over an even dimensional compact Riemannian
manifold with boundary. Let Z C X be a hypersurface that divides X into two
pieces, X7 and X5, and which intersects the boundary ¥ = 0X transversally and
divides it into two pieces, Y7 and Y5, where Y7 = 9X; NY and Y = 90X, NY. See
Figure 1. Note that X; and X5 are manifolds with corners of codimension two. For
simplicity, we assume that M =Y N Z is connected (contrary to the picture shown
in Figure 1). We derive a splitting formula for the eta invariant of a Dirac operator
on Y in terms of eta invariants of the Dirac operator restricted to each of the two
components Y] and Y. Although we are assuming that Y bounds, the splitting
formula that we derive also holds for twisted Dirac operators on spin manifolds that
don’t necessarily bound, see [28, Sec. 8] for the details.

Let D be a generalized Dirac operator on X associated to a Clifford compatible
connection on F and metric g. We assume that Y and Z have collar neighborhoods
over which all the geometric structures are of product type. Thus, for instance, if
g denotes the metric on X, then we assume that X = [0,1), x Y near Y where
g = da® + hy, where hy is a metric on Y, and we assume that X = (—1,1), x Z
near Z where g = dy? + hz, where hyz is a metric on Z. We assume that 0y points
into Xo. Over each of these product neighborhoods, E and the connection on E
are also products. On the the collar [0,1), x Y of X, we have

D= %U(daz)[&g ol
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where o(dz) is Clifford multiplication by dz, and where 3 is the induced Dirac
operator on Y and on the collar [0,1), x (—1,1), x M, we can write

1 1

where Bjs is a Dirac operator over M. This decomposition of D plus the decom-
position D = 1o0(dz)[d, + 3] imply that over the collar (—=1,1), x M in Y, we
have

(7.1) 0 =TI[0, +0ml,
where
(7.2) Oy =io(dy)By, T =iw with w = io(dy)o(dx).

The endomorphism w defines a Z,-grading on ker 0.

7.2. The splitting formula. The &-invariant of 0 is defined by
1
&) = 5[77(5) + dim ker 9.

Let 07 and 05 denote the restrictions of d to Y7 and Y, respectively, and denote by
A; and As their corresponding scattering Lagrangians. Let II_ be the negative spec-
tral projection of d,; and let (51,H1}1) denote the operator d; with “augmented”
APS boundary condition fixed by the projection Tt = IT_ + II¢,, where Il¢, is
the orthogonal projection onto A;. Thus, 0; has domain defined by

Dom(d;, 1Y) = {u € H'(Y1, Ely); T uly—g = (II_ + ¢, Jul,—0 = 0}.

Likewise, (52,1‘[{;2) has a similar meaning, but here, II; is the positive spectral
projection of 0;. The following theorem is a corollary of Theorem 7.3 to be proved
shortly.

Theorem 7.1. Under the assumptions described above, we have
1
(7.3) €(D) = £(3), TIM) + £(32, TI2) + §{m(A1,A2) +dim(A; N1 A3)} mod Z,

Here, £(9;, 1) and {(52,1_13\_2) are the &-invariants of (3;,11*') and (52,Hﬁ2)
respectively, and the function m is defined by (6.18) using the Zs-grading w fixed
in (7.2). As a direct corollary, we have

n(d) = n(d1, ) + n(d2, IT}?) + m(A1, Az) mod Z.

We prove Theorem 7.1 as follows. First of all, the APS index theorem [2] gives

(7.4) ind(D*, s) = /X AS — €(9),

where II> is the nonnegative spectral projection of . This formula accounts for the
term £(0) in (7.3). The integer difference in (7.3) will be written, see Theorem 7.3,
as a combination involving Maslov type indexes of certain Lagrangian subspaces of
ker dj; and in terms of index theoretic objects involving certain operators on X;
and Xo, (DT,II>¢), and 0z, where 07 is the induced Dirac operator on Z. Here,
in a collar (—1,1), x Z of X near Z, we can write

(7.5) D= %U(dy)[ﬁy +0z],

where 0z is the induced Dirac operator on Z.
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The operators on X; and X5 are defined as follows. Consider first X5. We begin
by attaching infinite cylinders to the boundary of X5 to make it into a manifold
with cylindrical ends. Thus, we attach (—o0,0]; X Y3 to Ya, (—00,0], X Z to Z, and
(—00, 0]z x (—00,0], x M to M. Note that all the geometric structures extend in a
canonical fashion to this new manifold with cylindrical ends since all the structures
were of product type near X5. Next, we compactify this manifold into a compact
manifold with corners diffeomorphic to X5, and make metric and operators into
corresponding b-objects, by introducing the change of variables ’ = e and y’ = ¥
(so that 2',y’ — 0 as x,y — —o0). Abusing notation, we denote this new manifold
by X2, and we use the same notation for all the structures inherited on (the new)
Xo that were on the old X5. For example, the boundaries of (the new) X5 are still
denoted by Y5 and Z, the induced Dirac operator on Y5 is still denoted by 0o, ...
etc. We are now in the setting where we can apply Corollary 6.14.

Fix any unitary, self-adjoint isomorphism T : kerdp; — kerd,; that is odd
with respect to the Zs-grading of ker d); defined by w. We can choose such a map
by Corollary 2.15. Let Dy be the Dirac operator D restricted to Xo, H; = Y3
and Hy = Z, and let Ry € ¥, (X,, EY,E™) be any compatible perturbation
constructed as shown in Proposition 2.8 from 7. Let Az denote the scattering
Lagrangian for 9z. Then by Corollary 6.14, we have

md(D;' + RQ) = / AS,; — 5(62,1_[{\‘_2) — 5(5Z,Hﬁz)
(7.6) X2

1
- 5{ dim(Ar N As) + dim(Apr N Az) + m(Ar, As) + m(Az, AFT)},

where we used the fact that %(ds) = 7(d2, II}?) from [27], and that kerp2 0y =

ker(?)g,Hj\_Q) from [2]. Similar statements hold for f(ﬁZ,Hf_Z). We also used the
fact that since all structures are constant near dX5, the density ASs vanishes on the
product decompositions near 0.X5, and hence be2 ASy = fX2 ASs. Since H; = Y5
and Hy = Z, the function m in (7.6) is defined by (6.18) using the Zs-grading w
fixed in (7.2). The map I' in (7.6) is also given in (7.2).

We now consider X;. Here, we make the change of variables § = —y so that
in a neighborhood of Z in X, we have X; = [0,1); x Z. As we did for X, we
make X7 into a compact manifold with corners with the corresponding b-objects.
Let Hy =Y; and Ho = Z. Let D be the Dirac operator D restricted to X; and
let Ry € ¥, (X, E*,E™) be any compatible perturbation constructed as shown
in Proposition 2.8 from T. Because of the change of variables § = —y, by (7.1)
and (7.5), the induced Dirac operator of Dy on Z is —9z and the induced Dirac
operator of 0 on M is —0j,s; moreover, the induced Zs-grading on Ej; is now
@ = —w. Hence, by similar reasons as we gave to write (7.6), we have

ind(Df + Ry) = [ AS; — £(8;,1142) — £(—05,1147)
(7.7) , X
- 5{ dim(Az N Ay) + dim(A_pr N Az) + i(Ap, Ay) + (A, A_FT)},

where m is defined using the Zs-grading © = —w. Note that n(fﬁz,Hﬁz) =
—77(52,1‘[{?) and [, AS = le AS; + fX2 AS5 (as these densities are defined lo-
cally). Also, by (6.19), we have m(Ar,A1) = m(A1,Ar) and m(Az, A7) =
m(A_rr,Az). Hence, adding (7.6) and (7.7) and then subtracting (7.4) yields,
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after some simple algebraic manipulations,
£(0) = £(8;, TIA) + £(Ba, TT42) + %{m(Ah Ay) + dim(A; N Ag)}
+dimker(dz, IT}%) — ind(D T, I5¢) + ind(Dy + R1) + ind(Dy + Ra) + J,

where J is given by

1
J= 5{T(AT, A1, As) — dim(Ar N Ay) — dim(Ag N Az) — dim(A; N Ay)
(7.8)
+ T(Az, A,FT, AFT) - dlm(AZ N AfFT) - dlm(AZ n AFT)}

with 7 is the triple Maslov index defined in (6.21). Note that J depends on T, Ay,
A1, and As. The following lemma finishes the proof of Theorem 7.1.

Lemma 7.2. We have J € Z.
Proof. By [15, Prop. 1.9.3], we have
T(AT, Al, AQ) — dlm(AT N Al) — dlm(AT N AQ) — dlm(Al N AQ) — dim ker 6}& e 27.

Similarly, as (—I'T")(I'T)) = —Id has no +1 eigenvalue, by Lemma 4.9, we have
A_prr N App = {0}, hence, again by [15, Prop. 1.9.3], we have

T(Az, A—FT, AFT) — dlm(AZ n A—FT) — dlm(AZ n A[‘T) — dim ker 8L € 27.

It follows that J € Z. O

We summarize our results in the following theorem.

Theorem 7.3. Under the assumptions described above, we have

€(0) = £(01, T ) + £(D2, 11%) + %{m(Al, Ag) + dim(A; N AQ)}

+ dimker(dz, IT}7) — ind(D T, T50) + &,
where the error term £ € Z is given by
& =ind(Df + R1) +ind(D3 + Ro) + J,
where J € Z is defined by (7.8).

By Proposition 4.10, we may choose T' so that the intersections in (7.8) are all
trivial, in which case, J = (1/2){T(AT, Al, Ag) + T(AZ7 A—FTy AFT)}-

APPENDIX A. THE b-CALCULUS

In this appendix, we fix the notations used in the main part of the paper. For
more detailed accounts of the category of b-objects; specifically, discussions about
b-vector fields, conormal functions, b-tangent and cotangent bundles, blow-ups, and
b-differential and b-pseudodifferential operators, see [25], [21], [30], or [17].
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A.1. The small calculus. By a manifold with corners X of dimension n, we
mean a Hausdorff, paracompact topological space with local models of the form
R™* = [0,00)* x R** where k can run anywhere between 0 and n. We further
assume that there are only finitely many boundary hypersurfaces, {Hy,..., Hy},
each one of which is embedded. The largest k that appears in a local model is the
codimension of X. The set of boundary faces of codimension k € Ny is denoted by
M (X), the set of all boundary faces is denoted by M (X), and the set of all proper
faces, the faces except X itself, is denoted by M'(X).

If a € R, the b-alpha density bundle, €2i*, is the line bundle with local basis of
the form |d;11 - d;: dyy - dyn—k|® on a model R™* = [0, 00)% x Ry~

The space of smooth functions on X is denoted by C*°(X) and the subspace of
functions that vanish to infinite order at dX is denoted by C*(X). The space of
0-th order symbols, S°(X), consists of those functions v on X such that Pu is a
bounded function for any b-differential operator P.

Henceforth, X will always be compact. Given vector bundles E and F over X, we
denote the space of classical b-pseudodifferential operators of order m € R, mapping
sections of E to sections of F, by ¥J*(X, E, F). If m € Ny, we denote the subspace
of b-differential operators by Diff;" (X, E F) For symmetry reasons, we usually

assume that £ = F = 92 Then U} (X, Q ), m € R, is the space of operators on

C>(X, Qb% ) which have Schwartz kernels that are distributions on the b-stretched
product X7, the blown-up manifold X? = [X?; B], where B = {H x H; H €
M;(X)}. These kernels are smooth up to ff, the hypersurfaces in X? coming from
the blow-up of B; vanish to infinite order at (b and rb, the hypersurfaces coming
from left and right boundary hypersurfaces of X?2; and are conormal of order m to
Ay, the “lifted diagonal” coming from the diagonal of X2. We refer the reader to
[25, Appendix] for a discussion of this view point of the kernels.

1
For each m € R, there is a principal symbol map %, from U (X, Q) onto
e m)(bf X), where Cp° (IT*X ) is the space of homogeneous functions of
degree m on the b-cotangent bundle “T"* X minus the zero section. This map gives
a short exact sequence

om(m)

0 UH(X, Q) o U (X, QF) T R (T X) =0,

1
which preserves compositions and adjoints. If A € UJ"(X,Q7) and ‘o,,(A) is in-
vertible, then A is called elliptic. Given such an elliptic operator, there exists a

B e U;™(X,02) such that AB — 1d, BA — Id € U; (X, Q2).

We denote the space of L*-integrable b-half densities by LZ(X, Qb%) and we denote
the b-Sobolev space of order m € R, by H" (X, Qb%) Then given A € ¥*(X, Qé),
A defines a continuous map from Hj (X, Qb%) into H,”"™ (X, Qb%) for any s € R. In

particular, elements of W9 (X, Qb%) define bounded operators on L} (X, Qb%)

In order to find parametrices for Fredholm b-pseudodifferential operators, we
need to enlarge the calculus to include operators with kernels having more general
conormal behaviors on X7.

A.2. Calculus with bounds. A multi-index a on any manifold with corners is
an assignment of a real number «(H) to each hypersurface H of the manifold. We
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identify a number a € R with the multi-index that assigns to every hypersurface
the number a. Given any multi-index o on X2, we define

(A1) WX, 0F) = ol p) HE (X, 9F).

Now let o be a multi-index for sz with a|g > 0. If pj, and p,y, are total boundary
defining functions for /b and rb respectively, we define

—00,x 3 r s & o0, i
(A:2) U, (X,0F) = ooy U e Sy (X, Q7),
e>0
where Sg;a‘ﬁ (Xg,Qb%) is the subspace of SO(XZ?,QE), the space of b-half density
symbols u of order 0 on Xf, such that given any hypersurface H of the front face

of X2, we can write u = v + p})}(H)w, where v is smooth up to H, where py is a

1
boundary defining function for H, and where w € S°(X?,€7) is continuous, with
all b-derivatives, up to H.
For any m € R, we define

1 1 1
(X, Q) = U (X, Q) + B0 (X, Q).

These spaces U;"" (X, Qb%) form the calculus with bounds.

If pg is a boundary defining function for ff, we have the following composition
property: Provided that af., + ¢/|;p > 0 and | + &6 > v+ + " |y where
o = min{aly + /|5 },

(A-3) PR (X, 0 ol Uy (X, 07) € o T (X, 07,
where o' |, = min{«/|;p, &' |1y + 7}, &)y = min{alp + 7', |}
As a corollary of (A.3), we get the following result: For any o > 0,

1 m’,« % m m',a %
TN(X,Q2) 0 U N(X,Q7) C UPTTN(X, Q7).

A.3. The normal operator. Let S C C* be a horizontal k-strip; that is, a subset
S C C* of the form S = {7 € C*; a < ImT < b} for some a,b € [—oc0,c0]*. (Here,
for any v,w € [—o0, 00]*, we define v < w if v; < w; for each i.) For each m € R,
we define S7"(S x RP) as those a(7,£) € C*(S x RP) that are holomorphic in 7
such that for all o, 8 and a < @’ < b’ < b, there is a C' > 0 such that

0200 a(r,€)] < C(1 + |7| + g™ 11~ 17!

for all £ € R? and o’ <Im 7 <. If p =0, we denote S7*(S x R%) by S7*(S). If F
is a Frechét space, then S}*(S, F) is defined (we shall need this generality below).
If m € R, then we define the subspace of holomorphic operators

1 1
(A4) b (X, Q) C Hol(S, U'(X, ;)
1
as those operators A € Hol(S, V' (X, Q7)) satisfying the following conditions:
(1) For any ¢ € C(XZ\ Ap), 9 A(1) € 5, (5, ¥, ©(X,Q2)).
(2) Given any coordinate patch Ri"" x R” on X2 such that A, = R™* x {0}
and any compactly supported function ¢ on the coordinate patch, we can
write

1
(2m)"

pA= /e“'fa<t7r7£>d£®u, v C®(X2.0P),
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where a(t, 7,€) € C°(RF; S1(S x R™)).
For the rest of this appendix, we assume that each boundary hypersurface H;
of X has a fized boundary defining function p;. Let M € My (X) be defined by
x1i,...,T, where each z; is one of the fixed boundary defining functions. Then the

normal operator of A € UP'(X, Qb%) at M is the holomorphic family
CF > 7 = Ny (A)(1) = (277 A2™) |y € U (M, Q2), 257 = am ~-~xf”’“.

(M, Qb%), where U, (M, Qb%) is the space given

Then Ny : ¥'(X, Q) — ¥° Lok

b,Ck
in (A.4) with § = Ck.
The normal operator extends to the calculus with bounds as follows. If S C C*
is a horizontal k-strip, and « is a multi-index on X bz with a|g > 0, we define

_ i ” _ 0, 1
W, (X, ) = o o0l | pfsnSi (S, Syl (X2,07))
e>0

and for each m € R, we define
1 1 oo 1
\Ijb,é (Xvﬂbz): Z?(Ck(X7sz)+\I’b,S (X’sz)
If M € M (X) is defined by p;,, ..., pi,, then
Nag s WX, 0F) — | oy (M,97),
e>0

where S; is the strip: —(alp)i;; —& < Im7; < (alp)i; + ¢, and where ayy is the
multi-index induced on M? C X? by a. Moreover, N is an algebra homomorphism

1
preserving adjoints, and is surjective, with null space the subspace of ¥;"*(X,Q7)
that vanishes at ff(M) of X?.

APPENDIX B. FREDHOLM PROPERTIES OF b-PSEUDODIFFERENTIAL OPERATORS

The goal of this section is to prove the following results. Let p = p;---pn be a
total boundary defining function for X.

Theorem B.1. Let A € U)(X, Qb%) Then the following are equivalent:
(1) A is compact on LE(X, Qb%)
1
(2) Aepu;(X.0}).
(3) too(A) =0 and for each H € M1(X), Ng(A)(t) = 0.

Theorem B.2. Let A € U'(X, Qé), m € R. Then the following are equivalent:

(1) A: H"(X, Qb%) — L3(X, Qb%) is a Fredholm.

(2) A is elliptic and for each M € M'(X), Np(A)(T) is invertible for all real
parameters.

(8) A is elliptic and for each H € M1(X), Ny (A)(7) is invertible for all T € R.

B.1. Sufficiency of characterization. The following lemma proves the suffi-
ciency part of Theorem B.1.

Lemma B.3. If A € p¥; (X, Qé), then A is compact on L3 (X, Qb%)
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Proof. Since A vanishes to order p at 0.X, there is a sequence of functions ¢; €
C*>(X) with support sufficiently close to 0X such that ¢; = 1 near 0X and if
Bj = A—(1—¢;)A(l — @;), then || Bj|[r2 <1/j.

Let {u;} be a bounded sequence in L}(X, Qb%) Then, since (1 — ¢;) = 0 near
0X, (1—¢;)A(1l — ;) is a pseudodifferential operator of order —1 on any compact
manifold X without boundary such that X — X. As operators of order —1 on
compact manifolds without boundary are compact on L2, it follows that there exists
a subsequence u,, such that (1 — ¢;)A(1 — ¢;)u;, converges as k — oo. Since for
any j and k, Au;, = (1 — ¢;)A(1 — ¢;)u;, + Bju;, and [B;f|z < 1/j, it follows
that the sequence Auj, converges in Lj as j — oo. O

In order to prove sufficiency in Theorem B.2, we need three lemmas. We begin

with some definitions. Let S = {7 € C¥; —0o < a <Im7 < b < oo} be a horizontal
k-strip and « be a multi-index on X?2. We define

Vg™ (X, Q) = 9,7 (9 U0 (X, 7).

1
Let S 5 7 +— K(1) € ¥7°%(X,Q72) be meromorphic. Then we regard K (1) as

being meromorphic in U™ (X,Q7) if for any a < o’ < b’ < b, K(7) has only
finitely many poles with @’ < Im7 < ¥, and for |R7| sufficiently large, K (7) satisfies

1
the same estimates as an operator in S, *(a’ < Im7 < 0'; ¥~°%(X,Q2)).

Lemma B.4. Let S be a horizontal k-strip and K(1) € U™ (X, Qb%), e > 0.
1
Then, Id — K(1) is invertible on L} (X,$2) with inverse of the form 1d + K'(1),
1
where K'(1) € W™ (X, QF) is meromorphic with finite rank singularities.

Proof. This is just analytic Fredholm theory [22, Section 5.3]. |

Lemma B.5. Let A € U %(X, QE) and B € \I/;n/’B(X, Qb%) where the composition
AB defined as in (A.3). Suppose that for some Hy,...,Hy € Mi(X), Blgm,) =0
fori=1,...,q. Then, (AB)|g,) =0 fori=1,...,q.

Proof. Let 0 < 4 < q. Then, as Ng,(A o B)(17) = Np,(A)(7) o Ny, (B)(7r) and
Blg#,) = 0, we have Ny, (Ao B)(1) =0, so (Ao B)|gm,) = 0. O

Lemma B.6. Let A, € U} (X, Qb%),m € R be elliptic and depend continuously on
a parameter t € T where T is a compact topologz'call space. Then gz'iljen any r > 0,
there is an v’ > 0 such that Np(Ag)(7) : H"(M,Q2) — L3 (M, Q) is invertible
for each M € M'(X) and for allt € T, |lm7| < r, and |R7| > 7. If for each
t € T, Ny (Ae)(T) is invertible for all real parameters, then there is a 0 > 0 such
that Nps(Ae)(T) is invertible for all |[Im 7| < 6 andt € T.

Proof. Since Ay is elliptic, we can write A, B; = Id — Ry, where B; € ¥, ™ (X, Qé)

and R, € ¥, (X, Qb%) depend continuously on ¢t. Therefore, given M € M (X)
with k& > 1, we have Nps(Ay)(7) Nag(Be)(7) = Id — Npr(Ry)(7). Let 7 > 0. Then,

as Ny (Ry)(1) € S;, > (Ck; W, (M, Qb%)) and since elements of W,"*°(M, QE) are
1
bounded operators on LZ (M, Q2), (Id— N (R;)(7)) ! exists as a bounded operator
1
on LZ(M,Q7) for all [Im7| < r and [R7| > r), for some r}, > 0. Setting r’ =
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minysenr(x){7}, it follows that for each k € N and M € My(X), Na(A¢)(7) =

H™(M, Qb%) — LZ(M, Qb%) is invertible for all |[Im 7| < r and |R7| > 7.

The second statement of this lemma follows from the first statement and the fact
that if H; and Hsy are Hilbert spaces, then the space of isomorphisms of H; onto
‘H is an open subset of the space of bounded operators from H; into Hs. O

The following lemma proves sufficiency in Theorem B.2.

Lemma B.7. Let A € U"(X, Qb%), m € R be elliptic and suppose that for some
1 1

0 >0, for each M € M'(X), Nay(A)(7) : H(M,Q2) — L3(M, Q) is invertible

for all Im 7| < 6. Then for each e < 0, there exists a B € W, "™°(X,QF) such that

(B1)  AB=1d-K;; BA=1d— Ky, where K1, Ky € U~%%(X,02).

1 1
In particular, A : H(X,Q2) — L}(X,Q2) is Fredholm.

Proof. For induction purposes, we will understand Ny (A)(1) = A if M € M (X)

where k = 0. Also, for each M € M(X) and Q € ¥j (X, Qb%), we will denote Njs(Q)
by Q. If codim X = n’, then we shall prove the following statement by induction
onk=n',n"—1,...,0: Let M € M,(X) withp >k, let 0 < e < 0, and let S, be the

strip S. = {7 € C?; —e < ImT < ¢}. Then there exists a B(1) € ¥, ¢"*(M, Qb%)
and an R(1) € ¥ g (M, Qb%), such that

(1) Aw(r)B(r) = 1d - R();

(2) if p> 0, then Ay (r)"! € Uy 2°(M, Q7).

Once this induction statement is proved, our proposition is proved. Indeed, setting
k = 0 into the above statement implies that if € < € is given, then there exists a

Be v, ™ (X, Qé) and a K; € \II’OO(X,QE) such that AB = Id — K;. Since for
each M € M'(X), Ny (A*)(1) = Nar(A)(7)*, A* satisfies the same hypothesis as
A. Hence, there exists a B’ € ¥, "°(X,Q2) and a K’ € U7°%¢(X,Q?) such that
A*B’ =1d — K'. Thus, if B” = (B')* and K" = (K')*, then B”A=1d — K”. One
1

can check that B” = B modulo ¥~°*¢(X, Q7). Thus, B satisfies (B.1).

We now prove our induction statement. For our base case, M € M, (X) is a man-

1
ifold without boundary. Since A is elliptic, we can choose a B € ¥,"™ (X, ;) such
that Id—AB = R € ¥, *°(X,€Q?). Taking normal operators, we get A (7) B (1) =
1 1
Id — Ra(7), where By (1) € W 7" (M, Q) and Ry (1) € U7 (M, Q7). Hence, by
Lemma B.4, (Id — Ry (7))~ = Id — Sy (7), where Sy (7) € U7 (M, Qb%) is mero-
morphic with finite rank singularities. Hence, Ay (7)™ = Bas(7) — Kpr(7), where
1

Ky(t) = Bu(r) 0o Sm(r) € U 7 (M,€Q7) is meromorphic with finite rank sin-
gularities. By assumption, Aps(7)7! exists for all [Im7| < 6. Thus, Ky (7) has
no poles on |[Im7| < 6 and so Kp(7) is holomorphic on the n'-strip Sp. Thus,

1
Ap(r)"te \Ilgem(M, Q7).
Now let 1 < k <n’—1 and assume that (1) and (2) hold for all £ with £ > k+1;
we will prove it is true for k, so let M € My(X). As in the k = n’ case, we can
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b.Ck por (M, Q ) such that
(B.2) Au(7)B(7) = 1d - R(r).
Let My (M) = {F1,...,F;} C Mg41(X). Then, by the induction hypothesis, for

1(
any € < 0, Ap, (o)~ 1€\I/_m€( b%), t=1,...,q. For 1 <{¢ < qand any € > 0,
define

choose B(t) € ¥, 7. (M, Q ) and R(1) € ¥,
)=

U, (M,Q2) ={S(1) € U, (M, 97); Slgry =0, i=1,...,0}

and for £ = 0, define W, " (M, Qb%) =, (M, Qb%) We shall prove the following

statement by induction on ¢: For each ¢ = 0,...,q and ¢ < 6, there exists a
1 1

By(1) € ¥, ¢"°(M, Q) and an R(1) € ¥, g7, (M,Q; ) such that

(B.3) Apn(T)Be(1) =1d — Ry(7).

The ¢ = 0 case is given in (B.2). Thus, assume that (B.3) holds for ¢ < g — 1;
we will prove it holds for ¢ + 1. Let ¢ < § < 6. Then by induction hypothesis,
1

there exists a By(1) € \I!;,g?é(M, QE) and an Ry(7) € \Il;goéi‘z(M7 Q7) such that
Apn(7)Bi(7) = Id— Ry(7). Write 0 = (7,7') € Ck x C,/. Then, since Ap,,,(0)7" €
1 _ 1
\Db g? (Ff-i-vabz) and (RZ)FZJrl(U) = NF2+1(R5(T))(T/) € \Ilbgé(F€+1’Q2)’ we
1
have Ap,,, (o)™ o (Re)p,,,(0) € \I/_Oo’ (Fg+17Q§). Since Ry(7)|g(r,) = 0 for
i =1,...,¢, by Lemma B.5, (AFI.+1( ) o (Re)Fy 1 (0) ) g(Frsinr,) = 0 for i =
1,...,¢. Hence, we can choose a C¢(1) € ¥, 5, (M,Q;) with (C)r,,,(0) =
Ap,,, ()"t o (Re)p,,, (0). Defining Byi1(7) = Be() 4+ C¢(7), one can check that

Apn(1) 0 Boy1(1) = Id — Ryy1 (), where Rpy1(7) € \Ilgocéjl(M, Qb%) Our induction
step is thus finished and so (B.3) holds for each £ =0,...,q.
Let e < ¢ < 6. Setting ¢ = ¢ in (B.3), we conclude that there exists a B(1) €

v, & (M, Q ) and an R(7) € \I/bg‘;‘;(M Q ) such that

(B4) Ani(r) o B(r) =1d — R(7).

Since R(7)|g(r,y = 0,4 = 1,...,q, we have R(7) € mm{l Sy, (650)(M Q ),
0

where (4,4,0) is the multi-index on X7 that assigns 6 to Ib and Tb and 0 to ﬁ.
Choose p € N and choose 0 < § < min{1,d} such that pé’ = 25. Then R(7) €
5

p%:\I/;;j’@’ ’O)(M, Qb%) and by (A.3), R(T)P € p%\D ’(MO)(M7 Qb%) Since
—00,(8,5, 5 3 0o 3

A @0 (a, ) c P?bprbSO(MQanf) C PP Hye (M?,Q5),
R(r)P € W5™(M,Q2) and since (Id — R(7))( X028 R(r)*) = 1d — R(r)?, multi-
plying both sides of (B.4) by S°0_) R(7)¢ we obtain
(B.5) Ap(T)Bpr (1) = 1d — Ry (7),
where By(r) = B(r)(SIZLR(r)') € Wy md(M,QF) and Ru(r) = R(r)P €
U (M, Qb%) Thus, (B.5) proves (1) for k. If & > 0, one can uselLemma B.4, as
we did in the k = n’ case, to deduce that Ay (7)~" € W, 6" (M, Q7). O

The following two results are proved using Lemma B.7 exactly like the corre-
sponding results are proved in the closed manifold case.
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Theorem B.8. Let A € ¥}"(X, Qb%),m € R be elliptic and assume that for some
1 1
0 >0, for each M € M'(X), Ny(A) (1) : H(M,Q2) — L3(M, Q) is invertible
1 1
for all Im7| < 6. Then for each s € R, A : HJ)(X,Q2) — H; ™(X,Q7)
1
is Fredholm, and for all e < 0, ker A C p°H;°(X,Q72) and coker A = ker A* C
1
peH*(X,2). In particular, the index,
ind (A: Hy(X,Q7) — HI™(X,02)) € Z,
is defined independent of s € R.
Theorem B.9 (Analytic Fredholm Theory). Let A € U'(X, Qb%), m € RT, be
elliptic and formally self-adjoint and suppose that A is Fredholm. Then there exists
an open subset U C C containing zero such that given any open, relatively compact
subset U' C C\ R, there exists an € > 0 such that
UUU 5\ — (A= N1 e &, ™ (X,07)

is meromorphic having only simple poles, all in a discrete subset {\;} C R, which
are (minus) the self-adjoint projections onto ker(A—X;) at A;. If A is also positive,
then U’ can be chosen to be a subset of C\ [0,00); and the same result holds, but
with {\;} C [0, 00).

We shall need the following result in the next section.

Corollary B.10. For any m € R, there is an elliptic operator A € V(X Qé)
1 1
such that for any s € R, A: HJ(X,Q2) — H;”"™(X,Q7) is an isomorphism and
1 1
such that for each M € M'(X), Na(A)(7) : HF(M,Q2) — H;”™(M,Q2) is an
isomorphism for all real parameters.
Proof. Let B € W"/*(X,07) and B' € ¥;"™?(X,Q2) be such that B'B = Id — R,
1
where R € U, "°(X,Q72). One can check that the operator A = B*B + R*R €
1
Ut (X, Q7 ) satisfies the conditions of the corollary. O
B.2. Necessity of characterization. Let ¢ € C2°(]0,1),) with 0 < ¢ < 1 and
o(x) =1for0 <2 < 1/2. Let k € N and define ¢, on [0,1)% =[0,1),, x---x[0,1),,
by
d
(B.6) pelw) = /%2 p(Z) | =212,
where ¢(z) = @(x1) - (z1) and /2 = xi/2 . ~-x2/2. If M € Mp(X), then near
M, X =[0,1)k x M,,, where x = (21, ...,z)) with each z; one of the fixed boundary
1
defining functions. With ¢. defined by (B.6), observe that if u € Hy*(M, €7 ), then
1

we can consider . u as an element of H;" (X, Q?) using the product decomposition
X 2[0,1)% x M,.
Simple calculations prove that the functions ¢, have the following properties: If
A€ UP(X,02), meR, ue L2(M,Q7), and v € H*(M, ), then
(1) limepo( 2~ Az'pv, peu ) = (Nar(A)(r)v,u) for all 7 € CF;
(B.7) (2) 27 p.u — 0 in LE(X, Qb%) for all 7 € R*
(3) limejo 7 pull || = [lull 2 for all 7 € CF.
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For our first application of these functions, we finish with the necessity part of
1
Theorem B.1. Assume that A is compact on L?; we show that A € pW¥, ' (X, Q7).
By the usual oscillatory testing argument for pseudodifferential operators on closed
1
manifolds, we know that A € ¥, *(X, Q7). To see that A vanishes at 0X, it suffices
to show that Ny (A)(r)u =0 for all H € M(X), u € L}(H,©Q?), and 7 € R. Since
Ny (A)(7) is a holomorphic family, this implies that Ny (A)(7) = 0 for all 7 € C.
1

Thus, let w € L}(H,Q7) and 7 € R and write X = [0,1), x H near H, where
x is the fixed boundary defining function for H. With ¢. defined as in (B.6) for
k=1, by (3) of (B.7), 2'"¢.u is a bounded family and thus, as A is compact on
L%, A(z'"p.u) converges in L. Then (2) of (B.7) implies that A(z'7p.u) must
converge to 0, therefore (1) of (B.7) implies that

0= 11%1 ||A(x”<p5u)||Lg = liHJl( A* Az pou), 27 peu) = (N (A*A)(T)u, u)
= [INe (A)(T)ul Lz

The next three lemmas constitute the necessity proof of Theorem B.2.

Lemma B.11. Let A € U)(X, Qé) be Fredholm on L3 (X, Qb%) Then for each
M e M'(X), ker Nps(A)(r) = {0} for all real parameters.

Proof. Suppose on the contrary that A is Fredholm and that for some k£ € N and
M € My(X), there exists a 7 € R¥ and a non-zero element u € L3 (M, ) such
that Nps(A)(7)u = 0. Writing X 22 [0,1)% x M near M and defining ¢. as in (B.6),
property (1) of (B.7) implies that

lim [| A(2"" peu)l|7, = lim(A(z"peu), Az peu))
el0 b el0

= 161%1( T T AT A2 T o), peu) = (N (A*)(T)Nar(A)(T)u,u) = 0.
Thus, A(x""p.u) — 0in L3 (X, Qb%) Since z'7p.u — 0 weakly in LZ(X, Qb%) and A
is invertible up to a compact operator (as A is Fredholm) it follows that "¢ u — 0
strongly in L7 (X, Q7). But this is impossible by property (3) in (B.7). O

1
Lemma B.12. Let A € V)(X, Q7) be elliptic and suppose that for some proper
face My € My, (X) and some 79 € R¥0, Ny (A)(10) is not invertible. Then there
exists some proper face M € My(X) and 7 € R* such that ker Nps(A)(7) # {0}.

Proof. Let n' = codimX. Define
k= max{l < ¢ <n'; there exists an M € My(X) and a T € Rf
such that Ny (A)(7)~" does not exist on L (M, Qb%)}

The definition of k implies that there exists an M € My(X) and a 7 € R* such
that Njs(A)(7)~! does not exist and also for every F € M,(X) with £ > k + 1,
Np(A)(N\)~! exists for all A € RY. Thus, Lemma B.7 implies that Ny (A4)()) is
a continuous family of Fredholm operators on L} for A\ € R¥. By Lemma B.6,
N (A)(A) is invertible for |A| large. Since the index of any continuous family of
of Fredholm operators is constant, we have ind Nps(A)(\) = 0 for all A € RF.
In particular, for A = 7, Np;(A)(7) is Fredholm and ind Nj;(A)(7) = 0. Since
Npr(A)(7)~! does not exist, we must have ker( Nps(A) (7)) # {0}. O
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Lemma B.13. Let A € ¥'(X, Qb%), m € R and suppose that A is Fredholm
1 1

as an operator from H{"(X,QF) into L}(X,Q2). Then for each M € M'(X),

Nar(A) ()« H"(M,QF) — LE(M, Q) is invertible for all real parameters.

Proof. We first reduce to the case m = 0. By Corollary B.10, there exists an
elliptic operator B € ¥, "™ (X, Qb%) such that B : L?(X, Qb%) — H"(X, Qb%) is an
isomorphism and such that Ny (B)(7) : L(M, Qb%) — H"(M, Qb%) is invertible
for all 7 € R* and M € My(X). It follows that Ao B € WP(X, Qb%) is such that
AB : L3(X,Q7) — L3(X,07) is Fredholm. Since Nys(AB) = Nar(A)Ny(B)
and Njs(B) is invertible for all real parameters, to show that Njys(A) is invertible

for all real parameters, we just have to show that Ny (AB) is invertible for all real
parameters.

Thus, it remains to prove the following statement: If A € ¥9(X, Qb% ) is Fredholm

on LZ(X, Qb% ), then all the normal operators of A are invertible for all real parame-
ters. But if all the normal operators of A are not invertible for all real parameters,
then Lemma B.12 implies that there exists an M € M (X) for some k € N and a
7 € R¥ such that ker Ny (A)(7) # {0}. Then Lemma B.11 implies that A cannot

be Fredholm on LZ(X, Qb%) O

APPENDIX C. HEAT CALCULUS

C.1. The heat space. Let X be an arbitrary codimension manifold with corners.

In this section, we construct the heat kernel for an element A € Diff} (X, Q72) +
1

U, °(X,Q72). Let [0,00), be the half-line with variable s. We define

XIiH = [[0700)5 X Xf,{O} X Ab]

We refer to [19] and [12] for the notation and definitions of blow-up.

We define tf = 871({0} x Ap) and tb = 8~1({0} x X2\ {0} x Ay), and we call
tf the ‘temporal face’ and tb the ‘temporal boundary’ respectively. To avoid new
notation, we continue to denote S~1(ff(X2)) by ff(X?).

If U = Rk x RZ is a coordinate patch on X7 with Ay = R™* x {0}, then

[0,00)s x X7 22 [0,00)s x RpF x RZ, with {0} x A, = {0} x R"* x {0}.

Hence, X7 ;; = H" x R2F, where H™ = [[0,00)s x RZ; {0} x {0}]. Now by definition

of blow-up, H" = [0, 00), X S?wt wry» Where

p= (] +52)1/2 o
oo =3/ + 2 4 e {520
W = z/(|2]2 + s2)1/2 e

A short computation proves the following lemma [17, Lem. 6.1].

1

Lemma C.1. If0 <v € C®(X2,Q7), then

ds

1 N .
5*(1/ 5 2) =PI where 0 < p € C™ (X3 5, QF ).
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We now consider some special subspaces of C*(X 27 ) If X = R" we define
ce (Xb2,H) to be the subspace of C* function f on X&H = H"™ x R™ such that

evin

when written in Taylor series at tf, it has the form

oo oo
F Dt fwo o al) + D rH ] (wo o ),

3=0 3=0

where for each j, fi(wo, —w',2') = fj(wo,w’,2"); f} (w0, —w',2") = = f}'(wo,w’, 2").
We define ggd(XliH) to be the subspace of C*° functions having the opposite
parity: f}(wo, —w',2") = — fi(wo,w’, 2"); f}(wo, —w' 2") = f}'(wo,w’,2"). One can

check that the definition of these even and odd spaces are in fact independent of
the coordinates chosen and hence are defined for any manifold with corners X.

C.2. The heat calculus. To serve as motivation for the general case, we consider
the heat kernel for the model case of the Laplacian on R™:

1
(47t) =

|=[2
h=e "2 |dt? = e~ i |dtdzda’ |2, z=z—a'.
=2
If we set t = s2, then up to factors, h = s™"T1le a7 |%dzd:c’|%. Hence, lifting h
to X? ; = H" x R", where X = R" and using Lemma C.1, we obtain

! ’
lw’]2 |w’|2

D n _n _ - l
h:pfnJrlwo—n—He 103 P =p 2+1w0 ntl 7 a0 L, MECOO(XaH,QbZ).

Observe that h = 0 at tb = {wy = 0}. For any manifold with corners ¥ and
subset C C M;(Y), the space CZ°(Y") consists of those C* functions which vanish

1
in Taylor series at all boundary faces H ¢ C. Thus, h € p’%HC’%‘ievn(Xg}H, Q7).

If Ac S(R™ x R™), then by Duhamel’s principle, e *(A+4) = ¢=tA 1 A(t), where
t
Alt) = /0 e =B+ fo=uh gy ¢ + C([0, 00); x X2, Qb (X2)).
Hence,

AT |dt| € pEHOR (X2, 0F) + £ ([0, 00)0 x X2, Jdt[} © 0 (X2)

tf,evn

n 5 5
=p P TOR o (XP . Q2 ) 4 5°Coe, ([0, 00)s x X2,Q7),

tf ,evn evn
where for any manifold with corners X, we define C3,([0,00)s X Xg,Qb%) and

evin

1
C254([0,00)5 x X2,€Q2) to be the restrictions to [0,00)s of the smooth functions in
1

C>®((—00,00)s x X2,Q7) that are even and odd in s, respectively.

We now define the heat spaces in the general case. Let A = {ff(X}), tf} C
M(XZ ), and B = {{s = 0}, ff(X?)} € M([0,00)s x X?). Then for each k € Z,
we define

1 _n_ L
(C1)  Wh(X,0F) = p,*

TR (X2, Q) + 5O ([0, 00)s x X2,92).
We define the even and odd heat spaces as follows: If k € Z is even,
1 2 k-1 o 1 _ o
\IIIIC-I,cvn(Xv ng) = ptf2 C.A,cvn(XIiH7 Qlfl) +s k+ICB,cvn([07 OO)S X XI37 Q );
2 —5—k=1 oo 2 — o]
‘I”f{,odd(Xv Q)= Ptf2 C.A,odd(Xl?,Hﬂ Q) +s k+ICB,odd([Oa 00)s X X;?, Q7 );

1 S ol
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and if k € Z is odd,

1 g1 1 B - 1
‘I’Ichvn(X Q ) _ptf2 CAodd(XI?H7Ql?1)+5 k+106,odd([0 00), X Xb791§>7
‘I’Hodd(X Q )= f§ C.Acvn(Xb HaQ§)+3_k+lcl(§?cvn([0 00)s X X7, QF).

We shall prove the following theorem.
Theorem C.2. If A € Diff}(X, Q%) U (X, Q%) has a nonnegative principal

1
symbol and is elliptic, then there exists a unique operator H € W~ (X, Q7) such

that

H evn
(@ +AH=0  fort>0, Hl—o=1Id|dt|.
This unique operator H is denoted by e~ |dt|= .

To prove this theorem, we need to discuss various properties of the heat calculus.
1
If t = 52, then by Lemma, C.1, it follows that for Q € ptf e IC’V‘Z{’(XZ?’H, 07),

n+k+

Qe CT(Xpm B (Idtl 0F (X2)))-

Since Q2 (X2)|a, = Qsbre("TX), we have e Q|tf e CF 7 x) (tf(X? &), Qibre)

where we omit the |df|2 factor. We denote this function by Ny (Q). Note that since
NA, =X, by the definition of blow-up,

tf (X5 i) = (N7([0,00)5 x Ap) \ {0})/R* = ([0, 00)s x TX \ {0})/R",

which is just the radial compactification of "T'X. Hence, Np(Q) € S(*T'X, Qapre),
where the right hand side is the space of smooth functiowns on "T'X vanishing rapidly
at infinity with all derivatives. The normal operator, Ny, is the map

Ny : \IJ’“(XQ )2Q+ B+
Ne(Q) @ "1 Blomo € S(TX, Qfinre) ® CF (X2, Q2 ),

where Q € pt_f%_k_lcjo(XaH,Qé) and B € s7FT1OF([0,00), x Xg,Qb%). Note

that there are short exact sequences
1
0 — WE1 (X, 02) — Wh (X, Q7 ) ("TX, Qpibre) & CF (X2,02) =0
and
0— UL (X,07) = Uy (X, 02) 25 Soun (TX, Quinee) @ CF (X2, Q7) — 0,

where Seun("T'X, Qgbre) C ST X, Qgipre) are those functions that are invariant un-
der reflection through 0 of each fibre.

Lemma C.3. If Q € V% (X,07), k € Z, then
(C.2) Q: C™(X,07) — 5751020, ([0, 00), x X, QF):
and Q € \IIH ovn (X Q%) if and only if

if k is even;

), if kis odd.

(C.3) Q: C™(X,08) — s~ 1CF ([0, 00)s x X, 0}

)s
(C4) Q:C%(X,0) — s F 10 4a([0,00)s x X, 0F
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1
Moreover, if Q € Uk (X, Q7 ) where k < =2, then setting t = s2 and dropping the
\dt|2 factor, restriction to t =0 is well-defined:

Qli=o : C(X, Q) 3 ¢ = Qpli—o € C=(X, Q7).

When k < =2, Qli=o0 = 0, and when k = —2, Q|i=o is multiplication by the function
Jinre N=2(Q), the fibre-wise integral of N_2(Q) € S(T'X, Qfire).-
e 1
Proof. We may assume that Q € p,* F 1le° (Xl?’H, 7 ) since the other term of
(C.1) almost by definition has the properties of the Lemma. Let 7y, 3, respectively
TR, be the composition of the blow-down map from X? onto X? and the projection
of X? onto the left, respectively right, factor of X. Let 77z be the composition of
the maps

1d

X2 25 [0,00), x X2 ZEE"[0,00), x X
and g g to be the composition of the maps
X2 25 0,00)s x X2 T2 x2 T X
. 1
where 75 is projection onto the second factor. If ¢ € C*>(X,Q7) and 0 < v €
1

C>(X,Q7), then it follows that

ds

S

1
2 « ds 1 %
vQyp = (WL,H)*(WL,HG?PV)Q'WR,HCP)-

Observe that 77 (| ‘%—:ﬁy) Q Ty € p;k_lC’ffo (X3 11> ), where we used Lemma
C.1 to work out the density factor. Hence, (C.2)) follows by applying the push-
forward results of [21]. For the proofs of (C.3) and (C.4), we refer the reader to
[22, Lem. 7.11]. The proof that the restriction to t = 0 when k = —2 is given by
Japre N—2(Q) can be found in [22, p. 264]. O

Lemma C.4. If A € U;®(X,Q7) and Q € W5, (X,Q7), then
(C.5) AoQ, QoAe s LOF([0,00), x X2,07).
IFQe Wk . (X,02), then

AoQ,QoAe s H 1O, (0,00), x Xf,Qb%), if kis even;

(C.6)
AoQ, QoA e s 1OF, 4([0,00)s x X2,Q2), if k is odd.

I

N 1
Proof. We may assume that @ € IS F 1030()({?,1179172) since the other term of

(C.1) almost by definition, has the property that it, composed with an operator of
order —oo, satisfies the lemma. Let Z = [[0,00)s x X}; {0} x 7§, A, | and denote
by Bz its blow-down map onto [0,00)s x X. Let mp p, s, and mo g be the
following compositions:

Bz m TF,b
mpm: Z 22 [0,00)s x X T X2 8 XE

Id
TS H L 2z, [0,00)s x X} ool [0,00)s x X7;

1d
men: Z 25 0,00), x X3S0, 00), x X2,
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where gy, Tsyp, and 7w, are the unique b-fibrations that give a commutative
diagram [20]

TO,b
Xy —— Xj

(C.7) l l

X3 To X2
where the vertical arrows represent blow-down maps and where O = F, S, or C. If
0 <veC®(X2 02), then it follows that

cis %I/AOQ = (WC’H)*(WEH( d %1/) ~7r}}HA~7T:"97HQ).

Observe that 7TCH(|d |2v) - A T Q€ pﬁ]C LCoe X3)ff(Z)(Z7 ), where we
used Lemma C.1 to work out the density factor. Hence by the push-forward results
of [21], we have Ao @ € s~*~1CF([0,00)5 x Xb,Q ). For the proof of (C.6), w

refer the reader to [22, Lem. 7.11]. Since Q o A = (A* o Q*)*, the operator Q o A
also satisfies the properties of the lemma. (I

The proof of the following lemma can be found in [22, Lem. 7.14].
Lemma C.5. For any P € Diff?)(X, Qb%) and Q € VX (X, Qb%), k € —Z, then
(0, + P)Q € Wi (X, 0F)
and moreover, if Q) is in the even calculus, then so is (0 + P)Q.
The following lemma is the last ingredient we need to prove Theorem C.2.
Lemma C.6. If A € Diff}(X, Q%) _OO(X, Qb%) is elliptic with a nonnegative

1
principal symbol there exists a Q € V7 (X,Q2) such that when dropping the

factor |dt|2, Qli—o =1d and
0+ A)Q =R e C™([0,00):; T, > (X,Q2)).

H evn

1
Proof. Let A = P + B, where P € Diff(X, Q7 ) is elliptic with a nonnegative
1
principal symbol and B € ¥, (X, Q7). Our first step is to find a

(C.8) Qo € W2 . (X,0F) with Qoli—o = Id and (9, + A)Qo € ¥p ', (X, Q7).

As in [22, Lem. 7.16] we can find a Gy € ¥} 2 (X, Qf) such that (Gp)o = Id
and (9, + P)Go € WL, (X,Q7). If Qo = Go — tBldt|} € WA, (X,07),

H,evn H,evn
then (8, + A)Qo = (8, + P)Go + BGy — B|dt|z — tAB|dt|z. The first term on
the right is in Wy eVH(X, Qb%) and so is the last term. By Lemma C.4, BGy €
0> ([0, 00)e x X2, |dt|2®Q§ (X2)). Since Gole—o = Id, it follows that BGo— Bldt|3
10> ([0, 00); x X2, |dt|} ® QF (X X)) € Wi (X, Q). This proves (C.8).

Suppose that @; € p 2 (X, Q ), 1 <j <k —1 have been found such that

H,evn

(9, + A)(ZQj) Q+Re Uit (X,07),
=0
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where @ € p;c%+k_1C’j°(X§,H,QE) and R € s 1O ([0,00)s x Xg,Qb%) are even
or odd depending on whether k is even or odd. We will find a Q; € U2 F (X, Qb%)

H,evn

such that (0; + A)(Zf=1 Q;) € \Ilfifccf,rll(X, Qb%) As in [22, Lem. 7.16] we can find a
G € U2E(X,Q7) such that

H,evn

(C.9) Q+ (9 + PGy, € U571 (X, Q7).

H.,evn

Let F € s*3C([0,00)s x X7, Qb%) be even or odd depending on whether k is even
or odd. Then observe that
k—1
0+ A) (D Qs +Gr+F) = Q+ R+ (0, + PGy + BGy + 0,F + AF.
j=0
By (C.9), we have Q + (0; + P)Gy € \I/I:,’fe;rll(X, Qb%) Also, note that AF €
skH3CF([0,00)s x X2, Qb%) and is even or odd depending on whether k is even or

1

odd, and by Lemma C.4, BG), € s**1Cg([0,00)s x X2,Q7) and is even or odd
depending on whether k is even or odd. Hence,

k—1
(C.10) (9, + A) ( 3 Qi+ Gi+ F) € U5F1(X,Q7) if and only if

H,evn
3=0
R+ BGy + 0iF € s"72 Cg([0,00), x X2, Qé) and is even or odd with k.

Now, since R, BG) € s CF([0,00)s x sz,Qb%) , we can write R + BG), =
sk*1T(s), where T(s) € C([0,00)s x XE,QE). We define Qr = G + F €
\I!I}?C_Vﬁ(X, Qb%)7 where F' = fk%_gsk”T(O). Since d; = 5-0;, one can check that
R+ BGy + 8,8 € sk+2 CZ([0,00)s x XE, Qb%) and is even or odd with k, and so by

(C.10), it follows that (9, + A)Qr € WA 1 (X, Qb%) The induction step is proved

H,evn
and via a standard asymptotic summation argument, the lemma is proved. ([

Proof of Theorem C.2: For each M € M(X) and B € U}"(X, Qb%), we denote
N (B) by By If n’ = codim X, then we shall prove the following statement by
inductionon k=n',n' —1,n' -2, ...,2, 1, 0:
If M € Mi(X), then the heat kernel Hys for Ay

1
exists and Hyy € SY(CF; WA (M, Q2)).

H,evn

(C.11)

Setting k = 0 proves our theorem. If M € M,/ (X), then by Lemma C.6, there is
1 . 1
a Q€ W2, (X,9Q7) such that (9, + A)Q = R € C®([0,00)4; ¥, *(X,Q7)) and

H,evn
Qli=o = Id. Hence, (9, + Anr)Qunr = Rar € C([0,00)¢; Ue® (M, Q3)). Since Ry
is a smoothing operator, one can follow the argument of [22, Prop. 7.17] to show
that H)s exists. One can check that Qay € S9(CF; W52 (M,Q2)) and hence, this

H,evn
must also be true of Hy;. Now assume that (C.11) is true for k 4 1; we will prove

it for k. Fix M € My (X) and let pps be a total boundary defining function for M.
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. 1
First, we prove that given S € C>°([0,00):; W, 2 (M, €27 ) ), there exists an R €

C([0,00)s; ¥, & (M, Qb%) ) such that

(C.12) S+(3t+AM)R€ﬂwfom([0700)t;q’;g(M792))-

Indeed, let My (M) = {F1,..., F;} with corresponding boundary defining functions
{z1,...,z¢}. Then to prove (C.12), we first claim that for each j = 1,...,¢, there

exists an R; € C([0,00)y; W, & (M, Qb%)) such that

To see this, we use induction on j. Assume that j = 1. Since Fy € My1(X), by
the induction hypothesis for (C.11), the heat kernel for Np, (Ay;) = A, exists and

1
is an element of S(CF1; W2 (F1,07)). Hence, by Duhamel’s principle we can

H,evn
find an S; € C™°([0,00);; U G (F1, Qé)) such that

JVF1 (S) + (8t + NF1 (AM))Sl =0.

Thus, choosing R; € C*([0,00);; W, (M, Qb%)) such that N, (R;) = S; proves

the j =1 case of (C.13). Assume (C.13) is true for j, we prove it is true for j + 1.
Indeed, by using a similar argument as we did in the 5 = 1 case, we can choose an

Sjy1 € xp - 2;C°([0,00)y; U5 (M, Qb%)) such that

NFj+1 (TJ) + (at + NF]'+1 (AM))NFj+1 (Sj+1> = 0.
So, with Rj411 = R; + S;+1, (C.13) holds for j + 1. Setting j = ¢ proves (C.12).

1
Second, we prove there is a G € S9(CF; \Ifl_fevn(M, Q7)) such that G|—g = Id
and
. L

(C.14) (0 + Ap)G = R € C([0,00)4; U ,° (M, Q) ).

By Lemma C.6, there is a ) € \Il;fevn(X, Qb%)) such that Ql;—o = Id and (9, +
A)Q =S € C®([0,00)¢; T, (X, Qb%) ). Taking normal operators of this equation,
we obtain (9, + An)Qu = R € C([0,00)s; ¥, 25 (M, Q7) ). By (C.12), for some

Ry € C([0,00); W, 25 (M, Q7)) ), we have

(O + A )(Qur + Ry) =

. 1
Ry + (875 + A)R1 =pmTy € pMCOO( [O,oo)t; \IJI:,(IC;?‘ (]\47 Q;) ).

Assume by induction that there are Ry, ..., Ry € C°([0,00)y; v (M, Qb%) ) such
that

0
O+ An) (Qur + 3 ki By ) = phTr € phsC(10,00)05 W, 35 (M, 9) ).
j=1

By (C.12), there is an Ry 1 € C([0,00);; W, 2 (M, Qé)) such that

. 1
Ty + (05 + pag Antpir) Rer = puTosa € prrC™([0,00)55 W, 25 (M, QF) ).
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Thus,
41
(O + Anr) (QM + ijl\/;le) = 5T + (0 + Anp)piy Reyr =
j=1

. 1
pﬁl(pMTé-i-l) € pg\}-lcoo( [07 Oo)t; le})_,([Oj?c (M7 QbZ))

Setting G to be the asymptotically sum of Qs + Z;il pjlvfle proves (C.14).

Since R in (C.14) is a smoothing operator, one can now follow the argument
found in [22, Prop. 7.17] to show the existence of Hjs. Thus, (C.11) is proved and
setting k = 0 proves our theorem. Uniqueness is proved in [22, p. 271].

C.3. Asymptotics of the heat kernel. A sector A C C is a closed angle of C.
Given a Frechét space F, the space S*(A, F) denotes the space of F-valued symbols
of order k on A.

Lemma C.7. Let A € Diff}(X, Qb%) + U, (X, Qb%) have a nonnegative principal
symbol and be elliptic, and let A be a sector of C such that for some 0 < 6 < /2,
larg(A\)] > 0 for all A € A Then given any a > 0, there is an r > 0 such that

(A= N1 e SOA; U, >(X,92)) for A€ A where [\ > 7.

Proof. For cach M € M(X) and B € W*(X,07?), we will denote Ny(B) by
By. If n/ = codim X, then we prove the following statement by induction on
k=n',n"-1,n"-2,...,2,1,0:
If M € My(X), then given any a > 0, andhorizontal strip S C C*,
1
(C.15)  there is an r > 0 such that (A — \)~! € SO(A; \I';Z’G(M, Q7))
for A € A where |\| > r.

Setting & = 0 proves our lemma. Assume that M € M,/ (X). By the argu-

1

ment found in [22, p. 284-86], there is a G € SO(A; ¥, %(X,Q7)) and an R €
S=0(A; U5 (X,02)) such that (A — A\)G = Id — R. Hence, (Ay — NGy =
Id — Ry, where Gy € SO(A;UL2(M,Q32)) and Ry € S™°(A; U (M, Q3)).
Since Ry is a smoothing operator, one can use the argument found in [22, p. 284]
to prove (C.15) for k = n’. Assume that (C.15) holds for k + 1; we prove it for k.
Fix a horizontal strip S C C* and fix M € My(X). Let pas be a total boundary
defining function for M.

We first show that given a > 0, there is a Q € SY(A; \Ilb_é’a(M, Qb%)) and T €
STR(A W, (M, Qé)) such that for some r > 0,
(C.16) (Apyy —N)Q =1d — py T for all A € A with |A] > r.

Indeed, let My (M) = {F1,..., F;} with corresponding boundary defining functions
{z1,...,2¢}. Then to prove (C.16), we first claim that given a > 0, for each

j=1,...,¢ thereis a Q; € SO(A;\III;?“(M, Qb%)) and an r; > 0 such that for all
AE A, |)\‘ > T3,

(C.17) (A —NQ; =1d-T;, T;€xi---xz;8 (A \II;?’G(M, Q7))

We use induction on j. Assume that j = 1. By the argument found in [22,
1 1
p. 284-86], there is a G € SO(A; ¥, 3(X,Q2)) and T € S™(A; ¥, (X,Q72))
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such that (A — A\)G = Id — T. Hence, (Ayr — NGy = Id — Ty, where Gy €
SO(A; W, 2, (M, Q) and Tyy € S™°(A; W, 25 (M, Q7). Let Sq = (a—2,a+2) x
S. Then, as F1 € My41(X) and N, (A)pm = Ap,, by the induction hypothesis
1
for (C.15), for some r; > 0, (Np, (Ax) — N)71 € SO(A;\IJb_é’:H(Fl,Qg)) for all
A € A with |A| > r;. Hence, we can choose S; € S™°(A; \IIZ;ZC’GH(M, Qb%))
such that NFl(Sl) = (NFl(AM) — A)_lNFI(TM). Set Q1 = Gy +S1. Then
(A]\/[ — )\)Ql =1Id— (TM — (AM — )\)Sl) Observe that ]\71:'1 (TM — (AM — /\)Sl) =0
and so (C.17) is proved for j = 1. Assume that (C.17) holds for j; we’ll prove it
is true for j + 1. Indeed, by using a similar argument as we did when 57 = 1, for

some rj41 > 0, we can choose an S;y1 € z1--- 2,5 (A; \II;EO’GH(M, Qb%)) such
that NFJ-+1 (Sj+1) = (JVFJ.+1 (AM) — )\)71]\]1%+1 (T]) for all A € A, |>\| > Tj+1- Set
Qj+1 = Q; + Sj+1. Then it follows that (C.17) holds for j + 1. Now setting j = ¢
in (C.17) proves (C.16).

Let a > 0 and choose p € N such that p > a. Then by (C.16), there is a
Q € SON W ZPTHM,QF)) and T € S™°°(A; U, &P (M, QF) ) such that for
some r > 0, (C.16) holds. Then by the composition property (A.3), it follows that

1 1
S' = (puT)?*! € pRFls==(A; W, T2 TH(M,QF)) C S™®(A; WGP (M, Q7).
Hence, if S = Z?il(pMT)j € pmST>(A; \Ilzzgo’QpH(M, Qb%) ), then
(Apy —N)(Qo(Id+S))=1d - 5.

Now one can use the argument found in [22, p. 284] to invert Id — S’ and prove
(C.15) for k. O

Remark C.8. Using [22, p. 286], this same proof can be used to show that (A —
1
A)~te STHA; \Ilg’a(X7 Q7)) for X € A where [A\| > r.

1 1
Proposition C.9. If A € Diff} (X, Q2)+ ¥, <(X,Q7) has a nonnegative principal
symbol, is self-adjoint and Fredholm, then
et = Z eT"NTL + R(t),
finite

where the I1; are finite rank projections onto the eigenspaces of A less than some
positive real number and there exists an € > 0 such that as t — oo, R(t) — 0
1

exponentially, with all t derivatives, with values in ¥, (X, Q2).

Proof. We know that e~*4 = & [ e (A — \)~! d\, where T is a contour of the
form T =7, =a+{X € C; arg(\) = £n/4}, where a < 0. Hence by Theorem B.9
and Lemma C.7, by shifting the contour T to Y/ = T/, where a’ > 0, we can write

et = Z eT"NTL + R(t),
finite
where the II; are the finite rank projections onto the eigenspaces of A with eigen-
values less than o' and R(t) = 5= [y, e (A — X\)~'dX\ where for some & > 0,

1
(A—\)~! is uniformly an element of ¥, >°(X,Q2) for all A € Y. Observe that for
any j, integration by parts gives

t)=——jl-t7 TR A- NI
RO =5t [ e A=)
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Since (A — X\)~7~1 is uniformly an element of \Ilb_z(jﬂ)’e(X, Qb%) for all A € T/, and
1
Jj is arbitrary, it follows that R(t) € ¥, % (X, Q2). O

For s > 0, observe that X7 ; = (0,00)s x X7. Let Q € U(X, Qb%) Then for
s > 0, we denote the restriction of @ to [0,00)s x Ap by Q|a,. The proof of the
following lemma is a consequence of the definition of the heat spaces, the fact that
Ap =2 X, and Theorem C.2.

0o j—n—k—2

Lemma C.10. Let Q € ¥k (X, Qb%) Then ast | 0, Qla, ~ > Zgt 2 7;(2)

where v; € C®(X, ). In particular, if A € Diff; (X, Qb%) + U, (X, Qb%) has a
nonnegative principal symbol and is elliptic, then

e_tA‘Ab ~ Zt% ’Yj(x)v where Vi € COC(X’ Qb)
j=0
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